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Terao’s conjecture for triangular arrangements

Simone Marchesi and Jean Vallès

Abstract

In this work we study line arrangements consisting in lines passing through three
non aligned points. We call them triangular arrangements. We prove that any of this
arrangement is associated to another one with the same combinatorics, constructed
by removing lines to a Ceva arrangement. We then characterize the freeness of such
triangular arrangements, which will depend on the combinatorics of the deleted lines.
We give two triangular arrangements having the same weak combinatorics (that means
the same number ti of points with multiplicity i, i ≥ 2), such that one is free but
the other one is not. Finally, we prove that Terao’s conjecture holds for triangular
arrangement.

1 Introduction

A line arrangement A = {l1, . . . , ln} in P2 is a finite set of distinct lines. The union
of these lines forms a divisor defined by an equation f =

∏
i fi = 0 where fi = 0 is the

equation defining li. The cohomology ring of the complement P2\{f = 0} was first studied
by Arnold and Brieskorn who proved that it is generated by the logarithmic differential
1-forms dli

li
. The sheaf ΩA of logarithmic 1-forms associated to a line arrangement A

(more generally to a hyperplane arrangement), and its dual, the sheaf TA of vector fields
tangent to this arrangement become of great interest and many important works appear
concerning these objects (see for example [4], [7], [11], [12], [14]). This last sheaf can be
heuristicaly unterstood as the tangent sheaf of the complement P2 \ {f = 0} and can be
defined as the kernel of the Jacobian map, which means (in P2):

0 −−−−→ TA −−−−→ O3
P2

∇f−−−−→ Jf (n− 1) −−−−→ 0,

where Jf is the ideal sheaf generated by the three partial derivatives ∇f = (∂xf, ∂yf, ∂zf).
This ideal, called Jacobian ideal, defines the Jacobian scheme supported by the singular
points of the arrangement; for instance when A is generic (i.e. it consists of n lines in
general position) then Jf defines

(
n
2

)
distinct points. These sheaves ΩA and TA are basic

tools to study the link between the geometry, the topology and the combinatorics of A.
The combinatorics of A is determined by the intersection lattice L(A) which is, roughly
speaking, the set of all intersections of hyperplanes of the arrangement (see [11] for more
details).

Notice that the sheaf TA is a reflexive sheaf over P2 and therefore it is a vector bundle.
When A is generic, one can verify (see [7] for instance) that TA is a Steiner bundle (i.e.
its resolution by free OP2-modules is given by a matrix of linear forms):

0 −−−−→ On−3
P2 (−1) −−−−→ On−1

P2 −−−−→ TA(n− 2) −−−−→ 0.
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When A is not generic, the associated bundle TA can be of any kind, semi-stable, unstable
and even decomposed as a sum of two line bundles. When TA is a sum of line arrangements,
the arrangement A is called free arrangement ; these free logarithmic sheaves were studied
first by Saito in [12] for any reduced divisor and by Terao [13] for hyperplane arrangements.
Let us define freeness precisely in our situation.

Definition 1.1. The arrangement A is free with exponents (a, b), where 0 ≤ a ≤ b are
integers, if TA = OP2(−a)⊕OP2(−b).

In [11], the main reference about hyperplane arrangements, Terao conjectures that freeness
depends only on the combinatorics of A, where the combinatorics is described by the set
L(A) of all the intersections of lines in A. More precisely, if two arrangements A0 and A1

have the same combinatorics (a bijection between L(A0) and L(A1)) and one of them is
free then the other one is also free (of course with the same exponents). This conjecture,
despite all the efforts, is proved, for line arrangements, only up to 13 lines (see [2]).
Probably, one of the main difficulty is that few families of free arrangements are known.
A weaker problem concerns the weak combinatorics. The weak combinatorics of a given
arrangement of n lines is defined the knowledge of the integers ti, i ≥ 2 of points with
multiplicity exactly equal to i of the arrangement. Let us mention the following beautiful
formula, found by Hirzebruch in [8], involving these numbers (when tn = tn−1 = tn−2 = 0):

t2 + t3 ≥ n+
∑
i≥1

iti+4.

It is natural to ask if Terao’s conjecture can be extended to the assumption of weak
combinatorics, i.e.

Do there exist two arrangements with the same weak combinatorics with one free and the
other one not?

In section 6, giving an explicit example, we prove that the answer is yes. To our knowl-
edge, this example, is the first known example of two arrangements with the same weak
combinatorics (but not the same combinatorics) such that one is free and the other is not.

In [5, Corollary 2.12], Elencjwag and Forster proved that a rank r vector bundle E on
Pn with the same Chern classes than a sum of line bundles

⊕r
i=1OPn(−ai) and such that

El =
⊕r

i=1Ol(−ai) for one line l ⊂ Pn is actually E =
⊕r

i=1OPn(−ai). In other words, if
the Chern classes of TA are given (they are given by the knowledge of the number of triple
points counted with multiplicities, which is weaker than the combinatorics, even weaker
than the weak combinatorics), the freeness of A is completely determined by the splitting
on one line!
So, the main difficulty is to determine the splitting type of the bundle TA along a line (of
A or not). Wakefield and Yuzvinsky proved (see [14, Theorem 3.1]), using the notion of
multiarrangements introduced by Ziegler (see [15]), that except for some special multiplic-
ities, the splitting type of TA on one line of the arrangement does not depend only on the
multiplicities of the restriction, but also on the positions of the restricted points.
Indeed, the cited result tells us the following. Take a line L belonging to an arrangement
A of N lines and denote by n the number (without multiplicity) of intersection points on
L and by m1 ≥ · · · ≥ mn their multiplicities. We have that:
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• If m1 ≥
∑n

i=2mi then the splitting type of TA on L is (
∑n

i=2mi,m1).

• If 2n− 1 ≥ N then the splitting type is (N − n, n− 1).

• If 2n− 1 ≤ N then the splitting type is balanced when the n intersection points are
in general position but can be unbalanced for special positions.

It means for instance that the splitting type of TA along a line of A containing 4 multiple
points of A will depend on their cross-ratio. Since PGL(2,C) acts transitively on the set
of three distinct points on P1, this implies that the combinatorics determine the splitting
if there are no more than 3 multiple points on a line.

Let us recall that Terao’s conjecture holds for specific configurations of line arrangements,
i.e. when:

• All the lines of the arrangement A pass through two fixed points: such an arrange-
ment is free if and only if the line joining the two fixed points belongs to A;

• One line of the arrangement contains no more than 3 singular points;

• The singular points of A have multiplicities at most 3.

Let us mention also the infinite family of reflection arrangements A0
3(n), A1

3(n), A2
3(n)

and A3
3(n) defined respectively by the equations fn = 0, xfn = 0, xyfn = 0 and xyzfn = 0

where fn = (xn − yn)(yn − zn)(xn − zn). They are free with exponents respectively
(n + 1, 2n − 2), (n + 1, 2n − 1) and (n + 1, 2n) and (n + 1, 2n + 1) (see [8] or Corollaries
2.9 and 2.10 of this text). Their number of multiple points t2, t3, tn, tn+1, tn+2 (their weak
combinatorics) are given in [11] and again in [8]. The last one, A3

3(n), is often called Ceva
arrangement.

