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Review Article
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The cerebrovasculature is a multicellular structure with varying rheological and permeability
properties. The outer wall of the brain capillary endothelium is enclosed by pericytes and
astrocyte end feet, anatomically assembled to guarantee barrier functions. We, here, focus
on the pericyte modifications occurring in disease conditions, reviewing evidence support-
ing the interplay amongst pericytes, the endothelium, and glial cells in health and pathology.
Deconstruction and reactivity of pericytes and glial cells around the capillary endothelium
occur in response to traumatic brain injury, epilepsy, and neurodegenerative disorders, im-
pacting vascular permeability and participating in neuroinflammation. As this represents a
growing field of research, addressing the multicellular reorganization occurring at the outer
wall of the blood-brain barrier (BBB) in response to an acute insult or a chronic disease could
disclose novel disease mechanisms and therapeutic targets.

The multicellular assembly at the
abluminal-cerebrovascular interface

Accumulating evidence advocates for a role of cerebrovascular dysfunction in central nervous system
(CNS) diseases, negatively impacting neurovascular coupling and neurophysiology [1-8]. We here focus
on capillary blood-brain barrier (BBB) and the abluminal compartmentwhere pericytes and astrocyte
end feet coexist to maintain the barrier’s properties [9]. We specify that the terms abluminal, perivascu-
lar, or outer wall will be generally used to identify cells: (i) residing around the capillary endothelium,
(i) anatomically adhering to the endothelial cells or the basal membrane, (iii) and existing within the
perivascular cuff. At the capillary level, pericytes and astrocyte end-feet are structurally intertwined, en-
veloping the outer endothelial wall (Figure 1, authors’ images). This unique anatomical assembly of cells
is strategic, allowing the communication of pericytes with the endothelial cells and the parenchymal glia
(e.g., astrocytes and microglia) during health and disease conditions (Figure 1A, B-B1). Pericytes outline
60-70% of the abluminal endothelial surface, with astrocyte end-feet completing the coverage and over-
laying pericytes (Figure 1B2). Pericytes are identified based on their round soma and thin ramifications
lining the endathelium (Figure 1A,C). An array of markers (e.g. platelet-derived growth factor recep-
tor 3, CD13, desmin etc.), transgene NG2 constructs (Figure 1), and the fluoro-Nissl dye [10] are used
to recognize pericytes. The intimate endothelial-pericyte-astrocyte assembly is maintained by the basal
lamina and regulated at the cellular level by a machinery of junction proteins, including connexins and
N-cadherins (see [2,11-14] for details). Figure 1C-Cl (authors’ unpublished observations) shows neigh-
boring pericyte-microglial cells in vivo in the brain. The significance and the exact molecular cross-talk
existing between pericytes and microglial cells in physiological and disease conditions remain to be elu-
cidated.

Understanding the multicellular reactivity and plasticity occurring around the capillary endothelium
during CNS diseases is important (o develop BBB repair strategies (Figure 2A). It has been proposed
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Figure 1. Pericyte—glia structures at the capillary BBB

(A) Pericytes are emerging players in cerebrovascular biology. Pericytes (NG2DsRed) envelope the abluminal side of arterioles and
capillaries, while smooth muscle cells control the tone of larger vessels (e.g. arteries). (B1,B2) Astrocyte end-feet and pericytes are
in direct contact, defining capillary properties and integrity. (C,C1) The pericyte-astrocyte-micreglial complex. Three cell types are
anatomically positioned within a 10-20 micrometers distance one from another and at the outer endothelial wall. Microglial cells
are parenchymal (arrowheads) and proximal to the capillaries, possibly playing distinct roles during physiological and pathological
conditions (authors’ previously unpublished images).

