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I. INTRODUCTION

In recent decades, the study of the formation of localized structures in nonequilibrium media has attracted the attention of researchers. Such structures were found in chemically active media, in granular materials, and in many numerical experiments with model equations. A sandy bottom under hydrodynamic flow is an example of a nonequilibrium medium [1]. The interface between the water flow and the sandy bottom is unstable owing to perturbations with zero phase velocity. This instability has been studied for over 100 years [START_REF] Dey | Fluvial Hydrodynamics: Sediment Transport and Scour Phenomena[END_REF]. It was found that its development may lead to the generation of different stationary patterns at the bottom: roller structures, modulated rollers, and cellular structures consisting of a rhombus or squares. These structures were studied in detail for the case of supercritical instability when spatially periodic patterns arise from infinitesimal perturbations and occupy an area with a characteristic dimension that is substantially greater than the spatial period of the pattern. In this paper, we investigate localized patterns which appear on a sandy bottom as a result of subcritical instability under finite-amplitude perturbations. These perturbations are generated downstream from a vertical cylinder. It should be noted that erosion, so-called scour [START_REF] Breusers | [END_REF][4][START_REF] Hoffmans | Scour Manual[END_REF], appears in the vicinity of the cylinder.

The features of the scour have been investigated in detail, since they are essential for the design of hydraulic structures [START_REF] Whitehouse | Scour at Marine Structures: A Manual for Practical Applications[END_REF][START_REF] Melville | Bridge Scour[END_REF][START_REF] Sumer | The Mechanics of Scour in the Marine Environment[END_REF][START_REF] Ettema | Evaluation of Bridge Scour Research: Pier Scour Processes and Predictions[END_REF][START_REF] Qi | [END_REF].

The present work is devoted to sand structures appearing under the influence of vortices in the wake of a vertical cylinder.

Vortices contribute to finite perturbations and initiate the pattern's development on the sandy bottom. The mechanism of occurrence of localized patterns is investigated in this paper. For the present experimental conditions, the water-sand boundary is stable with respect to small perturbations when there is no vertical cylinder placed on the bed. This paper is organized as follows. In Sec. II, the experimental setup and results are presented. Section III is devoted to the theoretical approach. The theoretical results are compared with * francois.marin@univ-lehavre.fr the experimental findings. The paper ends with conclusions in 53 Sec. IV.

54

II. EXPERIMENTAL SETUP AND RESULTS

55

The experiments were conducted in a 10-m-long, 0.49-m-56 wide current flume. The mean water depth H was 0.2 m. 57 Current was generated by a recirculating pump, as shown in 58 Fig. 1.

59

The first series of tests was carried out without sediment 60 and without a cylinder. An acoustic Doppler current profiler 61 (ADCP) was used for these tests to get vertical profiles of the 62 fluid velocity in the channel above the artificial bed which 63 was hydraulically smooth. The flow regime was turbulent for 64 all of the tests since the value of the flow Reynolds number 65 Re = UH/υ, where U is the depth-averaged current velocity 66 and υ the water kinematic viscosity, was greater than 5000, 67 the critical value for the flow to be turbulent [START_REF] Sleath | Sea Bed Mechanics[END_REF]. The velocity 68 profiles can be described by a logarithmic law characteristic 69 of a turbulent flow, for z > 0.02 m, where z is the vertical 70 distance above the bed (Fig. 2), except for the highest values 71 of z where the outer flow takes place. This logarithmic law 72 may be written as follows,

73 u u * = 1 K ln z z 0 , ( 1 
)
where u is the horizontal component of fluid velocity at height 74 z above the bottom, u * the shear velocity at the bed, K the 75 Karman constant which is usually taken to be 0.4, and z 0 a 76 length scale.

