
A cycle-accurate transaction-level modelled energy
simulation approach for heterogeneous Wireless

Sensor Networks
Mihai Galos, David Navarro, Fabien Mieyeville, Ian O’Connor

Institute de Nanotechnologie de Lyon, Ecole Centrale de Lyon
UMR CNRS 5270

{mihai.galos,david.navarro,fabien.mieyeville,ian.oconnor@ec-lyon.fr}@ec-lyon.fr

Abstract— Wireless Sensor Networks are networks made up of
tiny sensor nodes, in medium to large quantities, from several
tens to hundreds and even thousands. They are used in fields
ranging from military, medical, to structural health monitoring
for buildings for example. We have introduced an instruction set
simulator in our IDEA1 WSN design framework to account for a
fine-grained representation of the software running on the node
hardware. We modelled the communication between the nodes’
microcontrollers and their radio interface and microcontroller
and sensor, respectively. This was done at transaction level by use
of the SystemC simulation kernel. An application was developed,
consisting of eight nodes compressing this abstract and sending
it to their coordinator.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are being deployed more
and more in fields such as automotive [1], biomedical [2],
avionics [3] or military [4]. They are comprised of sensor
nodes (sometimes called “motes”) which have the ability to
sense an analogue value (such as temperature, pressure or
light), do some sort of processing on it and send it to their
neighbour(s) until eventually it gets to a coordinator node (also
known as a “sink”). From there on, a computer can take the
data and interpret it. Hence, the nodes do not act stand-alone
but participate in a collaborative sensing scheme.

The internal structure of the node is presented in Figure 1.
As can be seen, the node consists of a microcontroller, a radio
transceiver interface, a sensor and a battery.

Fig. 1: WSN Node typical internal structure

The radio is the most power-consuming component of the
node [5]. Certain radio transceivers like the MRF24J40 [6]
have included most of the MAC and some of the DATA
layers of the ISO/OSI stack as hard-coded support, effectively
reducing the SPI communication time.

The mictrocontroller is the actual brain of the node,
coordinating the tasks of the sensor, the radio interface and
putting the node in sleep mode whenever idle. Sleeping is an
important part of the node’s activity, and is in fact the state
it spends most of its time in, meaning a low duty cycle. This
is because the most important component of the node is its
battery. The node is required to run for long periods of time (2
or 3 years) and may even be in the human body, for example.
Consequently, the task of replacing the battery is not trivial.

Because of the low power requirements of the node, as well
as requirements pertaining to low cost, it is not powerful in
terms of processing capabilities. Clock frequencies in excess of
20Mhz are seldom, they are 8 or 16-bit architecture with less
than 16kB of RAM, while flash sizes rarely surpass 128kB.

We consider the 802.15.4 standard which is extensively used
for both commercial and lab-assembled solutions. Because the
most widely used network topologies are mesh and star [7]
we consider these when we extended IDEA1’s simulation
framework.

Simulators built over the years fall into two categories [8]:
Network simulators enhanced with node models (Power-
TOSSIM [9], sQualNet [10], NS-2 [11], OMNet++ [12]) and
node simulators enhanced with network models (Avrora [13]
and SCNCL [14]). The former category fails to address low-
level hardware considerations (physical node configuration,
sensors, microcontroller type, etc.), making rough estimations
concerning simulation results. The latter suffers from scala-
bility problems (which in turn increases the simulation time)
as well as from lack of heterogeneity support (support for
different microcontrollers, different radio transceivers which
may be present on the node).

IDEA1 [15] [16] is a validated Wireless Sensor Network
design framework centered on energy consumption, inspired
from SCNSL and written in C++ and SystemC. SystemC is
widely used in the electronics community and offers support
for behavioral modelling starting from microcontroller clock
cycle, to node, and finally to network scale.

IDEA1 supports microcontrollers from Microchip (PIC)
and Atmel (AVR) and radio transceivers such as CC2420
(Chipcon) and MRF24J40 (Microchip), and can simulate both
slotted and unslotted CSMA-CA 802.15.4 modes.

In this paper, we present an extention to the original



IDEA1 implementation able to offer finer-grained simulation
results through use of the Transaction-Level Modelling (TLM)
scheme and the use of our custom-built Instruction Set
Simulator (ISS) called Bliss.