that sealing a leaky BBB may decrease the accumulation of blood-derived products (Figure 2A) into the brain
parenchyma, rectifying the neurovascular system toward a physiological interstitial homeostasis. The latter could
improve the efficacy of neuronal drugs (Figure 2B} [4,6,15]. In general, capillary damage follows a sterile injury (e.g.
status epileptics, non-penetrating trauma, and vascular accident), develops during disease progression or lingers dur-
ing chronic pathological stages [16,17]. The inflammatory response accompanying CNS pathologies promotes an
aberrant neuro-vascular remodeling [18,19], formation of scar tissue (20,21], and neuronal dysfunction [22]. In case
of the pericyte—endothelium interface, the platelet-derived growth factor receptor signaling (PDGFRB/PDGF-BB),
transforming growth factor B (TGF-[3), and the Notch pathway have been proposed as potential targets to modulate
BBB stability and, perhaps, inflammation [2]. Early targeting of BBB damage and neuroinflammatory process may be
disease modifying, whereas the importance of controlling inflammation may be different when chronic pathological
stages are established (Figure 2B).
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Figure 2. Multicellular deconstruction at the cerebrovascular interface, potential impact of neurovascular targeting, and
modulation of neuroinflammation.

(A) Cell redistribution around the BBB endothelium during disease conditions. Under physiological conditions (left), astrocytes
and pericytes contribute to capillary stability and interendothelial tightness. The stringent permeability at the BBB is crucial for
the segregation between the peripheral circulation (blood) and the CNS. Following an acute event (traumatic brain injury, stroke,
status epilepticus) or chronic disease (epilepsy, Alzheimer's disease), a multicellular disarray and reactivity oceur {as a function
of time and severity of the patholegy) around the capillary endothelium and at the post-capillary venules. A number of immune
molecules can activate pericytes that, in turn, can acquire an inflammatory phenotype (see Table 1). (B) Neurovascular targeting
during disease progression. We hypothesize a vascular-inflammatory mechanism of disease during the early-mid stages of disease,
promoting neuronal pathology. During chronic stages, the vascular inflammatory component may stabilize and neuronal dysfunction
could become the main target. We hypothesize anti-inflammatory treatment (+/— accompanied with neuronal drugs) to be disease
modifying at early-mid stages when inflammation and cerebrovascular damage unfold and develop.

Cell reactivity at the abluminal compartment: an overview
Pericytes display immune properties, responding to or contributing to inflammation in vivo [23-29] and in vitro
(Table 1). Pericytes participate in both innate and adaptive immunity processes in vivo [23,24]. A significant num-
ber of in vitro studies point to the capacily of pericytes to act as immune cells. However, the ability of pericytes to
maintain their properties in vitro remains uncertain. Thus, culture conditions (e.g. presence of serum proteins and
growth factors) may have an impact on pericyte phenotype, introducing a bias and, perhaps, mimicking BBB damage
and the access of serum components into the brain. In vivo studies are therefore relevant, especially if the aim is to
compare the changes occurring amongst health and disease conditions. In vivo studies have shown pericyte modifi-
cations and reactivity in CNS pathologies associated with inflammatory changes, including ischemic stroke [25,26],
Alzheimer’s disease (AD) [15,27], status epilepticus [28), and traumatic brain injury [29]. Similar considerations apply
to peripheral CNS pathologies such as spinal cord injury [30].

Pericytes are required for neutrophil trafficking across the endothelium in vivo [31]. Due to their position at the
outer endothelial wall, pericytes can react lo immune stimuli coming from brain resident glial cells or from circulating
leukocytes accessing the perivascular space of post-capillary venules during disease conditions [32-35]. Amongst the
immune challenges impacting pericytes we here report (see Table 1):

Pericytes and cytokines

(i) TNFo: upon TNFe stimulation pericytes release metalloproteinases (MMP-9), impacting BBB integrity [36-38].
(ii) IL-1pB: human pericytes exposed to IL-1p overexpress adhesion molecules (intercellular adhesion molecule-1
(ICAM-1)), interleukin-8, monocyte chemoaltraclant protein-1 (MCP-1), and IL-1p itself [39,40]. TNF-a, IL-153,