77

The test conditions are shown in Table I, where D is the 78 cylinder diameter and Re D = UD/ν. Tests 1-13 were carried 79 out with a 7-cm sand layer of median diameter d = 340 μm 80 and relative density s = ρ s /ρ = 2.65, where ρ s and ρ are the 81 sand and fluid density, respectively, for flow conditions such as 82 the bed shear stress was too weak to move the sediments when 83 there was no vertical cylinder placed on the bottom. A critical 84 value of 0.31 m/s for the depth-averaged current velocity U for 85 the initial movement of the sediments has been experimentally 86 obtained. Below this critical value, the sand particles on the 87 Ref. [START_REF] Soulsby | Dynamics of Marine Sands[END_REF],

90 θ c = 0.30 1 + 1.2D * + 0.055[1 -exp(-0.020D * )], (2) 
where θ c is the critical value of the Shields parameter θ for 91 the incipient sediment motion, and

D * = [(s -1)g/ν 2 ] 1/3 d, 92
with g the acceleration due to gravity. The Shields parameter 93 is defined as follows,

94 θ = τ 0 ρ(s -1)gd , ( 3 
)
where τ 0 is the bed shear stress. Using Eqs. where k s = 2.5d [START_REF] Nielsen | Coastal and Estuarine Processes[END_REF] is the roughness length of the bed, lies in the transition region since 5 < u * k s /ν < 70 [START_REF] Sleath | Sea Bed Mechanics[END_REF], and the length scale z 0 in the log-law velocity distribution [Eq. ( 1)] may be estimated by [START_REF] Sleath | Sea Bed Mechanics[END_REF] 

z 0 = k s 30 1 -exp - u * c k s 27ν + ν 9u * c . ( 4 
)
The bottom is considered to be hydraulically smooth when Re * < 5, and hydraulically rough when Re * > 70. In the transition regime (5 < Re * < 70), we have [START_REF] Sleath | Sea Bed Mechanics[END_REF] 

U = 2.5u * ln H 2.72z 0 . ( 5 
)
Using Eqs. ( 2), (4), and (5), we get an estimation of the critical value of the depth-averaged current velocity U for an incipient sediment motion of 0.29 m/s. This result is in good agreement with the experimentally obtained value of 0.31 m/s. Table I shows that the present tests were carried out for U < 0.29 m/s, in other words, for θ < θ c . A vertical cylinder was embedded in the sand layer, as shown in Fig. 1. The sandy bottom was initially flat. It is well known [START_REF] Sumer | The Mechanics of Scour in the Marine Environment[END_REF] that scour occurs in the vicinity of the cylinder such as

S c = S 1 -exp - t t * , ( 6 
)
where S and S c are the equilibrium scour depth and the value of the scour at time t, respectively, and t * is the time scale of the scour process. The value of t * may be estimated from the present tests at 30 min. For our experimental conditions, we have 2100 Re D 5500 (see Table I fields were estimated using the following equation,

V 2 = 1 T i t 0 {(V x -V x ) 2 + (V y -V y ) 2 }dt, (7) 
where V x and V y are the instantaneous velocity components along the x and y axis, respectively, V x and V y are the time-mean values of V x and V y , and V is the time-averaged velocity fluctuation. The integration time T i was fixed to 16 s, which is a time window greater than ten times the time interval between two vortices shedding for all of the tests. Transverse profiles of V 2 are depicted in Fig. 9 for D = 14 mm and x/D = 1. These profiles exhibit two peaks which correspond to the perturbations induced by the alternate vortex shedding downstream from the cylinder. For a fixed value of D, the intensity of the velocity fluctuations increases for increasing values of Re D , as expected. Figure 9 shows that high values of the velocity fluctuations are located in the wake zone for -1 y/D 1. The variation of V 2 with the dimensionless distance from the cylinder in the current direction x/D is plotted in Fig. 10 for y/D = -0.3 for the same tests as in Fig. 9. 