Let us introduce now the family of triangular arrangements. They are line arrangements
consisting in lines passing through three non aligned fixed points. Reflection arrangements
belong to this family. Our goal in this paper is to study these triangular arrangements.
After describing some preliminary results (see the next section), the paper is organized as
follows:

• First of all, we prove in Theorem 3.1, that we can associate, to any triangular
arrangement, a further one having the same combinatorics and obtained by deleting
particular lines from a reflection arrangement.

• We construct, for any possible exponent, a free arrangement and we describe its
combinatorics. We show in Theorem 4.1 that these arrangements obtained from the
reflection ones by deletion of lines are free if and only if the number of inner triple
points in the arrangement consisting in the deleted lines is as small as possible.

• We characterize, in Section 5, every free uncomplete triangular arrangement, where
uncomplete means a triangular arrangement in which at least one side line (i.e. line
joining a couple of vertices among the three) is missing.

• We propose, in Section 6, two arrangements A and B having the same weak combi-
natorics (even quite the same combinatorics!) such that A is free and B is not.
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• Finally, we prove Terao’s conjecture for any triangular arrangement (Theorem 7.1).
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Code 001.
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2 The inner triple points of a triangular arrangement

In this section we will explicit the importance of the set T of the triple points, defined by
the triangular arrangement, which are not the vertices of the triangle. We will describe in
particular the case where T is either empty or a complete intersection.

Let A,B,C be three points not aligned. A line arrangement such that any of its line
passes through A,B or C is called triangular arrangement. If one of the three side lines is
missing we will say that the triangular arrangement is uncomplete. The set of triangular
arrangements consisting in a+1 lines through A, b+1 lines through B, c+1 lines through
C and the three side lines is denoted by Tr(a, b, c); these arrangements possed a + b + c
lines.

Proposition 2.1. Let A ∈ Tr(a, b, c) then, there is an exact sequence

0 −−−−→ TA −−−−→ OP2(−a)⊕OP2(−b)⊕OP2(−c) −−−−→ JT (−1) −−−−→ 0,

where T is the smooth finite set of inner triple points (i.e. A,B,C /∈ T ).

Proof. Let Z ⊂ P̌2 the finite set of points corresponding by projective duality to the lines
of A. Since Z is contained in a triangle ∆. this induces the following exact sequence:

0 −−−−→ OP2(−2) −−−−→ JZ(1) −−−−→ JZ/∆(1) −−−−→ 0.

The hypothesis says that the vertices of ∆ belong to Z, then it implies that JZ/∆(1) =
OL(−a)⊕OL(−b)⊕OL(−c). Let us consider the incidence variety

F = {(x, l) ∈ P2 × P̌2 | x ∈ l}

and the projection maps p : F→ P2 and q : F→ P̌2. According to [6, Theorem 1.3] TA =
p∗q
∗(JZ(1)) and the Fourier-Mukai transform p∗q

∗ applied to the above exact sequence
gives:

0 −−−−→ TA −−−−→ OP2(−a)⊕OP2(−b)⊕OP2(−c) −−−−→ OP2(−1)y
0 ←−−−− R1p∗q

∗OL(−a)⊕ R1p∗q
∗OL(−b)⊕ R1p∗q

∗OL(−c) ←−−−− R1p∗q
∗JZ(1),
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The sheaf R1p∗q
∗JZ(1) is supported on the scheme of triple points defined by A, while, the

last sheaf of the sequence is supported on the vertices of the triangle (ABC). Therefore
the kernel of the last map is the structural sheaf of the set of triple inner points T . This
implies that we have the following exact sequence

0 −−−−→ TA −−−−→ OP2(−a)⊕OP2(−b)⊕OP2(−c) −−−−→ JT (−1) −−−−→ 0.

Remark 2.2. By the hypothesis on A, the set T is smooth. Its length is related to the
second Chern class of TA, more precisely we have that c1(TA) = 1− a− b− c and

c2(TA) =

(
a+ b+ c− 1

2

)
−
(
a

2

)
−
(
b

2

)
−
(
c

2

)
− | T |= (ab+bc+ac−a−b−c+1)− | T | .

(1)

First of all we prove that these arrangements, under conditions over a, b and c, lead to
stable bundles.

Proposition 2.3. Let us assume that a ≤ b ≤ c. Then, when T = ∅ we have

H0(TA(a+ b− 2)) = 0 and H0(TA(a+ b− 1)) 6= 0.

Proof. If T = ∅, then we have a short exact sequence

0 −−−−→ OP2(1) −−−−→ OP2(a)⊕OP2(b)⊕OP2(c) −−−−→ T ∨A −−−−→ 0.

Being T ∨A = TA(a+ b+ c− 1), if we tensor by OP2(−c) we obtain

0 −−−−→ OP2(1− c) −−−−→ OP2(a− c)⊕OP2(b− c)⊕OP2 −−−−→ TA(a+ b− 1) −−−−→ 0,

which proves the proposition.

Corollary 2.4. Let us assume that a ≤ b ≤ c and that T = ∅. Then, TA is stable if and
only if a+ b > c+ 1.

Proof. Under the hypothesis T = ∅, we have H0(TA(a+b−1)) 6= 0 and H0(TA(a+b−2)) =
0. Then TA is stable if and only if c1(TA(a+b−1)) > 0. Since c1(TA(a+b−1)) = a+b−c−1,
this proves that TA is stable if and only if a+ b > c+ 1.

Theorem 2.5. The bundle TA is free with exponents (a + b − 1, c) if and only if T is a
complete intersection (a− 1, b− 1).

Remark 2.6. This is the most unbalanced splitting that is allowed for A ∈ Tr(a, b, c).
Indeed, |T | cannot be bigger than (a− 1)(b− 1).

Proof. Assume that T is a complete intersection (a − 1, b − 1). Since T is the locus of
inner triple points, the curve defined by (a − 1) lines passing through A contains T and
the curve defined by (b − 1) lines passing through B contains also T . These two curves
generate the ideal defining T , which implies that the kernel of the last map of the exact
sequence

0 −−−−→ TA −−−−→ OP2(−a)⊕OP2(−b)⊕OP2(−c) −−−−→ JT (−1) −−−−→ 0,
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is OP2(−a− b+ 1)⊕OP2(−c). This proves that TA is free with exponents (a+ b− 1, c).
Reciprocally, if TA = OP2(−a − b + 1) ⊕ OP2(−c) then we have H0(JT (a − 1)) 6= 0 and
H0(JT (a − 2)) = 0. Moreover, the length of T , given by the numerical invariant of the
above exact sequence, is (a − 1)(b − 1) and this proves that T is a complete intersection
(a− 1, b− 1).

