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Formation of localized sand patterns downstream from a vertical cylinder under steady flows:
Experimental and theoretical study
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The generation of localized, spatially periodic patterns on a sandy bottom is experimentally and theoretically
studied. Tests are performed in a hydrodynamic flume where patterns are produced downstream from a vertical
cylinder under a steady current. It is found that patterns appear as a result of a subcritical instability of the
water-sand bottom interface. A dependence of the area shape occupied by the patterns on the flow velocity and
the cylinder diameter is investigated. It is shown that the patterns’ characteristics can be explained using the
Swift-Hohenberg equation. Numerical simulations point out that for a correct description of the patterns, an
additional term which takes into account the impact of vortices on the sandy bottom in the wake of a cylinder
must be added in the Swift-Hohenberg equation.
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I. INTRODUCTION17

In recent decades, the study of the formation of localized18

structures in nonequilibrium media has attracted the attention19

of researchers. Such structures were found in chemically20

active media, in granular materials, and in many numerical21

experiments with model equations. A sandy bottom under22

hydrodynamic flow is an example of a nonequilibrium medium23

[1]. The interface between the water flow and the sandy bottom24

is unstable owing to perturbations with zero phase velocity.25

This instability has been studied for over 100 years [2]. It26

was found that its development may lead to the generation of27

different stationary patterns at the bottom: roller structures,28

modulated rollers, and cellular structures consisting of a29

rhombus or squares. These structures were studied in detail30

for the case of supercritical instability when spatially periodic31

patterns arise from infinitesimal perturbations and occupy32

an area with a characteristic dimension that is substantially33

greater than the spatial period of the pattern. In this paper, we34

investigate localized patterns which appear on a sandy bottom35

as a result of subcritical instability under finite-amplitude36

perturbations. These perturbations are generated downstream37

from a vertical cylinder. It should be noted that erosion,38

so-called scour [3–5], appears in the vicinity of the cylinder.39

The features of the scour have been investigated in detail, since40

they are essential for the design of hydraulic structures [6–10].41

The present work is devoted to sand structures appearing under42

the influence of vortices in the wake of a vertical cylinder.43

Vortices contribute to finite perturbations and initiate the44

pattern’s development on the sandy bottom. The mechanism45

of occurrence of localized patterns is investigated in this46

paper. For the present experimental conditions, the water-sand47

boundary is stable with respect to small perturbations when48

there is no vertical cylinder placed on the bed.49

This paper is organized as follows. In Sec. II, the experimen-50

tal setup and results are presented. Section III is devoted to the51

theoretical approach. The theoretical results are compared with52

*francois.marin@univ-lehavre.fr

the experimental findings. The paper ends with conclusions in 53

Sec. IV. 54

II. EXPERIMENTAL SETUP AND RESULTS 55

The experiments were conducted in a 10-m-long, 0.49-m- 56

wide current flume. The mean water depth H was 0.2 m. 57

Current was generated by a recirculating pump, as shown in 58

Fig. 1. 59

The first series of tests was carried out without sediment 60

and without a cylinder. An acoustic Doppler current profiler 61

(ADCP) was used for these tests to get vertical profiles of the 62

fluid velocity in the channel above the artificial bed which 63

was hydraulically smooth. The flow regime was turbulent for 64

all of the tests since the value of the flow Reynolds number 65

Re = UH/υ, where U is the depth-averaged current velocity 66

and υ the water kinematic viscosity, was greater than 5000, 67

the critical value for the flow to be turbulent [11]. The velocity 68

profiles can be described by a logarithmic law characteristic 69

of a turbulent flow, for z > 0.02 m, where z is the vertical 70

distance above the bed (Fig. 2), except for the highest values 71

of z where the outer flow takes place. This logarithmic law 72

may be written as follows, 73

u

u∗
= 1

K
ln

(
z

z0

)
, (1)

where u is the horizontal component of fluid velocity at height 74

z above the bottom, u∗ the shear velocity at the bed, K the 75

Karman constant which is usually taken to be 0.4, and z0 a 76

length scale. 77

The test conditions are shown in Table I, where D is the 78

cylinder diameter and ReD = UD/ν. Tests 1–13 were carried 79

out with a 7-cm sand layer of median diameter d = 340 μm 80

and relative density s = ρs/ρ = 2.65, where ρs and ρ are the 81

sand and fluid density, respectively, for flow conditions such as 82

the bed shear stress was too weak to move the sediments when 83

there was no vertical cylinder placed on the bottom. A critical 84

value of 0.31 m/s for the depth-averaged current velocity U for 85

the initial movement of the sediments has been experimentally 86

obtained. Below this critical value, the sand particles on the 87
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FIG. 1. The experimental setup.

