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LES DIFFÉRENTS TYPES DE DONNÉES SUR L'ANALYSE DES RISQUES ET L'UTILISATION DES TECHNIQUES DE SIMULATION THE DIFFERENT TYPE OF DATA ON RISK ANALYSIS AND THE USING OF SIMULATION TECHNIQUES

Le but de cette étude est de vérifier et d'étudier l'influence du type de données (complet, censuré, tronqué) dans l'analyse des risques et s'il est possible ou non de considérer aléatoirement et i.i.d, l'algorithme de génération de données. Il valide la méthodologie de calcul de fiabilité ou de calcul dynamique de la fiabilité, pour les équipements autonomes et artificiellement intelligents, et ainsi prédire les défaillances ou les occurrences possibles d'accidents. Il est illustré par des modèles simples, la possibilité d'utiliser la méthodologie pour des systèmes plus complexes, en soulignant l'importance de la classification des données et la façon dont les modèles doivent être manipulés dans les calculs de fiabilité dynamique.

Introduction

Today, in our companies we have especially our connected equipment which becomes intelligent, even autonomous, which allows to be informed at any time and guided in our choices to give power of decision to the equipment. The evolution of technology has enabled the development of new tools and methods to promote conditioned or preventive maintenance, avoid failures and reduce costs. Inventory management, maintenance spare parts can also be fully automated and optimized. In order to cope with these technical and organizational transformations, it will be necessary to update, using tools such as artificial intelligence, which can be used for risk analysis and the development of critical systems. In recent years, in the military field have been used using neural networks and machine learning for guidance systems as well as in autonomous vehicles. All these technologies raise the question of formal proof and dependence, as well as the responsibility attributed to decision algorithms (that is for example in an autonoumous automobile accident). The ability to handle the large amounts of data associated with Big Data tools and automatic processing is essential in the society of the future. Indeed, the results obtained depend on the importance and the accuracy of these data, which will facilitate the work of analysis of complex situations in a universe of risk and uncertainty. This will allow to simulate and identify accident scenarios, and allow to respond to or correct systems, whose symptoms have not yet been identified.

Risk analysis simulation studies must be rigorously designed, similar to the study of real data, because they must represent the results of real events. Simulation of datasets requires a supposed distribution for the data and a complete specification of the required parameters. Ideally, when testing a risk analysis model for simulation, there are some difficulties in choosing the right RNG in combination with the algorithm to generate the probability of occurrence data because the variable of practical interest may have poor interference between the RNG and the rest of the simulation model algorithm and the results of the simulation model may be biased or not "really" random. Technological advances have made simulation studies more accessible. Performing simulations is not easy. Many decisions are needed before simulations begin, but there is usually no simple and correct answer. The data is considered complete when the exact time of each system failure is known. In many cases, the data contain uncertainties, that is, the exact timing of the failure is not known. Data containing such uncertainty as to when the event occurred is considered incomplete or partial. Incomplete data can be classified as censored or truncated.

Incomplete data only provides some of the information about the failure time of the units being reviewed. However, this information should not be ignored or treated as a failure. In the absence of such data, it would not be possible to make good estimation parameters and then to make a correct analysis. The popularity of the Weibull distribution is due to its high flexibility, that is, it can describe functions with a constant, increasing and decreasing failure intensity, for different values of the shape parameter. The Weibull distribution has wide application in various fields. These applications include its use to model the fatigue distribution phenomena e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ21 Reims 16-18 octobre 2018 and life of many devices, such as bearings, shaft, and motor. Random numbers are the essential basis of simulation. Usually, all randomness involved in the model is obtained from a random number generator that produces a succession of values assumed to be realizations of a sequence of independent and identically distributed random variables. These random numbers are then conveniently transformed to simulate the different probability distributions required in the model. In general, the validity of the transformation methods strongly depends on the assumption that the starting values are realizations of random variables i.i.d. U (0,1).