Remark 2.7. If c ≥ a+ b− 1 the splitting type of TA along the lines joining A to C or B
to C is fixed and it is Ol(1− a− b)⊕Ol(−c); this is a consequence of [14, Theorem 3.1].
Therefore, under the condition c ≥ a+ b− 1 the arrangement is free if and only if

TA = OP2(1− a− b)⊕OP2(−c).

That’s why, if we want to describe all the possible splitting types of free triangular ar-
rangements with a+ b+ c lines (a+ 1 by A, b+ 1 by B and c+ 1 by C), we can assume
that c ≤ a + b − 2. Then the biggest possible gap |a + b − 1 − c| is realized by the
complete intersection (a − 1)(b − 1), in particular it could be described with a Roots-of-
Unity-Arrangement (see the definition below): let ρ be a primitive (c − 1)-root of unity,
the arrangement

xyz

a−2∏
i=0

(x− ρiy)

b−2∏
j=0

(y − ρjz)
c−2∏
k=0

(x− ρkz) = 0

belongs to Tr(a, b, c) and it is free with exponents (a+ b− 1, c).

Definition 2.8. A triangular arrangement A of a+ b+ c lines, defined by an equation

xyz

a−1∏
i=1

(x− αiy)

b−1∏
j=1

(y − βjz)
c−1∏
k=1

(x− γkz) = 0,

is called a Roots-of-Unity-Arrangement (RUA for short) if the coefficients αi, βj and γk
can all be expressed as powers of a n-root of unity ρ.

The following two results are well known (they are described in particular in [11]).

Corollary 2.9. The arrangements A3
3(n), defined by the equation xyz(xn − yn)(yn −

zn)(xn − zn) = 0, are free with exponents (n+ 1, 2n+ 1).

Proof. The set of inner triple points T is a complete intersection of length n2 defined by
the ideal (xn − yn, yn − zn).

Corollary 2.10. The arrangements A3
2(n),A3

1(n) and A3
0(n) are obtained respectively

from A3
3(n), A3

2(n) and A3
1(n) by deleting one line between two vertices of the triangle.

They are free with exponents respectively equal to (n + 1, 2n), (n + 1, 2n − 1) and (n +
1, 2n− 2).

Proof. Starting with A3
3(n) we remove the line l = {x = 0}. This gives the arrangement

A2
3(n). The line l contains 2n triple points (n at each vertex, 0 elsewhere). Then we have

the following exact sequence

0 −−−−→ OP2(−n− 1)⊕OP2(−2n− 1) −−−−→ TA2
3(n) −−−−→ Ol(−2n) −−−−→ 0.

6



By the Addition-Deletion theorem (see [11, Theorem 4.51]) we obtain

TA2
3(n) = OP2(−n− 1)⊕OP2(−2n).

With the same arguments, removing the line y = 0 containing 2n − 1 triple points from
A3

2(n) we obtain
TA1

3(n) = OP2(−n− 1)⊕OP2(−2n+ 1),

and removing the line z = 0 containing 2n− 2 triple points from A1
3(n) we obtain

TA0
3(n) = OP2(−n− 1)⊕OP2(−2n+ 2).

3 Roots-of-Unity-Arrangement

This section is dedicated to prove the following result.

Theorem 3.1. Given a triangular arrangement, it is always possible to find a RUA with
the same combinatorics.

Proof. Let us consider the triangular arrangement defined by the following equations

x = 0
x = αiy
y = 0
y = βjz
z = 0
z = γkx

where x = y = z = 0 are the lines which compose the triangle, αi 6= 0, i = 1, . . . , a−1, and
αi1 6= αi2 for i1 6= i2, and the same properties hold for the βj ’s and the γk’s, j = 1, . . . , b−1
and k = 1, . . . , c− 1.
Observe that the existence of an inner triple point, defined by three lines x = αı̄y, y = β̄z
and x = γk̄z is given by a relation of the following type

αı̄β̄γk̄ = 1.

Therefore, we can translate the combinatorics of the arrangement in a family of equalities

αi1βj1γk1 = 1 (2)

for each i1, j1, k1 whose associated lines define an inner triple point of the arrangement, a
family of inequalities

αi2βj2γk2 6= 1 (3)

for each i2, j2, k2 whose associated lines do not define an inner triple point of the arrange-
ment, and finally, the inequalities

αi1 6= αi2 , αi1 6= 0, βj1 6= βj2 , βj1 6= 0, γk1 6= γk2 , γk1 6= 0, (4)
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for each i1, i2 = 1, . . . , a − 1, with i1 6= i2, j1, j2 = 1, . . . , b − 1, with j1 6= j2, and
k1, k2 = 1, . . . , c− 1, with k1 6= k2.
Our goal is to find solutions, or at least prove their existence, which satisfy all the previous
relations and that can be expressed as various powers of a n-th root of the unity, for a
given n.
Let us consider a prime number p and one of its primitive roots ω, hence, working modulo
p, we can translate all the relations of type (2) as

ωvi1ωwj1ωtk1 ≡ 1 (mod p)

or equivalently, as a family of linear equations

vi1 + wj1 + tk1 ≡ 0 (mod p− 1). (5)

We claim that we always have solutions, for any choice of p, of the linear system defined
by the family (5); indeed we have the following result.

Lemma 3.2. If we consider the linear system given by the equations

vi1 + wj1 + tk1 = 0, (6)

i.e. considering all the linear forms of (5) in C[vi1 , wj1 , tk1 ], we always have infinite
solutions.

Proof. Let us consider the arrangementA3
3(n). It leads to the maximal system of equations

vi1 + wj1 + tk1 = 0, in the sense that it contains all the possible equations involving the
variables. Writing down the corresponding square matrix we verify that its determinant
vanishes. The system of equations (6) can be seen as a subsystem of a maximal one
associated to A3

3(n), hence it will also have infinite solutions.

Since the coefficients of the equations of (6) are integers we get in particular infinite integer
solutions. Therefore, choosing well p >> 0, we get as many solutions of the system of
linear congruences as we want.
Our next goal is to prove the following fact: consider the inequality

v + w + t 6≡ 0 (mod p− 1)

and add to our previous linear system, module p, the associated equality

v + w + t ≡ 0 (mod p− 1).

Then, for an infinite number of p’s, either we have less solutions than before or the added
condition is a consequence of the others.
Indeed, suppose that for a fixed p we have exactly the same solutions, this means that the
added condition is a linear combination of the previous ones, i.e.

v + w + t ≡
∑
s

λs,p(vis + wjs + tks) (mod p− 1)

which is equivalent to have

ωvωwωt ≡
∏
s

(ωvisωwjsωtks )λs,p (mod p)

8



and therefore
αβγ ≡

∏
s

(αisβjsγks)
λs,p (mod p).

