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Geometric spatial reduction for port-Hamiltonian systems
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aUniv. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France
bLaboratoire d’Automatique et Génie des Procédés, Université Claude Bernard Lyon1, Lyon, France

Abstract

A geometric spatial reduction method is presented in this paper. It applies to port Hamiltonian models for open systems
of balance equations. It is based on system projections which make use of the symmetries in the model and preserve
the “natural” power pairing. Reductions from 3D to 2D and 1D domains are illustrated via two examples. The first
one is a vibro-acoustic system with cylindrical symmetry where 3D-2D reduction is applied. The second one is the
poloidal magnetic flux diffusion equation for tokamak reactors where the toroidal symmetry is used to perform a 3D-1D
reduction.
Keywords: geometric reduction, distributed parameters systems, port Hamiltonian systems, tokamak plasma control,
vibro-acoustic system

1. Introduction

A reduced model, reflecting the original one in some de-
sired aspects, may be looked for in the purpose of system
analysis, simulation or control synthesis. The term “geo-
metric reduction” for Hamiltonian systems appeared in the
1980s in the works of J.E. Marsden ([15, 14]). For instance
the method called momentum reductions (cf. [22, 14]) for
Lagrangian or Hamiltonian systems was based on tangent
and cotangent maps. The work of Blankenstein [3] pre-
sented the reduction of Dirac Structure including applica-
tion to implicit Hamiltonian systems. In these early works,
reduction was using symmetry Lie groups and intended to
project the Hamiltonian in the reduced space. The system
invariants, which can play a central role in control designs,
sometimes disappeared after the reduction.

In the 1990s, the idea of geometric structure conserva-
tion was studied for the so-called multi-symplectic systems
and used for the structure preserving total discretization
of infinite dimensional systems. [6, 19] proposed the multi-
symplectic formulation and corresponding discretization of
the nonlinear Schrödinger equation and the water-wave
problem. The multi-symplectic structure preservation in
the numerical discretization of Hamiltonian dynamics was
for instance investigated in [7], and detailed in [13, Chap.
6,7].

In this paper we focus on the spatial reduction prob-
lem for (open) port-Hamiltonian systems. More precisely
we aim at reducing the dimension of the spatial domain:
from a three dimensional (3D) model to a 2D or a 1D one.
Our main motivation lies in the derivation of tractable
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continuous time infinite dimensional control model which
may be used either for structure-based control design or
further structure-preserving time discretization. In the
port-Hamiltonian approach, a model is determined by a
specific interconnection structure (Dirac structure) and its
Hamiltonian function. The proposed reduction is based on
the projection of the Dirac interconnection structure and
therefore implies the preservation of the main geometrical
properties of the original model such as conservativeness,
dissipativeness, symplecticity, etc. The method applies
mostly to open systems of balance equations written in
the port- Hamiltonian formalism.

Two examples will be considered in this paper: a model
of vibro-acoustic tubes (cf. [9, 10]) describing the wave
transfer in cylindrical geometry and a 3D fluid-like model
of the resistive diffusion of the poloidal magnetic flux in a
tokamak reactor [26].

The paper is organized as follows. Section 2 details
the system geometries and spatial symmetries that will be
investigated in the paper. Section 3 describes the spatial
geometric reduction general idea and the detailed method-
ology for 3D-2D and 3D-1D reductions. This methodology
is applied on the two examples in section 4.

2. Considered geometries and spatial symmetries

We will make use of the fiber bundle concept which
allows to define the reduction of the system variables using
differential forms and their integration over a fiber.

2.1. Fiber bundle
The readers are referred to [8, 16] for detailed studies

of fiber bundles or fibration, including topological aspects.
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In this work, we restrict ourselves to some simple defini-
tions and basic ideas sufficient to explain the reduction
idea. A fiber bundle (E, π,B, F ) will be defined using the
continuous map:

π : E → B (2.1)

where E is the total space, B the base space (or base), F
the fiber and π the submersion (or projection) map of the
bundle, which projects every point x ∈ E on the base B.
Sometimes we also denote the fiber bundle π for the sake
of simplicity.