Table 1 Evidence supporting a role of pericytes in neurovascular inflammation

Stimuli Pericyte response References
LPS CXCL10, CCL20, CXCL8, CXCL1, IL-6, CCL2, CXCL2, [23]
CXCL3, CCL3, CCL4
IL-13 Neutrophils chemo-attraction, IL-18, IL-8, attenuate [164,39,41]
COX-2 and SOD-2, ICAM-1, aSMA
TNF-a Pericyte migration, microglial activation, neutrophils [42,164,165,37)
chemo-attraction, IL-13, MMP-9
IFN-y PDGFRp, HLA expression, MHC Il, IP-10, CD68 [56,166,23]
TGF-1 Anti-inflammatory phenotype, CX3CL1, down-regulation [42,23,167]
of CD36, CD47, CDB8, NOX4, COX-2, MMP-2
LPS, TNF-a, IL-1p, IFNy, and IL-6 iNOS [168]
LPS, TNF-e, IL-1p NF«B translocation (23,169]
TNF-e, IL-13/TGF-B 1 IL-6 [42,43]
Ros production Stellate morphology [44]
QO deprivation Reduction in CD13, aSMA, PDGFRp shedding, and [170]
enhanced microglia markers (IBA1, MHC I, CD11b,
CD68)

Abbreviations: aSMA: alpha smooth muscle actin; CCL: chemokine (C-C motiffligand; COX-2, cyclooxygenase-2; CXCL: chemokine (C-X-C motif) ligand;
HLA: human leukocyte antigen; ICAM-1: intercellular adhesion molecule-1; IBA: ionized calcium binding adaptor molecule 1; IFNy; interferon v; IL-6:
interleukin 6; INOS: inducible nitric oxide synthase; IP-10: interferon gamma-induced protein 10; LPS: lipopolysaccharide; MCH: major histocompatibility
complex; MMP: metalloproteinase; NFKB: nuclear factor kappa; ROS: reactive oxygen species; SOD: superoxide dismutase; TNFa: tumor necrosis factor

alpha;

and interferon y (IFNy) promote inducible nitric oxide synthase (iNOS) in percine and rat pericytes [40-42]. (iii)
IFNY andTGF-f1: IFNy induces human leukocyte antigen (HLA) expression, the latter blocked by TGF-31 [43].
Human pericytes react to TGF-3 1modifying the expression of a panel of immune-related genes, e.g. increasing NOX4,
cyclooxygenase-2 (COX-2), IL-6,and MMP-2 or decreasing IL-8, CX3CL1, MCP1, and vascular adhesion molecule-1
(VCAM-1) expression, TGF-31 impacts the expression of chemokines and adhesion molecules in pericytes, possibly
influencing leukocyte trafficking [43].

Pericytes and immune cells

(i) Pericytesare involved in lymphocyte and neutrophil transmigration across the brain endothelium through IFNy or
TNFo« stimulation. The latter factors up-regulate ICAM-1, VCAM-1, and MHC 1 [35,44]. Macrophage-like properties
have been attributed to pericytes, e.g. pinocytosis and phagocytosis of latex beads [43]. A number of macrophage-like
markers have been reported in pericytes during inflammation, including MHC-1I, CD11b, CD36, CD68, or CD163
[23,40]. Human pericytes display phagocytic traits in response to LPS, TNF-a, or IL-13 stimulation, producing
macrophage-like molecules such as MCP-1, IL-8, or metalloproteases [43]. [n vitro, mouse pericytes display fea-
tures of multipotent stem cells [45]. Finally, the cross-talk between ' cells and pericytes has been suggested to favor
the induction of allogeneic CD25M&"FoxP3" regulatory CD4 cells. [46].

Astrocyte-pericyte communication

Astrocyte end-feet and pericytes are anatomically connected [2,47,48] and their cross-talk oceur during development
and inflammation [49,50]. During angiogenesis, astrocytes and pericytes participate in the deposition of the basal
lamina [51-53]. Astrocytes were hypothesized to induce the synthesis of fibronectin by pericytes [54]. Astrocytes
and pericytes are involved in the developmental localization and polarization of ATP-binding cassette transporters
on endothelial cells [48]. However, the pericyte-astrocyte interplay occurring in the healthy and pathological adult
brain remains largely understudied.

Cerebrovascular cell modifications and disassembly during
CNS pathology

Addressing the cellular changes occurring around the capillary endothelial wall is important to outline the mecha-
nisms of cerebrovascular damage in disease conditions. We here provide evidence for endothelial, pericytes, and glial
cell changes occurring in traumatic brain injury (TBI), epilepsy, Alzheimer’s disease (AD), and ageing.