Random numbers and statistic test

Good random number generators (RNGs) are not designed by some arbitrary algorithms and by applying empirical tests to the output until all tests are evaluated. Instead, the simulation should involve a rigorous mathematical analysis and a uniformity of the successive value vectors they produce throughout their duration. This is how independence is evaluated theoretically. However, since they have been selected and implemented, they should also be empirically tested. The number of different tests that can be defined is infinite and these different tests detect different problems with the RNGs. No test is universal or can guarantee, which is a reliable generator for all types of simulations. But even if statistical tests can never prove that an RNG is infallible, they can actually enhance our confidence in it. One can rightly argue that no RNG can pass all conceivable statistical tests. The difference between good and bad RNGs is that bad ones fail very simple tests, while good ones fail only very complicated tests that are difficult to discover or impractical to perform. In our study, the null hypothesis of the tests are, H 0: T1, T2, ..., Tn are independent and identically distributed random variables (iid). Against, H1: T1, T2, ..., Tn are not iid.

When applying a test of hypothesis, one must select beforehand a rejection area R whose probability under H0 equals the target test level (e.g., 0.05 or 0.01), and reject H0 if and only if T ∈ R. This procedure might be appropriate when we have a fixed (often small) sample size, but we think it is not the best approach in the context of RNG testing. Indeed, when testing RNGs, the sample sizes are huge and can usually be increased at will. So instead of selecting a test level and a rejection area, we simply compute and report the p-value of the test, defined as

P = P [T ≥ t H0] {1}
where t is the value taken by the test statistic T. If T has a continuous distribution, then p is a U (0, 1) random variable under H0.

For certain tests, this p can be viewed as a measure of uniformity, in the sense that it will be close to 1 if the generator produces its values with excessive uniformity, and close to 0 in the opposite situation.

If the p-value is small (e.g., less than 0,001), then it is clear that the RNG fails the test, and if it is not very close to 0 or 1, no problem is detected by this test.

TYPE-I RIGHT CENSORED DATA

The data is considered complete when it is known the exact time of each system failure. In many cases the data contain uncertainties, i.e., it is not known the exact moment when the failure occurred. The data containing such uncertainty as to when the event occurred are regarded as incomplete or partial. Incomplete data can be classified into censored or truncated. Incomplete data give only part of the information about the failure time of the units under review. However, this information should not be ignored or treated as failure. In the absence of such data, it would not be possible to make good estimation parameters and after that make a proper analysis.

One of the most common types of censored data, which may arise in real cases, is Type-I right censored data. For Type-I right censored data, all units of a system are observed up to the date of completion of the study. For this censorship scheme the time each unit is under observation is fixed, while the number of units that fail (uncensored observations) is random.

If T is a random variable representing the failure time and t c another random variable independent of T which corresponds to the end of the registration information (observation time). It is said that the time to failure is right censored when one does not know its exact value, only that its value is greater than tc, with regard to item i (i = 1, 2, ..., n). Therefore,

𝑡𝑡 𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇 𝑖𝑖 , 𝑡𝑡 𝑐𝑐 ) 𝑎𝑎𝑚𝑚𝑎𝑎 𝛿𝛿 𝑖𝑖 = � 1 𝑚𝑚𝑖𝑖 𝑇𝑇 𝑖𝑖 ≤ 𝑡𝑡 𝑐𝑐 0 𝑚𝑚𝑖𝑖 𝑇𝑇 𝑖𝑖 > 𝑡𝑡 𝑐𝑐 {2}
The δi variable (censorship indicator) indicates whether Ti is censored or not. The obtained data can be represented by the pair (ti, δi) i.e. ti the failure time or censored time and δi the variable that indicates whether it concerns a failure or censorship, that is,

𝛿𝛿 𝑖𝑖 = � 1, for uncensored data 0, for censored data {3}
In the right censored data the failure time of the units with censored data it is just known to be greater than the operating time of the conclusion of the registration information.

These right censored data are further classified into Type-I if the recording of information is interrupted at a predetermined time and Type-II censure if registration is completed when a predetermined number of failures occur.

MAXIMUM LIKELIHOOD ESTIMATION METHOD

The maximum likelihood method is currently the most popular method of estimation. This method is generally credited to R. A. Fisher (1890A. Fisher ( -1962)), although its roots go back as far as J. Y. Lambert (1760), J.L. Lagrange (1770) and Daniel Bernoulli (1778) in the eighteenth century. However, it was Fisher, in 1922, who published this method in what is now known as an alternative to the method of moments and to the method of least squares.