In particular, the fiber bundle with E = B×F is called
the trivial bundle. The simplest example of a non-trivial
bundle is the Möbius Strip [8, 16]. One can consider a
very simple example of the cylinder brush for the sake of
comprehension. The cylinder brush is a trivial bundle E;
the cylinder is the base B and the bristles, line segments
are fibers F , π maps any point on the bristles to its root
on the cylinder. Examples of trivial fiber bundles are the
cylinder and the torus, which will be used in this paper.
A cylinder bundle E = S1 × Y (Fig. 2.1.a) is combined
by the base S1, the circle bundle, and the fiber is the line
interval Y = [0, 1]. Note that we can also consider this
cylinder bundle E = Y ×S1 with the base Y and the fiber
S1. On the other hand, the torus is a S1 × S1 bundle
in which the base and the fiber are both S1 circle bundle
(Fig. 2.1.b).

a. b.

Figure 2.1: Cylinder bundle (a) and the Torus bundle (b)

An important notion associated with the fiber bundle
is the cross section, defined as a continuous map s

s : B → E (2.2)

such that π ◦ s = identity or π (s (x)) = x for all x ∈ B.

2.2. Differential form on a fiber bundle
We present hereafter the projection of differential forms

on a fiber bundle [17, 16]. A fiber bundle may be viewed
as a particular coordinate system. When projected using
this decomposition, a k-form ω may be decomposed using
fiber and base coordinates.

Let us consider the trivial case where E = B ×F with
dimB = n and dimF = r. Let ξi, i = 1..n and ζj , j =
1..r denote the coordinates of B and F , respectively. An
example (r = 1) of k-form ω ∈ Λk on E = Rn × [0, 1] with

r < k < n is

ω = ωB dξi1 ∧ ... ∧ dξik +
ωF dζ ∧ dζj1 ∧ ... ∧ dζjk−1

(2.3)

where ωB and ωF are smooth function defined in the whole
fiber bundle E = B × F .

2.3. Reduction by integration over a fiber
We aim now at explaining our geometric reduction

methodology. It allows to symplecticly reduce the spatial
dimension of the considered system, by using the concept
of integration over a fiber (cf. [5, 2]) which allows to lower
the degree of a form by the fiber dimension.

Consider again the trivial fiber bundle (E, π,B, F ) with
dimB = n and dimF = r. We define a canonical linear
map π⋆, homogeneous of degree −r

π⋆ : Λk (E) → Λk−r (B) (2.4)

which maps any k-form ω on E to a corresponding (k−r)-
form π⋆ω on B such that:{

π⋆ω = 0 if k < r

π⋆ω =
´
F
ω otherwise

(2.5)

We call this map integration over fiber or fiber integration.
Regarding the k-form in (2.3):,

π⋆ω = π⋆
(
βdζ ∧ dξj1 ∧ ...dζjk−1

)
=

(ˆ 1

0

βdζ

)
dξj1∧...dζjk−1

(2.6)
As the result, one can easily derive an integral of a k-form
ω over the total space E as:

ˆ
E=B×F

ω =

ˆ
B

ˆ
F

ω =

ˆ
B

π⋆ω (2.7)

The map π⋆ does symplecticly reduce the dimension of the
integral space from (n+ r) to n . The term π⋆ω is named
the corresponding reduced form of ω over the reduction
(n+ r) to n.

In the sequel, we will consider two types of reduction:
reduction by symmetry which appears quite naturally in
the literature, and reduction by homogenization.

Reduction by symmetry . Model reduction using spatial
symmetry is a classical approach to simplify a model. In
order to guarantee the preservation of some power form in
the reduction, we will make use of symmetry on fibers and
fiber integration.

Let us consider a fiber bundle π with ζj , j = 1, ..r the
coordinates of the fiber F . A k-form α ∈ Λk(E) (for some
k ∈ {0, . . . , n}) is called symmetric with respect to the
coordinate ζj if it satisfies

∂ζjα = 0 (2.8)
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The same k-form α ∈ Λk(E) is called symmetric with re-
spect to the whole fiber F if ∂ζjα = 0 ∀j ∈ 1, . . . , r. In
this case, using fiber integration, one gets:

π⋆ω =

ˆ
F

ω = ωF dξj1 ∧ ... ∧ dξjk−r

ˆ
dζ1 ∧ ... ∧ dζr ∈ B

(2.9)
For instance, in the case of fiber bundles with a fiber of
the S1 bundle (such as in the cylinder and torus trivial
bundle examples from Fig. 2.1):

π⋆ω =

ˆ 2π

0

ωdζ = 2πω (2.10)

Reduction by homogenization. When there is no symmetry
on the fiber space, fiber integration also allows to decrease
the space dimension of the studied system. We will then
perform a reduction by averaged value or by homogeniza-
tion:

π⋆ω =

ˆ
F

ω = ⟨ω⟩
ˆ
dζ1 ∧ ... ∧ dζr ∈ B (2.11)

where ⟨ω⟩ is the averaged value of ω on the fiber F . Sym-
metry with respect to the fiber F , that is ∂ζj ⟨ω⟩ = 0 ∀j ∈
1, . . . , r, results trivially from this fiber integration.