We conclude noticing that if we have the previous relation for an infinite set of prime
numbers, then we must also have

αβγ ≡
∏
s

(αisβjsγks)
λs ,

which implies that the added condition is a consequence to the other equalities, which is
a contradiction because of our hypothesis on the triple points.
Following the same reasoning as before for the relations expressed in the family (4), it is
possible to find solutions that do also satisfy those inequalities.
Therefore, by what we have said, we can find a prime number p (big if necessary) such
that we can find αi = ρᾱi , βj = ρβ̄j and γk = ργ̄k , powers of the (p − 1)-th unity root ρ,
which satisfies all the conditions expressed in (2), (3) and (4).

Example 3.3. Consider the line arrangement in P2 defined by the curve

xyz

2∏
i=−1

(
x− αiy

) 3∏
i=0

((
y − αjz

) (
x− αjz

))
= 0

with α a generic complex number, which has 12 inner triple points, i.e. excluding the
three vertices of the triangle.
Following the proof of he previous result, in order to find a root arrangement with the same
combinatorics as the given one, we have to solve the following linear system of equalities

x1 + y1 + z1 = 0
x1 + y2 + z2 = 0
x1 + y3 + z3 = 0
x1 + y4 + z4 = 0
x2 + y1 + z2 = 0
x2 + y2 + z3 = 0
x2 + y3 + z4 = 0
x3 + y1 + z3 = 0
x3 + y2 + z4 = 0
x4 + y2 + z1 = 0
x4 + y3 + z2 = 0
x4 + y4 + z3 = 0

and which, moreover, does not satisfy any other relation xi + yj + zk = 0 which is not
present in the previous system, and, finally, such that

xp 6= xq, yp 6= yq zp 6= zq, for p, q = 1, 2, 3, 4, p 6= q.

The set of integers
x1 = 0
x2 = 1
x3 = 2
x4 = 5

y1 = 0
y2 = 1
y3 = 2
y4 = 3

z1 = 0
z2 = 5
z3 = 4
z4 = 3
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satisfy all the required conditions, and therefore, we can consider ρ a 6-root of unity and
the root arrangement with the same combinatorics as the starting one is given by

xyz
5∏
i=2

((
x− ρiy

) (
y − ρiz

)) 3∏
j=0

(
x− ρjz

)
= 0

4 Free arrangements obtained by deletion from the Ceva’s

In this section we will construct an explicit free arrangement in Tr(a, b, c) for each possible
splitting.

Let us begin by describing the case of the maximal number of inner triple points which
corresponds to the more unbalanced splitting. The maximal number of inner triple points
is evidently |T | = (a − 1)(b − 1) and we already know that this complete intersection
corresponds to a free arrangement with exponents (c, a + b − 1) (see Theorem 2.5). As
shown in Remark 2.7, such an arrangement can be obtained by considering a c − 1 root
of unity ζ, which generates the multiplicative group of (c − 1)-roots of unity, and then
choosing αi = ζi for i = 1, . . . , a − 1 βj = ζj for j = 1, . . . , b − 1 and γk = ζk for
k = 1, . . . , c− 1.

According to Remark 2.7, we can assume that c ≤ a+ b− 2 (on the contrary the splitting
is known on the side lines by [14, Theorem 3.1]).

— If c = a+ b−2 there is no other splitting, since with these values, the most unbalanced
possible splitting type is actually balanced. In this case an arrangement is free if and only
if |T | is a complete intersection (a− 1, b− 1).

— Assume that c = a+ b− 3, then another splitting is possible, that is

OP2(−c− 1)⊕OP2(2− a− b).

In order to obtain it, we begin with an arrangement A3
3(c), which is free with exponents

(c+ 1, 2(c+ 1)− 1). We remove one inner line from each vertex such that the inner triple
points removed are c + 1, then c then c− 1. By the Addition-Deletion theorem, the new
arrangement is free with exponents (c+1, 2(c+1)−4) = (c+1, 2(c−1)). We then remove
c− b lines from B and c− a lines from A. Since we have removed the appropriate number
of triple points, thanks to the Addition-Deletion theorem, the arrangement that we obtain
is still free with exponents (c+ 1, a+ b− 2).

— The same process gives the splitting OP2(−c− i)⊕OP2(1 + i− a− b) for any 1 ≤ i ≤
[a+b−c

2 ]: begin considering the arrangement A3
3(c+ i− 1), remove i lines from each vertex

in order to keep the arrangement free and then remove c − b and c − a lines from B and
A. The way to keep the arrangement free is explained in the following theorem.

Theorem 4.1. Let A be a roots of unity arrangement, then A is free if and only if
is obtained from a Ceva one, deleting in each step a line such that the corresponding
complementary arrangement has the miminum possible of triple points.

Proof. Removing inner lines from a Ceva arrangement A3
3(N) we find two triangular ar-

rangements, A consisting in the remaining lines and Ac consisting in the deleted lines.
More precisely, when we remove a

′
= N − a+ 1, b

′
= N − b+ 1 and c

′
= N − c+ 1 lines,

10



with equations fA = 0, fB = 0, fC = 0, respectively from the vertices A, B and C of a
Ceva arrangement A3

3(N), these lines form a subarrangement Ac ∈ Tr(a
′
, b

′
, c

′
) (defined

by the equation fAfBfC = 0) and this arrangement possesses, outside the vertices, a set
Trem of triple inner points (set that can be empty). This operation induces a commutative
diagram

OP2(−1−N)
' //

��

OP2(−1−N)

(fA,fB ,fC)
��

0 // T

��

// O3
P2(−a)⊕O3

P2(−b)⊕O3
P2(−c) //

��

JT (−1) //

��

0

0 // JΓ(N + 2− a− b− c) // F // JT (−1) // 0,

where TA is the logarithmic bundle associated to the triangular arrangementA ∈ Tr(a, b, c),
Γ is the zero locus of the section of TA induced by the syzygies (fA, fB, fC), T is the set of
triple inner points of A and Sing(F) = Trem. Since TA comes from the Ceva arrangement
A3

3(N) we have of course

Φ = [
xN − yN

fA
,
yN − zN

fB
,
xN − zN

fC
].

Moreover, since Trem and T are disjoint sets of simple points, we conclude that Γ = Trem.
This gives |Trem| = c2(TA(N + 1)). Recall that, from Remark 2.2, we have that

| T |= (ab+ bc+ ac− a− b− c+ 1)− c2(TA). (7)

Then we obtain the following formula relating |T | and |Trem|:

|T | = N2 − (N + 2)(a+ b+ c− 3)− 3 + ab+ ac+ bc− |Trem|. (8)

Observe that the equation (7) implies that we will reach the minimum possible number of
inner triple points when the second Chern class of the bundle is as big as it can be (it means
in particular that if the number of inner triple points of A is smaller than this minimum
then A cannot be free). This happens exactly when the bundle TA, when supposed to be
free, is as balanced as possible, which means that, depending on the relations among a, b
and c, the distance between the two exponents is as little as it can be. More precisely,
balanced means that

TA ' OP2

(
−a− b− c+ 1

2

)
⊕OP2

(
−a− b− c+ 1

2

)
when −a− b− c+ 1 is even, and

TA ' OP2

(
−a− b− c

2

)
⊕OP2

(
−a− b− c

2
+ 1

)
when −a− b− c+ 1 is odd.
On the other hand, by formula (8), we have that | T | is as big as possible, when the
complementary arrangement as the fewest triple points. This happens when we consider
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a Ceva arrangement with N2 inner triple points, we eliminate the first N + 1 − a and
N + 1− b lines respectively to two families, and we choose the other N + 1− c lines, to be
eliminated from the third family, in order to get the least possible number of triple points
in the complementary arrangement.