III. THEORETICAL APPROACH

Let us consider the Swift-Hohenberg equation [15], a phenomenological equation,

∂u ∂T = εu -(1 + -→ ∇ 2 ) 2 u + qu 2 -u 3 , ( 8 
)
where u is the order parameter,

-→ ∇ = -→ X ∂ ∂X + -→ Y ∂ ∂Y , X
and Y are dimensionless distances in the horizontal plan, T is dimensionless time, q the coefficient for quadratic nonlinearity, and ε the linear instability of the system, Instability to infinitesimal perturbations occurs if ε > 0. If 219 ε < 0, linear instability is absent. The instability occurs for 220 q > 0, if the initial perturbations are sufficiently large. It is the 221 so-called subcritical instability appearing in many physical 222 systems. The Swift-Hohenberg equation is widely used as a 223 model to describe pattern formation [16,17]. In particular, it 224 has been used to model patterns in fluids such as Rayleigh-225 Bénard convection.

ε = θ -θ c θ . ( 9 

226

Equation (8) describes patterns in media which are homo-227 geneous for all directions in the ( -→ X , -→ Y ) plane. For example, 228 the formation and dynamics of hexagonal or square cells may 229 be explained by Eq. ( 8). In the present case, the system is 230 anisotropic in the ( -→ X , -→ Y ) plane, a flow exists in one direction 231 (X), and Eq. ( 8) can be modified to describe patterns observed 232 in experiments in the following way, where k 0 is the wave number, k 0 = 2π/λ, and D Y a diffusion coefficient. For small positive values of ε, Eq. ( 10) depicts the instability of infinitesimal perturbations with wave numbers oriented along the X direction. This is confirmed by Fig. 12, representing results from Eq. ( 10) for ε = 0.01.

233 ∂u ∂T = εu -1 + 1 k 0 D 2 ∂ 2 ∂X 2 2 u + D Y ∂ 2 u ∂Y 2 + qu 2 -u 3 , ( 10 
)
In our case, ε < 0 as our experiments are carried out in the subcritical regime, and patterns arise only in the wake of the cylinder where velocity and pressure perturbations initiate instability due to quadratic nonlinearity. We take into account these perturbations by adding a force f (X,Y ) corresponding to the time-averaged pressure forces acting on the sand-water interface on the right-hand side of Eq. ( 10):

∂u ∂T = εu -1 + 1 k 0 D 2 ∂ 2 ∂X 2 2 u + D Y ∂ 2 u ∂Y 2 + qu 2 -u 3 + f (X,Y ). ( 11 
)
We suppose that this force is proportional to V 2 , where V 2 is the spatially modulated random field defined by Eq. ( 7 for the present tests, using the PIV method as described above.

The shape of this force can be qualitatively explained as follows. Along a streamline, we can use the Bernoulli equation,

P + ρ V 2 2 = C, ( 12 
)
where C is a constant. A pressure decrease is induced by an increase of the velocity. Therefore, low pressure corresponds to positive forces acting at the sand-water interface, and these forces introduce perturbations responsible for pattern formation. The diffusion coefficient D Y [Eq. [START_REF] Qi | [END_REF]] may be estimated from our experiments with the following equation, In this equation, l is half of the lateral extension (in the Y 261 direction) of the sand pattern at the equilibrium state, and t eq 262 the time required to reach equilibrium. It should be noted that 263 Eq. ( 11) can be written in the general gradient form

D Y = l D 2 t * t eq . ( 13 
264 ∂u ∂T = - δF δu , ( 14 
)
where F is the free-energy functional,

265 F = 1 2 1 + 1 k 0 D 2 ∂ 2 ∂X 2 u 2 -D Y 1 2 ∂ ∂Y u 2 -ε u 2 2 -q u 3 3 + u 4 4 -f (X,Y )u dXdY, (15) 
and is the two-dimensional region of space in which 266 the pattern occurs. The time derivative of this free-energy 267 functional gives us

268 ∂F ∂T = - ∂u ∂T 2 dXdY 0. ( 16 
)
Free energy may only decrease as it evolves. The limiting 269 behavior for gradient systems is either a steady attractor or 270 propagating fronts. Using the Fourier spatial method, we 271 numerically find nonhomogeneous steady states, as shown 272 below. 