In the next section, we consider 3D systems and a spe-
cial case where the k-form ω is chosen to be the power
energy density (3-form) ω := H3 ∈ Λ3 (Ω). In the port-
Hamiltonian formulation, this density is defined as the
power (wedge) product of efforts and flows differential
forms, denoted respectively in the sequel α and β. The
aim of the reduction is then to determine the corresponding
reduced efforts and flows, respectively α and β, by making
use of the fiber integration concept, when the space Ω is a
fiber bundle. Depending on the way we define the base and
the fiber, we may obtain 3D-2D reduction (r = 1, n = 2)
or 3D-1D reduction (r = 2, n = 1), where r and n are the
dimension of the fiber and of the base respectively.

3. Geometric reduction for 3D systems

In this section, we consider a 3D spatial domain Ω with
an associated volume 3-form dV , a 2D domain denoted Σ
with the corresponding volume (surface) 2-form dS and a
1D domain is denoted Π with its volume (length) 1-form
dC. The 3D model is stated in covariant form, that is the
state and port variables are not defined as vector fields but
rather as differential k-forms [12].

3.1. Methodology
It is assumed that the total energy in the 3D spatial

domain Ω may be written H =
´
Ω
H3 where the energy

density H3 ∈ Λ3 (Ω) is the external product of two k-
forms1, either H3 = α1 ∧ β2 or H3 = α0 ∧ β3. The idea is

1The upper indexes denote the degree of the corresponding differ-
ential form

then to partially integrate H on 2D or on 1D coordinate
surfaces or contours in such a way that the total energy
reads:

H =
´
Ω
H3 =

´
Σ
H2 =

´
Π
H1

with H2 = α1 ∧ β1 or H2 = α0 ∧ β2

and H1 = α0 ∧ β1 or H1 = α1 ∧ β0

(3.1)

This leads to the definition of 2D reduced variables (α1,β1
)

or (α0,β2
) which are power-conjugated in the 2D domain

Σ (their wedge product in a power density 2-form in Σ), as
well as to the definition of the 1D reduced variables (α0,β1

)
in the 1D domain Π. We discuss hereafter how to deter-
mine these variables. In applications (see section \ref{4}),
it will be necessary to project the considered models into
chosen specific coordinate systems (according to the “nat-
ural symmetries”), such as cartesian, cylindrical, spherical
or toroidal coordinate systems. Therefore, in the sequel,
we will consider a general 3D curvilinear coordinate sys-
tems (ξ1, ξ2, ξ3) and detail the reduction method in these
coordinates.

3.2. 3D-2D
We assume that the system is symmetric with respect

to the fiber ξ3 coordinate (i.e. ∂ξ3 . = 0 for all system
variables) in the coordinate systems (ξ1, ξ2, ξ3) . Then the
power energy reads:

ˆ
Ω

H3 =

ˆ
Ω

α.β dV =

ˆ
Σ

α.β dS =

ˆ
Σ

H2 (3.2)

where the variables (α, β) (without upper-index) stand for
the tensors in the considered 3D coordinate system, while
(α,β) are the reduced variables in the reduced 2D model.
The inner product α.β associate to the volume form dV .
Let us denote (λ1, λ2, λ3) the Jacobian coefficients, such
that the volume element reads

dV =
√
λ1dξ1

√
λ2dξ2

√
λ3dξ3 =

√
λdξ1dξ2dξ3 (3.3)

Then, with the previous symmetry assumption:
´
Ω
α.β dV =

´
Ω
α.β

√
λdξ1dξ2dξ3

=

ˆ
ξ3∈F

dξ3︸ ︷︷ ︸
Θ

´
Σ
α.β

√
λdξ1dξ2 (3.4)

where Θ is a constant. The 2-form Θα.β
√
λ dξ1dξ2 is then

identified with α.β dS. Generally speaking, the obtained
expression in local coordinates for α.β