The maximum likelihood method is considered to be one of the most versatile and reliable methods.

The maximum likelihood estimation method allows estimating the unknown parameters of a statistical model. The likelihood function is the probability density function of the joint distribution of the random variable X. Thus, the likelihood function of θ for complete data is defined by,

𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) = � 𝑖𝑖(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 |𝑥𝑥 𝑖𝑖 ) 𝑛𝑛 𝑖𝑖=1

{5}

The objective of the maximum likelihood estimation method is to determine the unknown parameter vector θ, which maximizes the equation 5, that is,

max 𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) = 𝑚𝑚𝑎𝑎𝑥𝑥 � 𝑖𝑖(𝜃𝜃|𝑥𝑥 𝑖𝑖 ) 𝑛𝑛 𝑖𝑖=1 {6}
In many situations it is easier to obtain the maximization of the logarithm of the likelihood function and since the logarithm function is an increasing monotonic function, it is equivalent to maximize the likelihood function or the loglikelihood function given by,

max ln 𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) = max 𝑙𝑙𝑚𝑚 �� 𝑖𝑖(𝜃𝜃|𝑥𝑥 𝑖𝑖 ) 𝑛𝑛 𝑖𝑖=1 � = 𝑚𝑚𝑎𝑎𝑥𝑥 ��𝑙𝑙𝑚𝑚�𝑖𝑖(𝜃𝜃|𝑥𝑥 𝑖𝑖 )�� {7} 𝑛𝑛 𝑖𝑖=1
Considering that the likelihood function is differentiable and satisfies the regularity conditions, the estimation of the distribution parameters can be obtained by the partial derivative of the logarithm of the likelihood function equal to zero, as indicated in the following equation,

𝜕𝜕𝑙𝑙𝑚𝑚𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) 𝜕𝜕𝜃𝜃 𝑖𝑖 = 0, 𝑚𝑚 = 1, 2, … , 𝑘𝑘 {8} 
It is necessary to check if the second derivative is negative to ensure that the results obtained from 8 correspond to a maximum point, that is,

𝜕𝜕 2 𝑙𝑙𝑚𝑚𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) 𝜕𝜕𝜃𝜃 𝑖𝑖 2 � 𝜃𝜃=𝜃𝜃 � < 0; 𝑚𝑚 = 1, 2, … , 𝑘𝑘. {9} 𝜕𝜕 2 𝑙𝑙𝑚𝑚𝐿𝐿(𝜃𝜃 1 , 𝜃𝜃 2 , … , 𝜃𝜃 𝑘𝑘 ) 𝜕𝜕𝜃𝜃 𝑖𝑖 𝜕𝜕𝜃𝜃 𝑗𝑗 � 𝜃𝜃=𝜃𝜃 � < 0; 𝑚𝑚 = 1, 2, … , 𝑘𝑘; 𝑗𝑗 = 1, 2, … , 𝑘𝑘. {10}
Usually the solutions obtained are maximum, but the value obtained by derivation is not always an overall maximum. This requires verification. In many practical situations, the likelihood function is associated with complex models and the likelihood equation does not present an explicit analytical solution, in which it is only possible to solve it using numerical methods.

Maximum likelihood estimation method for righttype censored data 1

As mentioned earlier, in many practical situations the data contains incomplete information. In the data censored to the right the failure time of the units with censored data is only known that it is superior to the time of operation corresponding to the conclusion of the registration of the information. In the particular case of the right censored data classified in type 1 censorship, the information recording is interrupted at a predetermined time Cd > 0, such that, if observed before Cd, otherwise only the failure time is greater than the observation time.

