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Synopsis

State-of-the-art techniques for denoising functional MRI (fMRI) im-
ages consider the problems of spatial and temporal regularization as
decoupled tasks. In this work we propose a partial differential equa-
tions (PDEs) -based algorithm that acts directly on the 4-D fMRI
image. Our approach is based on the idea that large image variations
should be preserved as they occur during brain activation, but small
variations should be smoothed to remove noise. Starting from this
principle, by means of PDEs we were able to smooth the fMRI image
with an anisotropic regularization, thus recovering the location of the
brain activations in space and their timing and duration.

Introduction

Image denoising via different regularization algorithms have been addressed
within the past years with many approaches [1, 2], In particular, in the case
of functional MRI (fMRI), deconvolution techniques are used to denoise the
blood-oxygen-level-dependent (BOLD) response [3]. In this work we propose a
novel approach to anisotropically regularize the 4-D fMRI image using partial
differential equations (PDEs), in order to smooth the data by minimizing the
image variations, while preserving the discontinuities, i.e. edges. The approach
acts simoultaneously in the 3-D space and the time dimension and does not
require a priori information about the activation and their timing.

Methods

Let Ω be a 4-D (3-D space × time) domain and assume Neumann boundary
conditions on ∂Ω. We defined a regularization process, based on gradient descent
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computed with PDEs, such that:

∂I

∂t
= (1− λ)

H̄ ? (I0 −H ? I)

A
+ λ

div(D∇I)

B
(1)

where I0 and I are the original and the denoised image respectively, A = ‖I0‖
and B = ‖div(D∇I0)‖ are normalization factors, H is the hemodynamic re-
sponse function (HRF) [4], H̄ is the time-reversed HRF, λ is the regularization

parameter and D = ∇I∇IT

‖∇I‖2 ? G is the 4-D structure tensor of I smoothed by

the gaussian kernel G (σG = 1). In (1) the first term on the right is the data
fitting term, which measures the correlation of the residual with H, and the
second term minimizes image variations. The convolution with H and H̄ were
computed only along the time dimension. After computing the operator D, we
defined the directions of the image variations by an eigendecomposition of D
such that D = QΛQT , where Q contains the orthogonal eigenvectors (θ1,2,3,4)
of D and Λ contains their associated eigenvalues (λ1 > λ2 > λ3 > λ4). Finally,
we recomputed the matrix D̃ = QΛ̃QT as follows: the highest eigenvalue, λ1,
was set according to a function of ‖∇I‖, i.e. f(‖∇I‖), such that if ‖∇I‖ >> 0
the current voxel may be located on a edge and the smoothing is performed
just along the other three directions (anisotropic smoothing). Otherwise, if
‖∇I‖ → 0 the smoothing will be isotropic in all the four directions. λ2, λ3, λ4
were indeed set to 1 to perform an isotropic smoothing. After that, we replaced
the operator D in (1) with D̃.

As a proof of concept, similarly to previous works [5, 6], we scaled a 3-D
activation map computed with the FMRIB Software Library (FSL) in the range
[0,3], with a 2-mm isotropic resolution (Figure 1.a). We multiplied it by a piece-
wise constant signal of 100 s, with one onset of 40 s (Figure 1.b). We corrupted
the image with model noise, we convolved it with the HRF [4] and we added
gaussian noise thus simulating the fMRI time-courses y(t). We regularized the
image as showed above, and we recovered u∗(t). Finally, to evaluate the results,
we computed the root of the mean square errors (MSE) and standard deviation
(STD) and the Pearson correlation and its STD between u(t) and u∗(t) averaged
among the voxels belonging to the grey matter. We compared our results with
those obtained using the Total Activation approach (TA) [6], implemented in the
iCAPs toolbox (https://miplab.epfl.ch/index.php/software/total-activation).

Results

Figure 2 shows examples of regularized spatial maps and time series using our
approach (u∗PDEs) and the TA (u∗TA). Figure 3 shows that the MSEs ± STDs
change for different peak-SNRs (pSNRs) and that they are lower than the ones
obtained using TA. Figure 4 shows that the activation recovered with our ap-
proach is more correlated with the ground truth, for different pSNRs, whereas
the results obtained with TA are more sensitive to noise.

Discussion

Both techniques succeeded at finding the activated regions, but the results ob-
tained using our approach were closer to the ground truth in terms of amplitude
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and also of correlation between the simulated activations and the recovered ones,
for different pSNRs. Our findings shows that our approach enabled us to solve
a unique problem, coupling the space and the time dimension thus having to set
just one regularization parameter, λ, rather than dividing it into two separate
problems, i.e. time and space, as it was done by Farouj and colleagues [6].

Conclusion

We showed that a simoultaneous 4-D approach for fMRI image regularization
using PDEs diffusion allows to recover brain functional activations, without
having to make a priori assumptions on the spatial features of the activations
and their duration. Future works will validate the described method on real
fMRI data.
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Figure 1: Ground truth for the functional MRI (fMRI) simulated data: (a) activation
map. (b) Simulated activation u(t), with a repetition time (TR) of 1 s.

Simulated Noisy fMRI: y Simulated Activation: u Desnoised fMRI: u*
TA Desnoised fMRI: u*

PDEs

p
S

N
R

 =
 5

.9
9
 d

B

a) b)

[s]

[s]

[s]

[s]

Figure 2: (a) From left to right: spatial maps of the simulated functional MRI (fMRI)
image y, ground truth activation u, recovered activation using the Total Activation
(TA) approach (u∗

TA) and our approach (u∗
PDEs). Each row corresponds to a a different

peak-SNR (pSNR): 6.54 dB, 5.99 dB, 5.9 dB, 3.93 dB from the top to the bottom. (b)
Reconstructed time series u∗ obtained with our approach u∗

PDEs(t) (red) and the TA
approach u∗

TA(t) (blue) superimposed on the activation u(t) (black) and fMRI signal
y(t) (green).

4



Figure 3: The graph shows, for different peak-SNRs, the roots of the mean square
errors (MSE) and standard deviation (STD) between u(t) and u∗(t) averaged among
the voxels belonging to the grey matter.

Figure 4: The graph shows, for different peak-SNRs (pSNRs), the Pearson corre-
lation coefficient computed between u(t) and u∗(t) and averaged among the voxels
belonging to the gray matter (GM) and their standard deviation. (µr: mean correla-
tion coefficient; σr: standard deviation of the correlation coefficients among the GM
voxels.)
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