√
λ depends on the

existing symmetries and the corresponding chosen coor-
dinate surfaces/contours for fiber integration. As it can
been seen from (3.1), different choices exist for the reduc-
tion of the differential forms α and β which depends on
their respective degrees. These choices are summarized in
the table 3.1.
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0-form 1-form 2-form 3-form

3D variables α0 α1 β2 β3

2D variables α0 α0 (resp.α1) β1 (resp. β2) β2

Table 3.1: Possible choices for the degrees of reduced power conju-
gated variables in the 3D-2D reduction

3.3. 3D-1D
Similarly we assume that the system is symmetric with

respect to theξ2, ξ3 fiber coordinates (i.e. ∂ξ2 = ∂ξ3 =
0 , for all system variables) in the coordinate systems
(ξ1, ξ2, ξ3) . Then the power energy reads:

ˆ
Ω

H3 =

ˆ
Ω

α.β dV =

ˆ
Π

α.β dC =

ˆ
⋄
H1 (3.5)

with
´
Ω
α.β dV =

´
Ω
α.β

√
λdξ1dξ2dξ3

=

ˆ ξ2max

ξ2min

dξ2

ˆ ξ3max

ξ3min

dξ3︸ ︷︷ ︸
Θ

´
Π
α.β

√
λdξ1

(3.6)
The degrees of the reduced differential forms α and β are
determined by the corresponding degrees of the conjugated
variables α and β according to the table 3.2.

0-form 1-form 2-form 3-form

3D variables α0 α1 β2 β3

2D variables α0 α0 (resp. α1) β1 (resp. β0) β1

Table 3.2: Degrees of reduced power conjugated variables in the 3D-
1D reduction

4. Examples

The first example (subsection 4.1) in this section deals
with 3D-2D reduction in cylindrical coordinates using axial
symmetry. The second example (subsection 4.2) makes use
of a 3D-1D reduction in toric coordinates with toroidal
symmetries.

4.1. Vibro-acoustic tube with axial symmetry
Models of vibro-acoustic tubes are used in many en-

gineering applications related for instance to the safety,
passenger comfort and noise reduction in airplanes. They
describe an acoustic wave traveling - without energy loss
- in a tube (the cabin) equipped with a network of mi-
crophones/ loudspeakers [9]. The tube geometry will be
depicted using cylindrical coordinates (x, r, ϕ) (see figure
4.1). The assumption of axis-symmetry [9] around the
horizontal axis x (which means ∂ϕ· = 0) leads to the 3D-
2D reduced model with the 2D coordinate system (x, r)
where x ∈ [0, L] and r ∈ [0, R] in which L and R denotes
respectively the length and the radius of the tube.

Figure 4.1: Cylindrical coordinate for the vibro-acoustic system and
the considered axis symmetry. The 2D flux density fθ corresponds
to the 3D flux density Φ in the original domain.

4.1.1. The port-Hamiltonian 3D model
Reformulating the vibro-acoustic model [9, 10] in the

Hamiltonian formalism may be done using the pair of power
conjugated variables (Φ, v) and (Γ, P ) and the total acous-
tic energy power (Hamiltonian)2:

H =
1

2

ˆ
Ω

Φ1 ∧ ⋆v1 + Γ3 ∧ P 0 (4.1)

where Φ is the 1-form kinetic momentum, v is the 1-form
velocity, Γ is the 3-form volumetric expansion and P is the
0-form pressure. The Port Hamiltonian representation of
this system consists in two conservation laws: momentum
conservation and mass conservation:(

∂tΦ
−∂tΓ

)
=

(
0 −d
d 0

)(
⋆v
P

)
(4.2)

In this model, we make use of the usual Stokes-Dirac struc-
ture for the 3D wave equation [21](

0 −d
d 0

)
=

(
0 −grad
div 0

)
(4.3)

together with the two constitutive relations:{
v1 = Φ1

/µ0

P 0 = ⋆Γ3
/χs

(4.4)

where µ0 and χs are the air mass density and the adiabatic
compressibility coefficient respectively. The Hamiltonian
(power energy) in (4.1) reduces to the quadratic form:

H =
1

2

ˆ
Ω

Φ2 ∧ ⋆Φ2

µ0
+ Γ3 ∧ ⋆Γ3

χs
(4.5)

In the sequel, we apply the proposed reduction method in
section 3 to this system in order to determine the corre-
sponding reduced variables and associated 2D model.