bottom are motionless, when sediment transport starts above88

this value. Let us consider the following relation proposed by89

Ref. [12],90

θc = 0.30

1 + 1.2D∗
+ 0.055[1 − exp(−0.020D∗)], (2)

where θc is the critical value of the Shields parameter θ for91

the incipient sediment motion, and D∗ = [(s − 1)g/ν2]1/3d,92

with g the acceleration due to gravity. The Shields parameter93

is defined as follows,94

θ = τ0

ρ(s − 1)gd
, (3)

where τ0 is the bed shear stress. Using Eqs. (2) and (3), for95

the present tests, it is possible to estimate the critical Shields96

number θc = 0.035, and the critical value of shear velocity97

at the bed u∗c = √
τ0c/ρ = 0.0139 m/s for the incipient sedi-98

ment motion, with τ0c being the corresponding critical value of99

FIG. 2. Typical velocity profiles above the artificial smooth bed,
without pile placed on the bed, for a horizontal distance from
the honeycomb of 5 m. The solid lines show the best fit with
the experimental data in the layer where the velocity profile is
logarithmic. �: Re = 29 000; �: Re = 53 000.

τ0. The value of the Reynolds number Re∗ = u∗cks/ν = 11.8, 100

where ks = 2.5d [13] is the roughness length of the bed, lies 101

in the transition region since 5 < u∗ks/ν < 70 [11], and the 102

length scale z0 in the log-law velocity distribution [Eq. (1)] 103

may be estimated by [11] 104

z0 = ks

30

[
1 − exp

(
−u∗cks

27ν

)]
+ ν

9u∗c

. (4)

The bottom is considered to be hydraulically smooth when 105

Re∗ < 5, and hydraulically rough when Re∗ > 70. In the 106

transition regime (5 < Re∗ < 70), we have [11] 107

U = 2.5u∗ ln

(
H

2.72z0

)
. (5)

Using Eqs. (2), (4), and (5), we get an estimation of the critical 108

value of the depth-averaged current velocity U for an incipient 109

sediment motion of 0.29 m/s. This result is in good agreement 110

with the experimentally obtained value of 0.31 m/s. Table I 111

shows that the present tests were carried out for U < 0.29 m/s, 112

in other words, for θ < θc. A vertical cylinder was embedded 113

in the sand layer, as shown in Fig. 1. The sandy bottom was 114

TABLE I. Experimental conditions.

Test number D (mm) U (m/s) ReD Re

1 14 0.150 2100 30 000
2 14 0.190 2660 38 000
3 14 0.200 2800 40 000
4 14 0.210 2940 42 000
5 14 0.215 3010 43 000
6 25 0.150 3750 30 000
7 25 0.180 4500 36 000
8 25 0.185 4625 37 000
9 25 0.190 4750 38 000
10 25 0.195 4875 39 000
11 25 0.200 5000 40 000
12 25 0.210 5250 42 000
13 25 0.220 5500 44 000
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FIG. 3. Bed profiles at the equilibrium state. (a) Test 2, (b) test 4, (c) test 5, (d) test 8, (e) test 10, and (f) test 11.

initially flat. It is well known [8] that scour occurs in the115

vicinity of the cylinder such as116

Sc = S

[
1 − exp

(
− t

t∗

)]
, (6)