— If N − a
′ − b′ − c′ ≥ 0 (which is equivalent to the condition 2N ≤ a + b + c − 3),

then it is possible to eliminate this quantity of lines such that no triple points arise in
the complementary arrangement. In such a case the minimal number of triple point in
the complementary arrangement is 0, that means Trem = ∅ implying H1

∗(TA) = 0 and by
Horrocks’ criterion [9], A is free with exponents (N+1, a+b+c−N−2). On the contrary,
if Trem 6= ∅ (i.e. if we delete a line containing a triple point in the complementary when it
was possible to delete a line with no triple point in the complementary) then the splitting
type of TA on any line through Γ is different from the generic one, proving that A is not
free.
The theorem is therefore proven for 2N ≤ a+ b+ c− 3.

— If N − a
′ − b′ − c′ < 0 (which is equivalent to the condition 2N > a + b + c − 3)

then necessarily |Trem| 6= 0. In order to minimize this number, we must minimize r :=
a
′
+b′+c′−N = 2N+3−a−b−c. The way to do it is the following: the first a

′
and b

′
lines

being deleted, we delete c
′ − r lines such that no triple point arise in the complementary

arrangement. The last r−1 lines are chosen such that the number of triple points created
in the complementary are

1 + 1 + 2 + 2 + · · ·+ (s− 1) + (s− 1) + s =
r2

4

when r = 2s, and

1 + 1 + 2 + 2 + · · ·+ s+ s =
r2 − 1

4

when r = 2s+ 1.

Remark that r = 2N + 3− a− b− c and c1(TA) = 1− a− b− c have the same parity.

Consider the case when r, or identically, when c1(TA) = 1− a− b− c is even.

Then, |Trem| = r2

4 = (2N+3−a−b−c)2
4 . From (7) we have that

| T |min= (ab+ bc+ ac− a− b− c+ 1)− 1

4
(−a− b− c+ 1)2 ,

while from (8), we get that

| T |max= N2 − (N + 2)(a+ b+ c− 3)− 3 + ab+ ac+ bc− (2N + 3− a− b− c)2

4
.

Through direct computation, we get that | T |max=| T |min and this implies that TA is
free if and only if it is constructed eliminating, from a Ceva arrangement, lines minimizing
the triple points in the complementary arrangement.
Analogously, we get the same equality when −a− b− c+ 1 is odd.
The theorem is therefore proven for 2N > a+ b+ c− 3.

Let us illustrate the above theorem on an example of triangular arrangement in Tr(5, 5, 5).
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Example 4.2. Let us consider the case of 15 lines (6 by each vertex). Then the splitting
types allowed are TA = OP2(−5) ⊕ OP2(−9), which correspond to 16 inner triple points,
TA = OP2(−6)⊕OP2(−8), which correspond to 13 inner triple points, and TA = OP2(−7)⊕
OP2(−7), which correspond to 12 inner triple points. Since we have an exact sequence

0 −−−−→ TA −−−−→ O3
P2(−5) −−−−→ JT (−1) −−−−→ 0

then H0(TA(4)) = 0 and these three splittings are the only possible ones.

— To obtain the case |T | = 16 triple inner points and TA = OP2(−5)⊕OP2(−9) there is
only one possibility. Indeed a syzygy of degree 0 means that the curve

∏
0≤i≤3(x−αiy) = 0

belongs to the pencil generated by
∏

0≤i≤3(x − γiz) = 0 and
∏

0≤i≤3(y − βiz) = 0. This
arises only when this system is equivalent by a linear change of coordinates to

[x4 − y4, x4 − z4, y4 − z4].

— To obtain the case |T | = 13 triple inner points and TA = OP2(−6) ⊕ OP2(−8) we
begin with the roots of unity of order 5. Then it is possible to remove three lines with the
required number of triple points. The three associated partitions along the three directions
are always 13 = 3 + 3 + 3 + 4.
Another method to prove the freeness is also to remark that this inductive process gives
a syzygy. In this case we find a syzygy (P,Q,R) of degree 1 verifying

(x− z)P − (y − z).Q+ (x− ζ4y).R = 0

where P = x5−z5
(x−z) , Q = y5−z5

(y−z) and R = x5−z5
(x−ζ4y)

.

— To obtain the case |T | = 12 triple inner points and TA = OP2(−7)⊕OP2(−7) we begin
with the roots of unity of order 6. Then we remove six lines with the required number
of triple points. The three associated partitions along the three directions are always
12 = 2 + 3 + 4 + 3. Observe that by [14, Theorem 3.1] the splitting type on the line l
containing only 2 inner triple points is Ol(−7) ⊕ Ol(−7). Since its second Chern class is
49, TA is free by [5, Corollary 2.12]. Another method to prove the freeness is to remark
that this inductive process gives a syzygy. In this case we find a syzygy (P,Q,R) of degree
2 verifying

(x− z)(x− ζz).P − (y − z)(y − ζz).Q+ (x− ζ5y)(x− ζ4y).R = 0
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where P = x6−z6
(x−z)(x−ζz) , Q = y6−z6

(y−z)(y−ζz) and R = x6−z6
(x−ζ5y)(x−ζ4y)

.

— As explained in Theorem 4.1 we can also find a free arrangement in Tr(5, 5, 5) with
exponents (7, 7) (that is |T | = 12) deleting 4 lines from each vertex of A3

3(8). The arrange-
ment is free if and only if Trem is minimal, which means here |Trem| = 4 as it can be seen
on the picture below.

l g1

5 Free arrangements in the non complete triangle

All the free triangular arrangements coming from Ceva’s ones by deletion, as explained in
the above construction, contain the three sides of the triangle, i.e. the three lines joining
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the three vertices. In this section we will complete the study of triangular arrangement,
proving the following result:

Theorem 5.1. Let A0 ∈ Tr(a, b, c) and (AB), (AC), (BC) its three sides.

1. If we remove one side, then

• A0 \ (AB) is free if and only if its set of inner triple points is a complete
intersection (a− 1, b− 1). Then its exponents are (c, a+ b− 2).

• A0 \ (AC) is free if and only if b = c and its set of inner triple points is a
complete intersection (a− 1, b− 1). Then its exponents are (b, a+ b− 2).

• A0 \ (BC) is free if and only if a = b = c and its set of inner triple points is a
complete intersection (a− 1, a− 1). Then its exponents are (a, 2a− 2).