2The Hodge star operator ⋆ (see for instance[12]) converts a k-form
into (n− k)-form in a nD spatial domain. It is defined with respect
to some metric which translates the geometric constitutive properties
(e.g. anisotropy) of the considered spatial (material) domain. In the
above example ⋆v1 is thus a 2-form, while ⋆Φ2 is a 1-form and ⋆Γ3

a 0-form. Unless stated otherwise, we will make use of the usual
Euclidian metric
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4.1.2. New variables in 2D domain and 2D model
The new variables in the reduced domain are defined

from the energy conservation (4.1). The volume element
written in cylindric coordinates is dV = rdxdrdϕ. The
z-axis symmetry implies ∂ϕ. = 0 for all system variables
and

H =
1

2

´
V
(Φv + ΓP ) dV

=
1

2

´ 2π
0

dϕ
´
Σ
(Φv + ΓP ) rdxdr

(4.6)

The next step is to determine the reduced variables in the
2D domain. The integration domains are the circle section
(r, ϕ) for the form Φ and the volume for the form Γ. One
can derive:

H =
1

2

´
S
(Φdx) (2πrvdr) + (2πrΓdxdr)P

=
1

2

´
Σ
Φ1 ∧ ⋆v1 + Γ

2 ∧ P 0
(4.7)

where the1-form ⋆v1 = 2πrvdr and the 2-form Γ
2
= 2πrΓdxdr

are the new variables in 2D domain. Consequently, the
system (4.1) transforms into the 2D model:(

∂tΦ
−∂tΓ

)
=

(
0 −d
d 0

)(
⋆v
P

)
(4.8)

Formally, the spatial interconnexion operator(
0 −d
d 0

)
=

(
0 −grad
div 0

)
(4.9)

remains unchanged (although it is expressed now in the
new reduced coordinate systems). The proposed reduction
not only preserves the energy power but also the geometric
structure of the model.
Remark 4.1. The reduced port-Hamiltonian model (4.8)
with constitutive equations (4.4) are equivalent to the model
in [20] where Euler’s equation (momentum conservation)
and mass balance are written in vectorial form, making
use of the acoustic approximation assumption:

µ
∂v

∂t
= −gradP

∂µ

∂t
+ div (µv) = 0

(4.10)

The authors use the model to design a passivity-based con-
troller which drives the system to a point of bounded en-
ergy with the minimum velocity of the wave at the bound-
aries. The same model is used in [29] where a structure-
preserving spatial discretization scheme (mixed finite ele-
ments method) is developed.

4.2. Tokamak plasma with toroidal symmetry
Tokamak is a facility constructed with the shape of a

torus (or dough-nut) in which a plasma is magnetically

confined and heated in order to produce nuclear fusion re-
actions (see the classical Wesson’s monograph [28]). Con-
trol problems of Tokamak plasma aim at many differ-
ent objectives [18, 27, 1]. When trying to handle MHD
(magneto-hydrodynamic) instabilities and control current,
temperature and pressure density profiles, control models
have been used quite successfully. A 3D model (TMHD)
in port-Hamiltonian formulation has been proposed in [26]
for the temperature, particle density, current density and
magnetic flux profiles of a plasma gas in a tokamak toroidal
chamber. We focus hereafter on the electromagnetic fields
and entropy balance, respectively in sections 4.2.2 and
4.2.3. To derive a 1D model with the proposed approach,
we will make use of two assumptions which have been al-
ready used to simplify the dynamics in tokamak reactors
[4, Chap.6]:

• axial symmetry: the symmetric position of all the
electric coils allows to carry out an axisymmetric
magnetic field around the principle axis of the torus
(a 2D reduced model could be deduced at this stage)

• quasi-static equilibrium: the plasma may be assumed
to have reached a “mechanical” stationary profile at
every instant t considered for the heat or magnetic
flux diffusion phenomena. Therefore the dynamics
in the mechanical domain may be considered at the
equilibrium where the magnetic force balances the
pressure forces:

J ×B = ∇P (4.11)

in which J, B, P are the plasma current, magnetic
field and plasma pressure respectively.

With these two assumptions, it may be shown that the
magnetic surfaces made with constant field lines ofB (where
also lies the plasma current density J) are also surfaces of
constant pressure P . It may be proved that these surfaces
form a set of nested toroids which are simultaneously iso-
baric, isothermal and iso-poloidal flux (cf. [28, sec. 3.2]
and [4, chap. 1]). Therefore, after a continuous mapping,
these surfaces may be matched into nested regular toroidal
surfaces with circular cross-sections and a set of magnetic
toric coordinates (ρ, θ, ϕ) (see figure 4.2) may be defined
such that ρ denotes the index of the considered magnetic
surface (the new “radial” coordinate) and such that all the
system variables are independent of θ and ϕ. The model
may be projected onto the 1D domain Π = [0, a] ∋ ρ,
a = ρmax.