Acute and long-term cerebrovascular cell changes occurring post-TBI

TBI is not a transient event but rather a disease process [55] as TBI patients present long-lasting neurological conse-
quences [56-60]. TBI pathophysiology includes [61]: (i) a primary injury resulting from a mechanical impact causing
damage to the neurovascular structures; (ii) a secondary injury with formation of edema, decreased cerebral perfu-
sion, increased glutamate levels, excitotoxicity, and BBB dysfunction that can last from days to years [5,61-68]. In-
tracerebral hemorrhage and microbleeding can increase intracranial pressure (ICP) and the likelihood of vasogenic
edema, while the heme group entering the brain can promote oxidative stress and inflammation [69].

Perivascular cells undergo pathological changes and reactivity shortly post TBI. Pericytes migrate away from the
endothelial wall after brain trauma [70]. The molecular mechanisms underscoring pericyte-endothelial pathology
post TBI are, however, not completely understood. PDGFRf3 has been proposed to be involved in tissue or cell re-
modeling after brain injury, including a biphasic pericyte loss and reactivity pattern [25,29]. Interestingly, treatment
with a CO-releasing molecule (CORM)-3 was shown to reduce pericyte death after TBI with beneficial effects on neu-
rological deficits [71]. Changes in cell-to-cell communication at the cerebrovasculature also involve astrocytes, with
increased MMP secretion acting on the endothelial tight junctions. The expression of MMP post TBI [72,73]triggers
the degradation of the extracellular matrix and weakens barrier structures [74-77].

Infiltration of blood-borne molecules, such as albumin, draws water into the brain parenchyma across the capillary
wall, favoring post-TBI epilepsy or neurodegenerative processes [78-83]. However, a structural BBB opening is not
always necessary for the permeability to be increased, as transcytosis mechanisms could take the relay [84-86]. For
instance, increased Caveolin-1 (Cav-1) expression has been reported in animal models of brain injuries [81,84,87,88].
Caveolins not only contribute to transport functions but also influence the lipid raft structures and regulate the activity
of the endothelial nitric oxide synthase (eNOS) [89,90]. Cav-1 stabilizes tight junctions [91] and regulates the activity
of the drug-efflux p-glycoprotein (P-gP) [92], as demonstrated by the increase in Cav-1 and P-gP expression 1 week
post TBI in rats [81].

TBlalso results in long-lasting pathophysiological brain changes [93]. BBB permeability is increased in the majority
of mild-TBI subjects that experience a seizure or develop epilepsy aller the injury [94]. Multifocal and perivascular
IgG staining was found in the gray matter of TBI subjects deceased between 1 and 47 years after the initial injury [66].
Long-term BBB changes were also found in animal models of TBI. IgG staining was visualized in the corpus callosum
3 months after the injury [95]. Increased expression of perlecan and fibronectin and decreased capillary diameter
were reported [5,64]. Moreover, the levels of Cav-1 were increased in cortical vessels 2 months post injury [96,97].
Interestingly, increased amyloid depositions were found at the cerebral vesselssuggesting a failing vascular mechanism
of interstitial waste clearance. Decreased P-gP expression was proposed as a contributing mechanism [64]. A better
understanding of the cerebrovascular cell changes occurring long-term after TBI is important to improve disease
management and pharmacology.

Epilepsy as a cerebrovascular dysfunction: an update

The evidence of cerebrovascular mechanisms of epilepsy is overwhelming and has been previously addressed
[8,98-100]. A neurovascular approach to epilepsy has disclosed a number of entry points to decipher disease mech-
anisms. Neurovascular coupling is the key in the epileptic brain as ictal-to-interictal neuronal transitions are syn-
chronized to metabolic changes contingent on oxygenation and regional blood flow. The latter depends on the cel-
lular interplay occurring in the cerebrovascular compartment. Status epilepticus (SE) promotes pericytes and astro-
cytes activation at the endothelium, negatively impacting the barrier’s properties and possibly reiterating the epileptic
pathology [101]. NG2DsRed pericyte plasticity or ectopic coverage was reported after SE in an experimental model
[28,102]. Recent evidence has shown that hypoperfusion and hypoxia occurring after focal seizures are responsible
for cell damage, behavioral changes, or comorbidities [100]. From a mechanistic standpoint, inhibition of COX-2 and
L-type calcium channels was sufficient to prevent postictal cerebrovascular changes. The latter findings are remark-
able as cerebrovascular mechanisms of seizures may overlap, at least in part, with those reported in brain ischemia.
The latter could allow a transdisciplinary use of diagnostic imaging to monitor cerebrovascular perfusion, oxygena-
tion, and reactivity [8,98]. A number of reports have suggested the utility of radiological biomarkers of BBB damage as
diagnostic or prognostic means in epilepsy [103,104]. The functional involvement of perivascular cells, in particular
pericytes and smooth muscle cells, remains to be determined as they could control ictal perfusion changes.