2. If we remove two sides, then

• A0\[(AB)∪(AC)] is free if and only if its set of inner triple points is a complete
intersection (a− 1, b− 1). Then its exponents are (c, a+ b− 3).

• A0 \ [(AB) ∪ (BC)] is free if and only if b = c and its set of inner triple points
is a complete intersection (a− 1, b− 1). Then its exponents are (b, a+ b− 3).

• A0 \ [(AC) ∪ (BC)] is free if and only if a = b = c and its set of inner triple
points is a complete intersection (a−1, a−1). Then its exponents are (a, 2a−3).

3. If we remove three sides, then A\ [(AB)∪ (AC)∪ (BC)] is free if and only if its set
of inner triple points is a complete intersection (a − 1, a − 1). Then its exponents
are (a, 2a− 4).

Proof. We divide the proof in three parts: A is a triangular arrangement with one side
removed (Part I), two sides removed (Part II) and three sides removed (Part III) from a
complete triangular arrangement A0 ∈ Tr(a, b, c).

I) Let us assume first that A contains exactly two sides and let L be the missing one.
Then A ∪ L = A0 ∈ Tr(a, b, c). It is clear that A and A ∪ L have the same set T of inner
triple points. Let us denote by tA and tA∪L the number of triple points of A and A ∪ L
counted with multiplicities. Then we have

• tA∪L = |T |+
(
a
2

)
+
(
b
2

)
+
(
c
2

)
.

• tA = |T |+
(
a
2

)
+
(
b−1

2

)
+
(
c−1

2

)
, if L = (BC);

• tA = |T |+
(
a−1

2

)
+
(
b
2

)
+
(
c−1

2

)
, if L = (AC);

• tA = |T |+
(
a−1

2

)
+
(
b−1

2

)
+
(
c
2

)
, if L = (AB).

The difference (tA∪L−tA) is b+c−2, a+c−2 or a+b−2 respectively when L = (BC), (AC)
or (AB).

◦ Assume first that L = (AB). By [7, Proposition 5.1] we have an exact sequence

0 −−−−→ TA∪L −−−−→ TA −−−−→ OL(2− a− b) −−−−→ 0.
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– If c ≤ a+ b−2, the surjection of TA on OL(2−a− b) induces (TA)|L = OL(−c)⊕OL(2−
a− b) and, if we suppose A to be free, we have that TA = OP2(−c)⊕OP2(2− a− b). By
Addition-Deletion, TA∪L = OP2(−c)⊕OP2(1− a− b) and, according to Theorem 2.5, the
set of inner triple points is a complete intersection (a− 1, b− 1).
– If c ≥ a + b − 1, we consider the multi-arrangement given by the restriction of A on
the side (CB). The multiplicities of this multi-arrangement are (c, 1, . . . , 1, b − 1) (with
a − 1 multiplicities of type “1”). This implies that the splitting type of TA on the side
l = (BC) is Ol(−c) ⊕ Ol(2 − a − b) by [14, Theorem 3.1]. Then A is free if and only if
TA = OP2(−c)⊕OP2(2−a−b). By Addition-Deletion again TA∪L = OP2(−c)⊕OP2(1−a−b)
and the set of inner triple points is a complete intersection (a− 1, b− 1).

◦ Assume that L = (AC). By [7, Proposition 5.1] we have an exact sequence

0 −−−−→ TA∪L −−−−→ TA −−−−→ OL(2− a− c) −−−−→ 0.

– If b ≤ a+ c−2, the surjection of TA on OL(2−a− c) induces (TA)|L = OL(−b)⊕OL(2−
a− c) and A free implies that TA = OP2(−b)⊕OP2(2−a− c). Then by Addition-Deletion
TA∪L = OP2(−b)⊕OP2(1− a− c), which is not possible if b < c according to Remark 2.6.
Indeed, in this case, the gap |a+ c− 1− b| is strictly bigger than the gap |a+ b− 1− c|,
implying that the number of inner triple points should be bigger than (a−1)(b−1), which
is impossible. This means that b = c and A is free with exponents (c, a+ b− 2).
– By hypothesis a−1 > 0 (we are considering triangular arrangements which have at least
one line, for each vertex, aside the sides of the triangle) and, since b ≤ c, we cannot have
b ≥ a+ c− 1.

◦ Assume now that L = (BC). By [7, Proposition 5.1] we have an exact sequence

0 −−−−→ TA∪L −−−−→ TA −−−−→ OL(2− b− c) −−−−→ 0.

– Since a ≥ 2 and a ≤ b ≤ c we always have a ≤ b+c−2. By consequence the surjection of
TA on OL(2−b−c) induces (TA)|L = OL(−a)⊕OL(2−b−c) and the freeness of A implies
that TA = OP2(−a)⊕OP2(2−b−c). By Addition-Deletion TA∪L = OP2(−a)⊕OP2(1−b−c).
The gap |b+ c−1−a| is strictly bigger than the gap |a+ b−1− c| except when a = b = c;
then, by Remark 2.6, this case cannot occur when a 6= b or b 6= c. SoA = (A∪(BC))\(BC)
is free if and only if a = b = c and T is a complete intersection (a− 1, a− 1) (in this case
A = A2

3(a− 1)).

II) Let us assume now that A contains only one side and let L and L
′

the missing sides.
Then A ∪ L ∪ L′

= A0 ∈ Tr(a, b, c). Let tA, tA∪L and tA∪L∪L′ be the number of triple

points of A, A∪L and A∪L∪L′
, respectively, counted with multiplicities. Then we have,

• tA∪L∪L′ = |T |+
(
a
2

)
+
(
b
2

)
+
(
c
2

)
;

• tA = |T |+
(
a−2

2

)
+
(
b−1

2

)
+
(
c−1

2

)
, if L = (AB) and L

′
= (AC);

• tA = |T |+
(
a−1

2

)
+
(
b−2

2

)
+
(
c−1

2

)
, if L = (BC) and L

′
= (AB);

• tA = |T |+
(
a−1

2

)
+
(
b−1

2

)
+
(
c−2

2

)
, if L = (AC) and L

′
= (BC);
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from which we get that the difference (tA∪L − tA) is equal to a + b − 3 when L = (AB)
and L

′
= (AC), a+ c− 3 when L = (AC) and L

′
= (BC), and b+ c− 3 when L = (BC)

and L
′

= (AB).

◦ Assume first that L = (AB) and L
′

= (AC). By [7, Proposition 5.1] we have an exact
sequence

0 −−−−→ TA∪L −−−−→ TA −−−−→ OL(3− a− b) −−−−→ 0.

– If c ≤ a+b−3 the surjection of TA onOL(3−a−b) induces (TA)|L = OL(−c)⊕OL(3−a−b)
and if we suppose A to be free, it gives TA = OP2(−c) ⊕ OP2(3 − a − b). By Addition-
Deletion, A ∪ L is free with exponents (c, a + b − 2) and, according to Part I), the set of
inner triple points is a complete intersection of type (a− 1, b− 1).
– If c ≥ a+ b− 2 we consider the other exact sequence given by [7, Proposition 5.1], i.e.