4.2.1. Reduced variables in the 1D domain
Let gρ, gθ, gϕ, and g = gρgθgϕ

3 denote the transfor-
mation coefficients between geometric toric coordinates

3These coefficients have the form:
gρ = (∂ρr)

2

gθ = (∂θr)
2 + r2

gϕ = (R0 + rcosθ)2
; g = gρgθgϕ
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Figure 4.2: Magnetic toric coordinate: ρ denotes the magnetic surface
index (corresponding to the small radius r), θ the polar angle and ϕ

the azimuth angle. R0 denotes the principal radius of the plasma, Ip the
total plasma current and Bθ and Bϕ the two components of the magnetic
field

(r, θ, ϕ) and magnetic toric coordinates (ρ, θ, ϕ). Let us
define the volume element as dV =

√
gdρdθdϕ. We will

perform the integration of the energy conservation equa-
tion (3.1) along the magnetic toric curve coordinate (for
1-forms and 2-forms) and surface coordinate (for 3-forms).
The obtained reduced power-conjugated variables α and
β are summarized in table 4.1. Note that most of the
variables “lie” on the magnetic surfaces, since the compo-
nent in the radial direction ρ vanishes with the quasi-static
equilibrium assumption.

k-form new variables corresponding values

1-form α0 =
(
αθ, αϕ

) (´2π
0

√
gθαθdθ,

´2π
0

√
gϕαϕdϕ

)
2-form β1 =

(
βθ, βϕ

)
dρ

(´2π
0

√
gρgϕβθdϕ,

´2π
0

√
gρgθβϕdθ

)
dρ

3-form β1 = βdρ
(´2π

0
´2π
0

√
gβdθdϕ

)
dρ

Table 4.1: Reduced variables definition in the 1D domain Π

This reduction is applied hereafter, first to Maxwell’s
equations in electromagnetic domain (section 4.2.2) and
then to the entropy balance equation in the material do-
main in 3D (4.2.3). We will obtain respectively the so-
called 1D resistive diffusion and thermal diffusion equa-
tions.

4.2.2. The resistive diffusion equation
The plasma electromagnetic 3D model was developed

in port-Hamiltonian formulation in [26, Sec. 3]. It is
defined from the covariant formulation of the Maxwell’s
equations (see for instance [12])(

−∂tD
−∂tB

)
=

(
0 −d
d 0

)(
E
H

)
+

(
1
0

)
J (4.12)

where the electric and magnetic field intensities E, H ∈
Λ1 (Ω) are the 1-form variables in a 3D domain Ω with
volume V , while the field flows and total current density
D, B, J ∈ Λ2 (Ω) are the 2-forms. Here d denotes the
external spatial derivative (see e.g. [12]). The electromag-
netic energy is:

HEM =
1

2

ˆ
Ω

[E1 ∧D2 +H1 ∧B2] (4.13)

Let us now apply the geometric reduction described in the
previous subsection to the magnetic domain to determine

the corresponding 1D variables:

H(B) =
1

2

´
Ω H1 ∧B2 =

1

2

´
V H.BdV

=
1

2

´
V

(
HρBρ +HθBθ +HϕBϕ

)√
gdρdθdϕ

=
1

2

´ a
0 dρ[

´ 2π
0

(√
gθHθ

)
dθ
´ 2π
0

(√
gρgϕBθ

)
dϕ

+
´ 2π
0

(√
gϕHϕ

)
dϕ
´ 2π
0

(√
gρgθBϕ

)
dθ]

=
1

2

´ a
0 dρ

[(
Hθ

) (
Bθ

)
+

(
Hϕ

) (
Bϕ

)]
=

1

2

´
Π H

0 ∧B
1

(4.14)

Thus the 3D model (4.12) transforms into a 1D model
with a similar power pairing product. The same reduction
is applied to the electric domain with the energy density
H(D) = 1

2

´
Ω
E1 ∧ D2 and leads to the definition of the

reduced variables E0
, D

1 which are derived similarly. The
Maxwell’s equations (or EM Dirac structure) in the 1D
domain Π are then simply written − ∂