Let ti = t1, t2, ..., tn, where r records correspond to failure times and (n -r) do not correspond to failure times within time t. Thus, the characterization of the observed data is defined by the variable δi, where, 𝛿𝛿 𝑖𝑖 = � 1, for uncensored data 0, for censored data {11}

If the probability density function f (x, θ) and the cumulative probability function, F (x, θ), the likelihood function for rightcensored data type 1 is given by [START_REF] Guure | Methods for estimating the 2-parameter Weibull distribution with type-I censored data[END_REF],

𝐿𝐿(𝜃𝜃 1 , … , 𝜃𝜃 𝑘𝑘 ) = � 𝑖𝑖(𝑥𝑥 𝑖𝑖 |𝜃𝜃 1 , … 𝜃𝜃 𝑘𝑘 ) 𝛿𝛿 𝑖𝑖 =1 �[1 -𝐹𝐹(𝑥𝑥 𝑖𝑖 |𝜃𝜃 1 , … , 𝜃𝜃 𝑘𝑘 )] 𝛿𝛿 𝑖𝑖 =0 = �{𝑖𝑖(𝑥𝑥 𝑖𝑖 |𝜃𝜃 1 , … 𝜃𝜃 𝑘𝑘 )} 𝛿𝛿 𝑖𝑖 {1 -𝐹𝐹(𝑥𝑥 𝑖𝑖 |𝜃𝜃 1 , … , 𝜃𝜃 𝑘𝑘 )} 1-𝛿𝛿 𝑖𝑖 𝑛𝑛 𝑖𝑖=1

{12}

For the Weibull distribution, the likelihood function for rightcensored data type 1 is given by,

𝐿𝐿(𝜂𝜂, 𝛽𝛽) = � � 𝛽𝛽 𝜂𝜂 � 𝑡𝑡 𝑖𝑖 𝜂𝜂 � 𝛽𝛽-1 𝑒𝑒𝑥𝑥𝑒𝑒 �-� 𝑡𝑡 𝑖𝑖 𝜂𝜂 � 𝛽𝛽 �� 𝛿𝛿 𝑖𝑖 �𝑒𝑒𝑥𝑥𝑒𝑒 �- 𝑡𝑡 𝑖𝑖 𝜂𝜂 � 𝛽𝛽 � 1-𝛿𝛿 𝑖𝑖 {13} 𝑛𝑛 𝑖𝑖=1
When applying the logarithm to the previous equation,

𝑙𝑙𝑚𝑚𝐿𝐿(𝜂𝜂, 𝛽𝛽) = 𝑙𝑙(𝜂𝜂, 𝛽𝛽) = � 𝛿𝛿 𝑖𝑖 𝑛𝑛 𝑖𝑖=1 ( 𝑙𝑙𝑚𝑚𝛽𝛽 -𝑚𝑚𝛽𝛽𝑙𝑙𝑚𝑚𝜂𝜂) + (𝛽𝛽 -1) �(𝛿𝛿 𝑖𝑖 𝑙𝑙𝑚𝑚𝑡𝑡 𝑖𝑖 ) -� � 𝑡𝑡 𝑖𝑖 𝜂𝜂 � 𝛽𝛽 𝑛𝑛 𝑖𝑖=1 𝑛𝑛 𝑖𝑖=1

{14}

In order to obtain the maximum points of the likelihood function it is necessary to solve the partial derivatives of the previous equation and to equate to zero.

METHODOLOGY

The methodology that we are going to use in this article follows the flow chart that is in the figure below. This method has 5 steps, being the method to be used in a very similar real equipment, only changing at the beginning the simulated data for collected data. In the first stage, we have the definition and schematization of the equipment in a block diagram, then we simulate the data that are data censored to the right (type 1), we apply the randomness test to verify if the data are identical and independently distributed, then we estimate the parameters and finally we calculate the reliability for a certain period of time.

In our paper we will compare the results between the theoretical values and the simulated values. Finally, we will draw conclusions and future work so that this method can be applied in the future in equipment. To development the simulation study is used the R Software and some packages to run some functions.

To random number generating, it´s use the RNG "Mersenne-Twister", from [START_REF] Matsumoto | Mersenne twister: A 623-dimensionally uniform pseudo-random number generator[END_REF]. A twisted GFSR with period 219937-1 and equidistribution in 623 consecutive dimensions (over the whole period). The 'seed' is a 624-dimensional set of 32-bit integers plus a current position in that set.