IV. CONCLUSIONS

The formation of localized sand patterns downstream from a vertical cylinder under turbulent steady flows is experimentally and theoretically studied. Tests which were carried out in a hydrodynamic flume depict the generation of patterns as a result of a subcritical instability of the water-sand interface. Lee-wake vortices induced by the cylinder lead to perturbations in the velocity field and to an additional force on the sandy bed. The present results show that localized steady states may be numerically obtained by using a modified Swift-Hohenberg equation with an additional term for this force. Numerically obtained pattern characteristics are in reasonable agreement with experimental observations.
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 1 FIG. 1. The experimental setup. bottom are motionless, when sediment transport starts above 88

FIG. 2 .

 2 FIG.2. Typical velocity profiles above the artificial smooth bed, without pile placed on the bed, for a horizontal distance from the honeycomb of 5 m. The solid lines show the best fit with the experimental data in the layer where the velocity profile is logarithmic. : Re = 29 000; : Re = 53 000.

  FIG. 4. Variation of pattern area with the depth-averaged current velocity at the equilibrium state. D = 25 mm.

Figure 5 ,Figure 8 FIG. 6 .

 586 Figure 8 shows an example of the velocity field for the same 171
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 7 FIG. 7. Sketch of the particle image velocimetry (PIV) system.
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 10 FIG. 8. Velocity field downstream from the cylinder. Re = 40 000, Re D = 5000 (z = 0.02 m).

)FIG. 10 .

 10 FIG. 10. Variation of V 2 [Eq. (7)] with the dimensionless distance from the cylinder in the current direction x/D, for y/D = -0.3 (z = 0.02 m). ----: Re D = 2100 (test 1). --: Re D = 2660 (test 2). • • • • • • • : Re D = 3010 (test 5).

FIG. 11 .

 11 FIG. 11. Variation of V 2 [Eq. (7)] with the dimensionless transverse distance from the cylinder y/D, for x/D = 1 (z = 0.02 m). U = 0.19 m/s. --: D = 14 mm (test 2). • • • • • • : D = 25 mm (test 9).

FIG. 12 .

 12 FIG.12. Theoretical results [Eq.[START_REF] Qi | [END_REF]] for ε = 0.01. k 0 D = 1, D Y = 1, q = 1.6, 20 iterations.

  ), because for the values of the Reynolds numbers Re D (several thousands) involved in our experiments, a turbulent vortex street is observed. The fields of time-averaged velocity fluctuations V 2 have been obtained just outside the viscous sublayer

)FIG. 13 .

 13 FIG. 13. Comparison between (a) experimental and (b) theoretical [Eq. (11)] results at the equilibrium state. Test 2. ε = -0.182, k 0 D = 0.94, D Y = 0.023.

273FIG. 15 .

 15 FIG. 15. Comparison between (a) experimental and (b) theoretical [Eq. (11)] results at the equilibrium state. Test 9. ε = -0.182, k 0 D = 0.78, D Y = 0.11.

TABLE I .

 I Experimental conditions.

	Test number	D (mm)	U (m/s)	Re D	Re
	1	14	0.150	2100	30 000
	2	14	0.190	2660	38 000
	3	14	0.200	2800	40 000
	4	14	0.210	2940	42 000
	5	14	0.215	3010	43 000
	6	25	0.150	3750	30 000
	7	25	0.180	4500	36 000
	8	25	0.185	4625	37 000
	9	25	0.190	4750	38 000
	10	25	0.195	4875	39 000
	11	25	0.200	5000	40 000
	12	25	0.210	5250	42 000
	13	25	0.220	5500	44 000

FIG. 3. Bed profiles at the equilibrium state. (a) Test 2, (b) test 4, (c) test 5, (d) test 8, (e) test 10, and (f) test 11.
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