∂t
D

1

− ∂

∂t
B

1

 =

[
0 −dΠ

dΠ 0

] [
E

0

H
0

]
+

[
1
0

]
J
1 (4.15)

where the exterior derivative dΠ in the 1D reduced spatial
domain Π is defined as

dΠ =

(
0 −1
1 0

)
∂

∂ρ
(4.16)

The considered boundary in our system is the magnetic
surface at the plasma external radius a . Since Eρ = Hρ =
0 on the magnetic surfaces, the energy flux

´
∂Ω
H1 ∧ E1

which goes through the boundary is:
´
∂Ω H1 ∧ E1 =

´ 2π
0 dϕ

´ 2π
0 dθ

√
gθgϕ

(
HθEϕ −HϕEθ

)
|a0

=
(´ 2π

0
√
gϕEϕdϕ

)(´ 2π
0 dθ

√
gθHθ

)
|a0

−
(´ 2π

0
√
gϕHϕdϕ

)(´ 2π
0 dθ

√
gθEθ

)
|a0

=
´
∂Π HθEϕ −HϕEθ

=
´
∂Π H

0 ∧ E
0

(4.17)
Let us focus now on half of the model 4.15 related to the
diffusion of poloidal flux ψ; with − ∂∂ψ = Bθ. Only com-
ponents Bθ, Hθ, Eϕ, Jϕ) are concerned. This half models
reads(

fel
fmg

)
=

(
0 −∂ρ

−∂ρ 0

)(
eel
emg

)
+

(
1
0

)
fd (4.18)

where fel, fmg, eel, emg, fd are flow and effort variables
respectively defined by ∂t

(
−Dϕ

)
, ∂t

(
−Bθ

)
, Eϕ, Hθ and

Jϕ. The closure equations (written in toric coordinates)
for the balance equations are:{

eel = η
C3
JΩ Ohm’s law

emg = C2

µ0
Bθ magnetic constitutive equation

(4.19)
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where C2 =
√
gθ√

gρgϕ
, C3 =

√
gρgθ√
gϕ

. JΩ is the 1D ohmic
current equal to

(
Jϕ − Jni

)
. The current Jni is the cor-

responding 1D non-inductive current, it equals to the sum
of the bootstrap current Jbs described in [28] (a magneto-
hydrodynamics coupling effect which produces and extra
current density) and external current source Jext which is
controlled through external heating sources [28, p. 238].
The magnetic permeability is considered to be the void
permeability µ0 since Tokamaks are operating at very low
densities.

The balance equations (4.18) and constitutive equa-
tions (4.19) are equivalent to the so-called resistive diffu-
sion equation for the poloidal magnetic flux (cf. [4, chap.
6]; [28, p. 152]):

∂ψ

∂t
= η

1

C3

∂

∂ρ

(
1

µ
C2
∂ψ

∂ρ

)
+

1

C3

(
ηJni

)
(4.20)

Remark 4.2. The plasma resistivity η, and the bootstrap
current Jbs are significantly varying with the plasma tem-
perature T (cf. [4, p.172]). However, in most existing con-
trol designs (for the poloidal flux control) these TMHD
couplings have been neglected and the temperature T has
been considered as an external parameter. Then η :=
η (z, t) and Jbs := Jbs (z, t) are considered as time and
space dependent parameters. In section 4.2.3, an explicit
dependence of these parameters with the temperature T
has been considered by adding a diffusion model.
Remark 4.3. The structured model (4.18) and (4.19) has
been used in [24] to design a symplectic geometric dis-
cretization scheme for the resistive diffusion equation of
the poloidal magnetic flux. In [25] and IDA-PBC (In-
terconnection and Damping Assignment - Passivity Based
Control) control design has been proposed, based on the
same model.

4.2.3. The thermal diffusion equation
In [26, Sec. 4], the material domain balance equa-

tions for mass, momentum, energy and entropy are writ-
ten firstly from the Boltzmann equation using the kinetic
theory. The connection between the classical macroscopic
transport equation and the port-based formulation is made
by using the material derivative in covariant form. Then
the irreversible entropy source term is derived from the
Gibbs-Duhem relation (following the ”port-based” approach
in [23]). The irreversible entropy production contains terms
which accounts for the heat conduction, the viscous dissi-
pation, the Joule (ohmic) terms, and the external heating
sources. It defines the constitutive Onsager relations for
the heat balance or thermal diffusion equation.