The following assumptions are made before moving on to the simulation algorithm.

Let T 1, T2, …, Tn be independent, identically distributed (i.i.d) random variables each with pdf f(t). Assume also that tc is some (pre-assigned) fixed censoring time. Instead of observing T1, T2, …, Tn, the variables of interest, we can only observe Y1, Y2, …, Yn, where:

𝑌𝑌 𝑖𝑖 = � 𝑇𝑇 𝑖𝑖 , if 𝑇𝑇 𝑖𝑖 ≤ 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑐𝑐 , if 𝑇𝑇 𝑖𝑖 > 𝑡𝑡 𝑐𝑐 {15}
The algorithm to generate type-I censor data have 11 steps:

Step 01: Define the parameters to weibull distribution to the two components: ηT1, βT1 and ηT2, βT2

Step 02: Define de the actual time tc (censor time)

Step 03: Generate U1 random uniform (0,1)

Step 04: Generate ti from step (1) and step (3)

Step 05: Repeat step (4) from for n times (the dimension of the sample) Step 06: Calculate for each system (serie and parallel) the time of failure tif

Step To illustrate and compare the methods as described above, a random sample of size, n =10, 100, 500, 1000, to take care of small, medium and large data sets. with type-I right censored data were generated from the Weibull distribution.

The scale parameter was chosen to be 1 and 10 and the shape parameter have four values (0.5, 0.8, 1, 1.5).

RESULTS

In our study and for simplicity, a lot of comparisons and correlations could be made. To show the potential of our algorithm, we have decided to show some of the most relevant results. In particular, the comparison of the various reliability calculations with the variation of the sample size and the variation of the alpha parameter.

Figure 5. The serie system reliability for multiple sampling

In the first analysis, we compare the results of the reliability calculation for the number of samples to the two systems, and that we compare the system in parallel with the calculation of the theoretical reliability and with the model of censored data stabilizes in a specific value, already for the case of estimation with complete data the reliability are underestimated, sense this a important indicator for when one wants to do a dynamic calculation or know reliability in real time. In the situation of the serial system, what we detect is that the theoretical reliability is increased by the top and the result of complete data is increased from below, and the reliability for data censored is closer to the actual reliability. In the second analysis, we compare for the two systems with the variation of the shape parameter of the Weibull function. In this case, we have quite different results if the system is in parallel or in series: in the serial system the theoretical reliability is quite close to the reliability for censored data and in the case of the parallel system the theoretical reliability is quite underestimated, being the reliability with much higher censored data and so it is much more advantageous to use this model that gives us longer lifespan.

CONCLUSIONS

In this paper, the risk analysis assumes that the data fits a specific distribution, such as the Weibull distribution. Modifications of the simulation process, such as altering the number of simulations or other parameters are possible. In this study we can see the influence of the type of data (complete, censored) in risk analysis and if it's possible or not to consider random and i.i.d, the algorithm of generate data.

The paper permit to emphasize, the importance to test the simulation algorithms and show the influence of parameters of distribution or the parameters of model simulations (like that number of samples or simulations in one run) in the randomness of data generation.

The hypothesis test to apply to the specific generator censor data, have to be select very carefully in order to have good results and to optimize the simulation time.

The methodology that we use for the calculation of reliability or dynamic calculation of reliability, with the acquisition of data in real time with the calculation of reliability of equipment, can be dynamic and use for autonomous and artificially intelligent equipment, as well as in risk analysis and thus predict the failures or the possible occurrence of accidents.
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  07: Compare each tif with tc and 𝑌𝑌 𝑖𝑖 = � 𝑇𝑇 𝑖𝑖 , if 𝑇𝑇 𝑖𝑖 ≤ 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑐𝑐 , if 𝑇𝑇 𝑖𝑖 > 𝑡𝑡 𝑐𝑐 Step 08: Make the test of iid and collect each p-value from each test Step 09: Use the Maximum likelihood to complete data to estimate de the Weibull parameters Step 10: Use the Maximum likelihood to right censor data to estimate de the Weibull parameters Step 11: Calculate the reliability for time tc of each system (serie and parallel) by different parameters: theoretical, complete and censor data.
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