Cerebrovascular cell changes and inflammation in AD
Amyloid plaques, extracellular aggregates of fibrillary amyloid-3 (A[3) protein, and neurofibrillary tangles are traits of
AD [105-107]. Accumulating clinical and experimental evidence demonstrate a role of cerebrovascular dysfunction



and inflammation in AD, supporting the hypothesis of sporadic AD as a neurovascular disease [107-114]. Disease
conditions bearing an important cerebrovascular component (e.g. diabetes mellitus, thrombotic episodes, high fib-
rinogen concentrations, or atherosclerosis) are risk factors for AD [115-117]. Interestingly, measuring cerebral blood
flow has been proposed as a diagnostic tool to identify preclinical AD stages [114,118]. A recent study [119] indicates
early cerebrovascular abnormalities in AD, advocating for a biomarker of disease progression.

Pericytes detachment and ectopic coverage of the outer cerebrovascular wall occur during AD progression [2,120].
Pericyte pathology impacts capillary integrity, potentially facilitating the accumulation of toxic molecules in the brain
parenchyma and subsequent neurodegenerative changes [27,121-124]. Available evidence points to modifications in
the pericyte-endothelial PDGFR(/PDGF-BB signaling as a mechanism of vascular damage. In vivo studies have
shown that an impaired PDGFRp signaling is associated with pericyle damage and BBB dysfunction, facilitating
neurodegenerative changes. Reduced Af3 clearance, resulting from BBB breakdown, was proposed as a contributing
mechanism of AD progression. See [2,120] for details.

Microglial cells are involved in the inflammatory response occurring in the AD brain ( hippocampus, Figure
3A-A1) [15,125,126). Figure 3B-B1 shows an overview of the hippocampal microglial cell changes in human AD.
Clusters of amoeboid microglia and A are common (Figure 3C-C1). Our previously unpublished data also indicate
accumulation of IgG around the capillaries (Figure 3D), suggesting BBB permeability. In experimental AD, microglial
cells accumulate around the capillaries (unpublished observations in Figure 3E and [27]). Although unfrequent, in-
stances of A accumulation at the capillaries can be found (Figure 3E1). Interestingly, the role of microglial cells in AD
remains controversial. Initially considered as a pathophysiological component associated with a negative outcome, re-
cent evidence has instead proposed a more beneficial effect, possibly through amyloid plaque digestion [125,127-129].
Remarkably, a recent report showed no changes in microglia proliferation during AD progression in a cohort of hu-
man brains as compared with available control [130]. The latter findings are not immediately comparable with genetic
models of AD where incremental glial inflammation is reported [27,33].

Microglial cells can induce astrocyte activation in vivo and in vitro [131]. The resulting astrocyte phenotype is
dependent on the pathological insult. Briefly, astrocytes can be classified as A1 and A2, implicated respectively in
neuronal damage and repair. Neurodegenerative disorders are associated with damaging Al astrocytes [131]. The
impact of a microglia-mediated immune response in AD development was recently highlighted in association with
TREM2 variants, a surface receptor that modulates the microglia phenotype [132-134]. Genetic screening of a large
cohort of patients linked rare variants of microglial genes, including TREM2, to AD [134]. Finally, a link between
the ApoE4 isoform, an AD risk factor, and BBB integrity was demonstrated [135,136). ApoE4 does not maintain low
levels of cyclophilin-A (Cyc-A), a cytokine that induces BBB damage. Thus, under physiological conditions, astrocytes
release ApoE isoform 3 inhibiting Cyc-A via LRP-1 receptors, while the presence of ApoE4 leads to the failure of this
control mechanism [135,137,138]. Although controversial, the involvement of astrocytes in AD may also encompass
a mechanism of interstitial clearance [123,139].