where S and Sc are the equilibrium scour depth and the117

value of the scour at time t , respectively, and t∗ is the time118

scale of the scour process. The value of t∗ may be estimated119

from the present tests at 30 min. For our experimental120

conditions, we have 2100 � ReD � 5500 (see Table I), and a121

turbulent Karman vortex street occurs downstream from the122

vertical cylinder. Measurements carried out with hydrogen123

bubbles which were produced by electrolysis show that the124

dimensionless shedding frequency, the so-called Strouhal125

number St = f D/U , where f is the frequency of vortex126

shedding, is St ∼= 0.2. This value agrees well with well-known127

experimental data [14]. Bedforms appeared downstream from128

the cylinder due to vortices when the sediments did not move129

upstream from the cylinder (except in its vicinity where scour130

was observed), apart for tests 1 and 6 for which the bed131

remained flat. These two tests involve the lowest value of132

the depth-averaged current velocity, and the perturbations133

in the flow velocity field induced by the vortices are too134

weak to initiate the development of patterns. The intensity135

of these perturbations is considered later in this paper. A136

high-resolution camera was used to get the top views of137

the sand patterns, and an ultrasonic ranging system with a138

linear array of transducers mounted on a movable carriage139

was employed to provide three-dimensional (3D) bed profiles. 140

Figure 3 depicts bed profiles obtained with the ultrasonic 141

ranging system at the equilibrium state. The origins of x 142

and y are located at the cylinder center. Sand patterns are 143

clearly seen. For a fixed value of the cylinder diameter D, the 144

area where patterns appear increases for increasing values of 145

fluid flow velocity, as shown in Fig. 4 for D = 25 mm, figure 146

displaying a sharp phase transition. For a given value of the 147

depth-averaged current velocity U , this area is enhanced for 148

rising values of the cylinder diameter. This is illustrated in the 149

comparison between experimental and theoretical results in the 150

FIG. 4. Variation of pattern area with the depth-averaged current
velocity at the equilibrium state. D = 25 mm.
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FIG. 5. Variation of the pattern wavelength with the depth-
averaged current velocity at the equilibrium state. —�—: D = 14
mm. · · · � · · · : D = 25 mm.

following section of the paper (Figs. 13 and 15). The pattern151

wavelength λ can be easily obtained at the equilibrium state152

for the present tests. Figure 5, which exhibits a variation of λ153

with U for D = 14 mm and for D = 25 mm, shows that the154

pattern wavelength increases for increasing values of fluid flow155

velocity and of the cylinder diameter. Even at the equilibrium156

state, the patterns are never completely immobile. In this paper,157

we consider the patterns to be at the equilibrium state when158

the pattern characteristics no longer change significantly with159

time and fluctuate around the mean characteristics, as depicted160

in Fig. 6 for the pattern wavelength.161

Lee-wake vortices induce perturbations in the velocity field162

which affect the bottom. Particle image velocimetry (PIV)163

measurements were carried out to estimate the level of these164

perturbations, as depicted in Fig. 7.165

The measurements were performed without sediments on166

the bed, in a horizontal plane located at 0.02 m above a167

glass bottom, just outside the viscous sublayer. The camera168

was placed under the glass bed. The spatial resolution was169

37 000 pixels/cm, and the acquisition frequency was 15 Hz.170

Figure 8 shows an example of the velocity field for the same171

flow conditions as test 11, but without sediments on the bed.172

Perturbations in the velocity field due to the Lee-wake vor-173

tices are clearly exhibited. Time-averaged velocity fluctuation174

FIG. 6. Variation of the pattern wavelength with time t . Test 8.

FlumeLaser

Flow

0.
5 

m

y

x

Lee-wake vortices

Light sheet

Cylinder

Cylinder
shadow

PIV measurement zone

0.12 m

0.09 m

FIG. 7. Sketch of the particle image velocimetry (PIV) system.

fields were estimated using the following equation, 175

Ṽ 2 = 1

Ti

∫ t

0
{(Vx − V x)2 + (Vy − V y)2}dt, (7)