0 −−−−→ TA∪L′ −−−−→ TA −−−−→ OL′ (3− a− c) −−−−→ 0.

If a = 2 considering the multiplicities of the multiarrangement obtained by restricting A
onto the unique line through A we find |T | double points and c + b − |T | simple points.
Since 2(c+b−|T |)−1 ≥ b+c because |T | ≤ b−1 we get a splitting type (c+b−1−|T |, |T |)
on this line. So if A is free its exponents are (c+ b− 1− |T |, |T |). If b < c then |T | < c− 1
then the surjection TA → OL′ (3− a− c) = OL′ (1− c) imposes |T | − 1− c− b = 1− c i.e.
|T | = b which is not possible. Then c = b and |T | = b− 1 i.e. T is a complete intersection
(a− 1, b− 1) = (1, b− 1) and A is free with exponents (b− 1, c).
Let us assume now that a ≥ 3.
Since a ≥ 3 it is clear that b ≤ a + c − 3 and the surjection of TA on OL′ (3 − a − c)
induces (TA)|L′ = OL′ (−b) ⊕ OL′ (3 − a − c) and if we suppose A to be free, we obtain

TA = OP2(−b)⊕OP2(3−a−c). Then, by Addition-Deletion, A ∪ L′
is free with exponents

(b, a + c − 2). According to Part I), this occurs if and only if b = c and T is a complete
intersection (a− 1)(b− 1).

◦ Assume now that L = (BC) and L
′

= (AB) (or L = (BC) and L
′

= (AC)). By [7,
Proposition 5.1] we have an exact sequence

0 −−−−→ TA∪L −−−−→ TA −−−−→ OL(3− b− c) −−−−→ 0.

– Besides the case when a = b = c = 2 (in this case the four lines give a free arrangement
with exponents (1, 2) if and only if |T | = 1), we have a ≤ b + c − 3 and the surjection of
TA on OL(3− b− c) induces (TA)|L = OL(−a)⊕OL(3− b− c) and if we suppose A to be
free, it gives TA = OP2(−a) ⊕ OP2(3 − b − c). By Addition-Deletion, A ∪ L is free with
exponents (a, b+ c−2). The gap |b+ c−2−a| is strictly bigger than the gap |a+ b−2− c|
except when a = b = c. Then by Remark 2.6 this case cannot occur when a 6= b or b 6= c.
So A is free if and only if a = b = c and T is a complete intersection (a− 1, a− 1) (in this
case A = A1

3(a− 1)).

III) Let us assume now thatA contains no side of the triangle and let L = (AB), L
′

= (AC)
and L

′′
= (BC) denote the missing sides. Then A∪L∪L′∪L′′

= A0 ∈ Tr(a, b, c). Consider
the exact sequence

0 −−−−→ TA∪L′′ −−−−→ TA −−−−→ OL′′ (4− b− c) −−−−→ 0.
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If a ≤ b + c − 4 then, by the same technique used before, A is free with exponents
(a, b+ c− 4) implying that A∪ L′′

is free with exponents (a, b+ c− 3). Since the gap for
this last splitting is bigger than the gap given by the exponents (c, a+ b− 3), this proves,
according to the Part II), that A is free if and only if a = b = c and T is a complete
intersection (a− 1, a− 1).

As a direct consequence of the previous result, we can explicit the following cases, which
describe when we have the same number of lines passing through each vertex.

Corollary 5.2. • The only free triangular arrangement of 3n−1 lines passing through
three points, with n− 1 inner lines through each vertex, plus two sides, is A2

3(n).

• The only free triangular arrangement of 3n − 2 lines passing through three points,
with n− 1 inner lines through each vertex, plus one side, is A1

3(n).

• The only free arrangement of 3n − 3 lines passing through three points, with n − 1
inner lines through each vertex, and no side, is A0

3(n).

Proof. According to the previous theorem, for each one of these free arrangements the set
T is a complete intersection (n − 1, n − 1). It means that they come by deletion of one,
two or three sides from A0 ∈ Tr(n, n, n) with exponents (n, 2n − 1). In other words we
have

0 −−−−→ TA0 = OP2(−n)⊕OP2(1− 2n) −−−−→ O3
P2(−n)

(f(x,y),g(y,z),h(x,z))−−−−−−−−−−−−−→ JT (−1) −−−−→ 0,

where T is the set of inner triple points, and (f(x, y), g(y, z), h(x, z)) are three homoge-
neous polynomials of degree (n − 1). According to the splitting of TA there is a relation
af + bg + ch = 0 with (a, b, c) ∈ C3. This implies that after a diagonal change of coordi-
nates, we can choose f(x, y) = xn−1 − yn−1, g(x, y) = yn−1 − zn−1, h(x, y) = xn−1 − zn−1,
and this proves that these arrangements are A0

3(n), A1
3(n) or A2

3(n).

6 Weak combinatorics

The combinatorics of A is determined by the set L(A) of all the intersections of lines in A.
There is a partial order on this set corresponding to the inclusion of points (L1 ∩L2 ⊂ L1

for instance) in lines. Two line arrangements A0 and A1 have the same combinatorics if
and only if there is a bijection between L(A0) and L(A1) preserving the partial order. In
[11] Terao conjectures that if two arrangements have the same combinatorics and one of
them is free then the other one is also free. This problem posed in any dimension and
on any field is still open even on the projective plane and seems far from being proved,
probably because few free arrangements are known.
In this section we will show that if we only suppose the weak combinatorics hypothesis,
the conjecture does not hold. Indeed, we get the following result.

Theorem 6.1. There exist pairs of arrangements possessing the same weak combinatorics
such that one is free and the other is not.
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Proof. We prove it by describing an example. We will explain next how to produce a
family of examples of the same kind.

We will construct two triangular arrangements of 15 lines A0, which will be free with ex-
ponents (7, 7), and A1, which won’t be free, in Tr(5, 5, 5) with the same following numbers
of multiple points t3 = 12, t4 = t5 = 0, t6 = 3 and ti = 0 for i > 6 (the number of double
points is a given by the combinatorial formula

(
15
2

)
= t2 + 3t3 +

(
6
2

)
t6).

— Let us construct A0: it is obtained by removing the six lines x = z, x = ζz, y = z,
y = ζz, x = ζ2y and x = ζ4y from the Ceva arrangement xyz(x6−y6)(y6−z6)(x6−z6) = 0
as represented in the following picture:

This arrangement is free because the syzygy of degree 2, that is

ψ = [(x− z)(x− ζz), (y − z)(y − ζz), (x− ζ2y)(x− ζ4y)],

has no zero. Indeed this syzygy gives for

0 −−−−→ TA0 −−−−→ O3
P2(−5)

φ−−−−→ JT (−1) −−−−→ 0

a non zero section OP2(−7) −→ TA0 , being

φ = [
x6 − z6

(x− z)(x− ζz)
,

y6 − z6

(y − z)(y − ζz)
,

x6 − y6

(x− ζ2y)(x− ζ4y)
].