Cerebral amyloid angiopathy and the perivascular cells

Cerebral amyloid angiopathy (CAA) is characterized by the deposition of A primarily on cortical and lep-
tomeningeal arteries [ 140-143]. As larger brain vessels are involved in the regulation of the cerebrospinal or interstitial
fluid circulation, CAA could impact amyloid clearance mechanisms [144], e.g. via the lymphatic system [123,145].
Recent evidence supports a role for the clusterin gene in AD and CAA pathophysiology [146]. When clusterin is
absentA [ clearance by perivascular drainage becomes predominant, resulting in less parenchymal plaques but ex-
acerbating CAA [146). During the formation of vascular amyloidosis, the glio-vascular unit is compromised with a
reported physical separation of the astrocytic end-feet from the endothelium. Although astrocytes may continue re-
leasing vasoactive substances, the vascular amyloid determines vessel stiffness [145]. Progression of capillary pathol-
ogy and CAA have also been found in the 5xFAD mouse model of AD [27]. In the latter case, amyloid accumulation
at the parenchymal capillaries is sporadic (example in Figure 2E1) while amyloid proteins are positioned along larger
vascular structures, further supporting a pathological link between CAA and AD [147].

The cerebrovasculature during ageing

Cerebrovascular modifications are reported during ageing. Doppler studies [148,149] and PET imaging [150] have
shown a reduction in cerebral blood flow in elderly subjects [151]. Reduced microvessel density has been reported
with ageing in the cortex [152,153) and the hippocampus [154-156]. Microvascular rarefaction may result from
age-dependent apoptosis, as observed in animal models [157]where oxidative stress and chronic inflammation could
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Figure 3. Examples of neuroinflammation and cerebrovascular changes in human and experimental AD

(A,A1) Montage of human hippocampi to show plagues and microglial distribution in AD. (B) Uniformly distributed microglial cells
in control human tissue. (B1) Post-mortem AD brain shows aggregates (periplaque or perivascular; arrows) of IBA1 microglial cells.
(C,C1) Examples of plague-microglial aggregates in human AD (cortex and hippocampus). (D) IgG perivascular accumulation is
a sign of BBB damage. (E,E1) Perivascular pathology (microglial clustering, dotted line in (E); perivascular B amyloid, arrows in
(E1)) is observed in an experimental model of AD . (E2) Topographic correspondence between microglia and 6E10* amyloid in the

parenchyma (authors' unpublished images and observations).

be contributing factors. Additional studies have shown an increase in vessel tortuosity of penetrating arterioles
[156,158,159] and abnormal BBB tight junctions expression at the capillaries in white matter lesions [160].

A recent study [161] indicated the occurrence of BBB damage in the hippocampal CA1 and dentate gyrus regions
during ageing. From a cellular standpoint, a link between cognitive decline and pericyle pathology during ageing has
been proposed [114,121]. In particular, PDGFRB "~ mice displayed accumulation of perivascular fibrin with age as
compared with wild-type animals. The age-dependent pericyte-vascular damage preceded neuronal pathophysiol-
ogy [121]. As pericytes control capillary diameter their loss, or modification, could impact neurovascular coupling
[122,162,163]. The cerebrovascular pathological signs observed during ageing could represent a factor aggravating
other pathologies, e.g. AD progression or the outcome of stroke accidents.



Future directions

Despite of the accumulating evidence, it remains unclear how pericytes communicate with astrocytes and microglial
cells in vivo and, amongst these cells, who plays a major role in initiating, or coordinating, a pathological cerebrovas-
cular inflammatory response. It remains to be defined whether genetic modifications occurring at the perivascular
cells may constitute clinically significant risk factors for neuropathophysiology. If fully elucidated, the players gov-
erning the abluminal cerebrovascular assembly in health and disease may be exploited to develop new therapeutic
approaches to treat CNS diseases.
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