where Vx and Vy are the instantaneous velocity components 176

along the x and y axis, respectively, Vx and Vy are the 177

time-mean values of Vx and Vy , and Ṽ is the time-averaged 178

velocity fluctuation. The integration time Ti was fixed to 16 s, 179

which is a time window greater than ten times the time interval 180

between two vortices shedding for all of the tests. Transverse 181

profiles of Ṽ 2 are depicted in Fig. 9 for D = 14 mm and 182

x/D = 1. These profiles exhibit two peaks which correspond 183

to the perturbations induced by the alternate vortex shedding 184

downstream from the cylinder. For a fixed value of D, the 185

intensity of the velocity fluctuations increases for increasing 186

values of ReD , as expected. Figure 9 shows that high values 187

of the velocity fluctuations are located in the wake zone for 188

−1 � y/D � 1. The variation of Ṽ 2 with the dimensionless 189

distance from the cylinder in the current direction x/D is 190

plotted in Fig. 10 for y/D = −0.3 for the same tests as in 191

Fig. 9. Figure 10 shows that, outside the immediate vicinity of 192

the cylinder, the time-averaged velocity fluctuations decrease 193

quite rapidly for increasing values of the distance x from the 194

cylinder. As previously mentioned, no pattern appeared for 195

test 1 when the patterns were generated for the other tests 196

carried out with a 14 mm diam cylinder (tests 2–5). It can be 197

deduced from Figs. 9 and 10 that for D = 14 mm, the patterns 198

on the sandy bottom are not initiated under vortices when the 199

peak values of Ṽ 2 are lower than 0.008 m2/s2, approximately, 200

FIG. 8. Velocity field downstream from the cylinder. Re =
40 000, ReD = 5000 (z = 0.02 m).
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FIG. 9. Variation of Ṽ 2 [Eq. (7)] with the dimensionless trans-
verse distance from the cylinder y/D, for x/D = 1 (z = 0.02 m). -
-�- -: ReD = 2100 (test 1). —�—: ReD = 2660 (test 2). · · · • · · · :
ReD = 3010 (test 5).

and that patterns appear when these values are greater than201

0.008 m2/s2. In the case of the 25 mm diameter cylinder,202

the present tests indicate that patterns do not appear for peak203

values of Ṽ 2 that are lower than 0.014 m2/s2, approximately,204

and do appear when these values are greater than 0.014205

m2/s2 (figure not shown). This confirms that the considered206

instability leading to the formation of patterns on the sandy207

bottom downstream from a vertical cylinder is subcritical. For208

the same value of the fluid flow velocity, the time-averaged209

velocity fluctuations increase for increasing values of the210

cylinder diameter, as shown in Fig. 11 for U = 0.19 m/s.211

III. THEORETICAL APPROACH212

Let us consider the Swift-Hohenberg equation [15], a213

phenomenological equation,214

∂u

∂T
= εu − (1 + −→∇ 2)2u + qu2 − u3, (8)

where u is the order parameter,
−→∇ = −→

X ∂
∂X

+ −→
Y ∂

∂Y
, X215

and Y are dimensionless distances in the horizontal plan,216

T is dimensionless time, q the coefficient for quadratic217

nonlinearity, and ε the linear instability of the system,218

ε = θ − θc

θ
. (9)

FIG. 10. Variation of Ṽ 2 [Eq. (7)] with the dimensionless distance
from the cylinder in the current direction x/D, for y/D = −0.3
(z = 0.02 m). - -�- -: ReD = 2100 (test 1). —�—: ReD = 2660 (test
2). · · · • · · · : ReD = 3010 (test 5).

FIG. 11. Variation of Ṽ 2 [Eq. (7)] with the dimensionless trans-
verse distance from the cylinder y/D, for x/D = 1 (z = 0.02 m).
U = 0.19 m/s. —�—: D = 14 mm (test 2). · · · � · · · : D = 25 mm
(test 9).

Instability to infinitesimal perturbations occurs if ε > 0. If 219

ε < 0, linear instability is absent. The instability occurs for 220

q > 0, if the initial perturbations are sufficiently large. It is the 221

so-called subcritical instability appearing in many physical 222

systems. The Swift-Hohenberg equation is widely used as a 223

model to describe pattern formation [16,17]. In particular, it 224

has been used to model patterns in fluids such as Rayleigh- 225

Bénard convection. 226

Equation (8) describes patterns in media which are homo- 227

geneous for all directions in the (
−→
X ,

−→
Y ) plane. For example, 228

the formation and dynamics of hexagonal or square cells may 229

be explained by Eq. (8). In the present case, the system is 230

anisotropic in the (
−→
X ,

−→
Y ) plane, a flow exists in one direction 231

(X), and Eq. (8) can be modified to describe patterns observed 232

in experiments in the following way, 233

∂u

∂T
= εu −

[
1 +

(
1

k0D

)2
∂2

∂X2

]2

u

+DY

∂2u

∂Y 2
+ qu2 − u3, (10)

10 D

Crests Troughs

Flow

λ

FIG. 12. Theoretical results [Eq. (10)] for ε = 0.01. k0D = 1,
DY = 1, q = 1.6, 20 iterations.
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where k0 is the wave number, k0 = 2π/λ, and DY a diffusion234

coefficient. For small positive values of ε, Eq. (10) depicts the235

instability of infinitesimal perturbations with wave numbers236

oriented along the X direction. This is confirmed by Fig. 12,237

representing results from Eq. (10) for ε = 0.01.238

In our case, ε < 0 as our experiments are carried out in239

the subcritical regime, and patterns arise only in the wake of240

the cylinder where velocity and pressure perturbations initiate241

instability due to quadratic nonlinearity. We take into account242

these perturbations by adding a force f (X,Y ) corresponding243

to the time-averaged pressure forces acting on the sand-water244

interface on the right-hand side of Eq. (10):245

∂u

∂T
= εu −

[
1 +

(
1

k0D

)2
∂2

∂X2

]2

u

+DY

∂2u

∂Y 2
+ qu2 − u3 + f (X,Y ). (11)