This induces a commutative diagram:

OP2(−7)
' //

��

OP2(−7)

��
0 // TA0

��

// O3
P2(−5) //

��

JT (−1) //

��

0

0 // JΓ(−7) // F // JT (−1) // 0,

where the singular locus of the rank two sheaf F is the zero set of φ. Since this zero set
is empty, F is a vector bundle. That proves Ext1(F ,OP2) = 0 and then Γ = ∅.
Another argument can be used to establish the freeness: the 12 inner triple points are
distributed as a partition 3 + 3 + 3 + 3 along the vertical lines, 3 + 3 + 3 + 3 along the
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horizontal lines but 2 + 3 + 4 + 3 along the diagonal (this means that this example is very
closed to have the same combinatorics than the non free case: indeed in the following
example we’ll see that the partition along vertical, horizontal and diagonal lines is always
3 + 3 + 3 + 3); thanks to [14, Theorem 3.1], the bundle restricted to the line containing
only 2 inner triple point has the splitting (7, 7) which proves the freeness according to [5,
Corollary 2.12].

— Let us construct now A1: it is obtained by removing the three lines x = z, y = z,
x = y from the Ceva arrangement xyz(x5− y5)(y5− z5)(x5− z5) = 0 as it appears on the
picture:

Beginning with A3
3(5) which is free with exponents (6, 11) and removing the first line we

obtain, by Addition-Deletion theorem, a free bundle with exponents (6, 10). Removing
the second line we find again a free arrangement with exponents (6, 9). Removing the
third line, we don’t find a free bundle (with splitting (7, 7)) but a nearly free bundle with
generic splitting (6, 8). The jumping point is the intersection point of the three removed
lines. The three partitions appearing along the horizontal, vertical and diagonal lines are
12 = 3 + 3 + 3 + 3.

Let us make it more explicit. We found a syzygy of degree 1, which is

ψ = [x− z, y − z, x− y],

and which induces a non zero section OP2(−6) −→ T where

0 −−−−→ TA1 −−−−→ O3
P2(−5)

φ−−−−→ JT (−1) −−−−→ 0

and

φ = [
x5 − z5

x− z
,
y5 − z5

y − z
,
x5 − y5

x− y
].
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This syzygy admits a common zero p = (1, 1, 1) and induces a commutative diagram:

OP2(−6)
' //

��

OP2(−6)

��
0 // TA1

��

// O3
P2(−5) //

��

JT (−1) //

��

0

0 // JΓ(−8) // F // JT (−1) // 0,

where the singular locus of the rank two sheaf F is the zero set of p. Since p /∈ T then
p ∈ Γ (actually p = Γ) and TA1 cannot be free.

This example proves that the arrangement consisting in these 15 lines is Nearly free (de-
fined in [3] and studied by the authors in [10]) with the same weak-combinatorics (same
numbers t2, t3, . . .) and quite the same combinatorics (only one partition along the diag-
onals differs) than the one described just before. This shows that we cannot replace the
term combinatorics by weak-combinatorics in the hypothesis of Terao’s conjecture.

Remark 6.2. In the famous Ziegler’s example of two arrangements (9 lines with 6 triple
points) with the same combinatorics but with different free resolutions, the situation was
explained by the existence of a smooth conic containing the 6 triple points. Here the
situation can be geometrically explained by the existence of a cubic containing the 12
inner triple points. Indeed, since the bundle TA1 described in the previous example is the
kernel of the following exact sequence

0 −−−−→ TA1 −−−−→ O3
P2(−5) −−−−→ JT (−1) −−−−→ 0,

(where |T | = 12) it gives H0(JT (3)) = H1(TA1(4)). Moreover, the following non zero global
section

0 −−−−→ OP2(−6) −−−−→ TA1 −−−−→ Jp(−8) −−−−→ 0,

where p is the jumping point associated to the Nearly Free arrangement, proves that

h1(TA1(4)) = h1(Jp(−4)) = h0(Op) = 1.

Remark 6.3. It is possible to generalize the described examples, and find a family of
them in the following way: consider triangular arrangements in the family Tr(n, n, n).
The multiplicity of each vertex is n + 1. Assume that n = 2k + 1. For arrangements of
this family, the maximal possible number for the inner triple points is |T | = 4k2 (then
the arrangement is A3

3(n − 1)). For a general triangular arrangement, the set of inner
triple points T is empty but if we want to consider free arrangements, T must contain
at least 3k2 points. This minimal number corresponds to the balanced free arrangement
with exponents (3k + 1, 3k + 1). We construct a nearly free arrangement with generic
splitting Ol(−3k)⊕Ol(−2−3k) and 3k2 triple inner points in the same family Tr(n, n, n).
This generic splitting is also the one of the free arrangement with 3k2 + 1 triple inner
points constructed by removing (k − 1) (inner) lines from each vertex of the arrangement
xyz(x3k−1−y3k−1)(y3k−1−z3k−1)(x3k−1−z3k−1) = 0. In the last step, instead of removing
a line with k − 1 triple inner points we remove a line with k triple points. It is always
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possible by choosing a line of the third direction passing through a intersection point {p}
of the previous removing lines in the two other directions. This construction induces and
exact sequence (see section ??):

0→ OP2(−3k) −→ TA −→ Jp(−2− 3k)→ 0.

7 On Terao’s conjecture

In this final section we use the characterization given in theorem 4.1 of free arrangements
obtained from the Ceva to prove that Terao’s conjecture holds for triangular arrangements.

Theorem 7.1. Terao’s conjecture holds for triangular arrangements.

Proof. Consider an arrangement A and the associated one B which comes from a Ceva
arrangement and which have the same combinatorics. Our goal is to prove that A is free
if and only if B is free. Indeed, having characterized the freeness of the arrangements that
comes from Ceva one in Theorem 4.1, this implies the conjecture.
— Suppose first that B is free.
We will prove that A is free through induction on the number of lines.
It is shown in [2] that the conjecture holds up to 13 lines for any arrangement, and in
particular it holds for triangular ones with such number of lines.
Suppose that it holds for triangular arrangements constructed with n− 1 lines and let us
consider a triangular arrangement A that has n lines. Being B free, then, thanks again to
Theorem 4.1, we can delete a line in order to get B′ again free, and we delete the associate
line to A, in order to get A′. This arrangement is free because of the induction hypothesis,
and due to the Addition-Deletion Theorem, A must be free as well.
— Suppose now that A is free.
Having B the same Chern classes as A, and in particular the same inner triple points,
the only way to construct it is eliminating lines from the Ceva, minimizing the number of
triple points in the complementary arrangement. This implies, due to Theorem 4.1, that
B is free.
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