Let σs denote the 3-form entropy source term, s the 3-
form entropy density and T the 0-form temperature. They
are all defined in the moving material domain M. The
entropy balance equation reads:(

T
ds

dt
F

)
=

(
0 −d
−d 0

)(
T
fq

)
+

(
σs
0

)
(4.21)

with the 2-form heat flux fq and the 1-form thermal force
F . In the case where there is no fusion reaction, average
variables may be used (instead of specties temperatures
and densities) and only one energy balance equation may
be considered. This energy balance equation may be writ-
ten using magnetic toric coordinates:

HT =
´
M T 0 ∧ S3 =

´
Ω
T 0 ∧ nσ3

s

=
´
V
Tnσs

√
gdρdθdϕ

=
´ a

0
dρ

[
T
´ 2π
0

´ 2π

0

(
n
√
gσs

)
dθdϕ

]
=

´ a

0
Tσsdρ =

´
Π
T 0 ∧ σ1

s

(4.22)

where we have applied the proposed reduction scheme and
defined the corresponding 1D reduced port-conjugated vari-
ables in the thermal domain. Let us point out that (4.21)
is a material domain balance equation (see details in [26,
Sec. 4]). Therefore we have used a transformation from
this moving material domainM into the fixed volume do-
main Ω (see the first line in equation (4.22)). This simple
transformation uses the average particle density n (see also
remark 4.4). Thus, the 3D thermal model in (4.21) trans-
forms into the 1D port-Hamiltonian model:(

f1
e2

)
=

(
0 −∂ρ

−∂ρ 0

)(
e1
f2

)
+

(
σs
0

)
(4.23)

where f1, f2, e1, e2 are the flows and efforts which are re-
spectively defined by nT (Dts), nfq, T, and F . One of the
associated closure relations is the Fourier’s law:

f2 = nχ

√
gθgϕ
√
gρ

e2 (4.24)

where χ is the diffusion coefficient. The ideal gas law is
used as the second constitutive equation, relating e1 and
f1, by considering no particle source injection (i.e. dn

dt
=

0):

s = ln
(
T 3/2

n

)
⇒ ds

dt
=

∂s

∂T

dT

dt
=

3

2

1

T

dT

dt
(4.25)

The derived reduced port-Hamiltonian model (made of the
balance equations (4.23) and constitutive equations (4.24)
and (4.25)) is formally equivalent to the usual thermal
diffusion equation:

√
g
3

2

∂nT

∂t
= ∂ρ

(√
gθgϕ
√
gρ

(nχ∂ρT )

)
+ σs (4.26)

For instance, equation (4.26) is equivalent to the electronic
heat transport equation which may be written [11]:

V ′∂t (neTe) = ∂ρ (G1V
′neχe∂ρTe) + V ′Pe (4.27)

where the terms V ′, G1 = ⟨∇ρ⟩2 , andPe are equivalent
respectively to our parameters √g, g−1

ρ , and nσs which are
the magnetic toric coordinate coefficients and the source
terms in (4.26).
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Remark 4.4. In the plasma magneto-hydrodynamic (MHD)
couplings, one must consider not only the Lorentz forces-
but also the transformation from the fix volumetric frame
Ω into the moving massic frame M, named Eulerian-Lagrangian
transformation. The power product of (e2, f2) in M do-
main is preserved as (e1, f1) in Ω domain:
ˆ
M=ϕt(Ω)

e2 ∧ f2 =

ˆ
Ω

ϕ∗ (e2 ∧ f2) =
ˆ
Ω

ϕ∗ (e2) ∧ f1

(4.28)
with the pullback ϕ∗ (e2) = ne2 ◦ϕ−1 and where n denotes
the average particles density (which is assumed constant
by the quasi-static assumption).

5. Conclusion

A structure preserving geometric spatial reduction method-
ology is proposed in this paper. It is based on the projec-
tion map of the fiber bundle structure used to describe
the spatial symmetry. The reduction is based on the in-
tegration along fibers of the differential k-forms. It gives
rise to port-Hamiltonian models described by Stokes-Dirac
structures in the lower dimensional spaces which are the
projection of the original ones. Constitutive equations are
reduces applying the same ideas. Two examples have been
used to illustrate all the possible cases for the reduction
of power pairings in 3D domains (see table 4.1) to 2D or
1D spatial domains. The reduced models obtained with
thess examples have been proven to be equivalent to ex-
isting models in the literature and have been used in recent
works on discretization and control.
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