We suppose that this force is proportional to Ṽ 2, where Ṽ 2
246

is the spatially modulated random field defined by Eq. (7),247

because for the values of the Reynolds numbers ReD (several248

thousands) involved in our experiments, a turbulent vortex249

street is observed. The fields of time-averaged velocity fluctu-250

ations Ṽ 2 have been obtained just outside the viscous sublayer251

for the present tests, using the PIV method as described above.252

The shape of this force can be qualitatively explained as253

follows. Along a streamline, we can use the Bernoulli equation,254

P + ρ
Ṽ 2

2
= C, (12)

where C is a constant. A pressure decrease is induced by an255

increase of the velocity. Therefore, low pressure corresponds256

to positive forces acting at the sand-water interface, and257

these forces introduce perturbations responsible for pattern258

formation. The diffusion coefficient DY [Eq. (10)] may be259

estimated from our experiments with the following equation,260

DY =
(

l

D

)2
t∗
teq

. (13)

FIG. 13. Comparison between (a) experimental and (b) theoret-
ical [Eq. (11)] results at the equilibrium state. Test 2. ε = −0.182,
k0D = 0.94, DY = 0.023.

FIG. 14. Comparison between (a) experimental and (b) theoret-
ical [Eq. (11)] results at the equilibrium state. Test 5. ε = −0.172,
k0D = 0.50, DY = 0.3.

In this equation, l is half of the lateral extension (in the Y 261

direction) of the sand pattern at the equilibrium state, and teq 262

the time required to reach equilibrium. It should be noted that 263

Eq. (11) can be written in the general gradient form 264

∂u

∂T
= −δF

δu
, (14)

where F is the free-energy functional, 265

F =
∫

�

{
1

2

[(
1 +

(
1

k0D

)2
∂2

∂X2

)
u

]2

− DY

1

2

[(
∂

∂Y

)
u

]2

− ε
u2

2
− q

u3

3
+ u4

4
− f (X,Y )u

}
dXdY, (15)

and � is the two-dimensional region of space in which 266

the pattern occurs. The time derivative of this free-energy 267

functional gives us 268

∂F

∂T
= −

∫
�

(
∂u

∂T

)2

dXdY � 0. (16)

Free energy may only decrease as it evolves. The limiting 269

behavior for gradient systems is either a steady attractor or 270

propagating fronts. Using the Fourier spatial method, we 271

numerically find nonhomogeneous steady states, as shown 272

below. 273

Let us compare experimental and theoretical results at 274

the equilibrium state. The value of the coefficient q is 1.6 275

for the present simulations, and the number of iterations is 276

500. Figures 13–15 depict the results for tests 2, 5, and 9, 277

002900-6



FORMATION OF LOCALIZED SAND PATTERNS . . . PHYSICAL REVIEW E 00, 002900 (2016)

5 D

(a)

λ

Flow

(b)

Crests Troughs

FIG. 15. Comparison between (a) experimental and (b) theoret-
ical [Eq. (11)] results at the equilibrium state. Test 9. ε = −0.182,
k0D = 0.78, DY = 0.11.

respectively. A reasonable agreement is obtained between278

the experimental and theoretical results. In particular, the279

spatial extension of patterns and the wavelength λ are well280

reproduced. It is not surprising to obtain a greater spatial 281

extension for tests 5 and 9 than for test 2, since tests 5 282

and 9 involve higher fluid velocities and a larger cylinder 283

diameter, respectively, leading to larger time-averaged velocity 284

fluctuations, and then to a greater force f (X,Y ). 285

IV. CONCLUSIONS 286

The formation of localized sand patterns downstream from a 287

vertical cylinder under turbulent steady flows is experimentally 288

and theoretically studied. Tests which were carried out in a 289

hydrodynamic flume depict the generation of patterns as a 290

result of a subcritical instability of the water-sand interface. 291

Lee-wake vortices induced by the cylinder lead to perturba- 292

tions in the velocity field and to an additional force on the sandy 293

bed. The present results show that localized steady states may 294

be numerically obtained by using a modified Swift-Hohenberg 295

equation with an additional term for this force. Numerically 296

obtained pattern characteristics are in reasonable agreement 297

with experimental observations. 298
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