II. NODE HARDWARE / SOFTWARE ARCHITECTURE

A. Overview

In the original IDEA1 implementation, each node compo-
nent had its own finite state machine implementation. We
kept this concept, but we wanted to extend it to model the
actual software running on the node. Different binary sizes of
the software means different execution times which must be
accounted for with a finite state machine approach. What is
more, the interfacing of the microcontroller with the sensors
and the radio transceiver needs to be TLM-modelled for the
best possible energy estimation.

B. Node Hardware Model

IDEA1 supports Atmel’s AVR and Microchip’s PIC
architectures. With our present work, we added support for
Texas Instrument’s MSP430 family of microcontrollers, thus
covering most of the microcontroller families present on WSN
nodes.

We created the SystemC model for the node as is presented
in Figure 2. The node is tied to a Proxy which in turn is
connected to the Network model. The Network model allows
to simulate the physical environment in which the nodes
send their radio signals, and to account for variables such as
attenuation, radio interference, and transmission time.

Fig. 2: Designed SystemC node model.

The current consumption for the Node Hardware Model is
presented in Table I.

The microcontroller interfaces with the CC2420 radio
transceiver through an SPI bus and with the sensor though
control signals and a data bus. The battery block is responsible
for logging the power consumption when a state change is
performed at either radio transceiver or microcontroller part.

Parameter Quantity Units
MCU frequency 8 Mhz

MCU active current 4.2 mA
CC2420 TX@-25dBm 8.5 mA
CC2420 TX@-15dBm 9.9 mA
CC2420 TX@-10dBm 11 mA
CC2420 TX@-5dBm 14 mA
CC2420 TX@0dBm 17.4 mA

CC2420 RX 19.7 mA
SPI Pins 100 uA/pin

TABLE I: Node Hardware model current consumtion.

Knowing the amount of time a single bit takes to be
transfered across the SPI interface (depending on SPI and
MCU speed), we can compute precisely how much time a
transfer lasts. The node hardware model takes into account
such things as transceiver initialisation commands, writing to
the Tx and reading from the Rx FIFO, as well as periodically
repeating these tasks by the means of the Timer block.

Next, by knowing the supply voltage and the current drawn
by each block, we have a refined estimate of the node’s energy
expenditure.

C. Node Software model

If a functionality is defined by SystemC as being an
untimed functional description, the software that makes up
the functionality is the timed functional description. Here,
the different processes’ execution times are important, but
we abstract the notion of how these processes communicate
between themselves. They do so by means of the Bus Cycle
accurate model and the Register Transfer Level (RTL) model.

A common approach would be to use TLM for the
compilation unit to take into account the software running on
the node in SystemC, based on the hardware implementation
of the hardware unit. We developed a split-phase approach
composed of a finite state machine representation of the
software, coupled with metadata generated by an instruction
set simulator. In this case, the node is not tied to an instruction
set and has a generic characteristic. The ISS that we developed
and coupled with the finite state machine (to have the node
software model) is called Bliss.

III. BLISS

Obviously, ISS-es are nothing new to the research field and
other examples include Avrora [13] or MspSim [17], but suffer
from two major drawbacks. First of all, they are only targetting
one particular hardware architecture and secondly, they are not
all written in the same programming language. We designed
Bliss in C++ in order for the interfacing with IDEA1 to be
easily done. It supports both Avr and Msp430 architectures,
while PIC support is underway.

Bliss can simulate the operations (instructions) that a
microcontroller executes and builds up a task profile consisting
of the task’s name and the number of clock cycles it
requires. Next, knowing the MCU clock frequency, its state
(active, sleep, idle) and the current associated with the state,



we can make a fine estimation on the energy it takes in
order to perform each task. Hence, the RTL model of the
microcontroller is accounted for.

This is fed as an input to the IDEA1 framework which
handles the interaction with other nodes.

Bliss reads the actual modelled functionality in the output
format of the compiler used to create the functionality for.
Intrinsically, these means Bliss is compiler-dependant. For the
AVR variant, Bliss reads the output of avr-gcc. Debugging
information has to be included in the output file by specifying
a ”-gdwarf-2” linker flag. Concerning Msp430, the output of
IAR Workbench (v5.10.1) is read. The code needs to be linked
by the IAR compiler’s linker with options ”-yan” using the
”elf/dwarf” output file format. The ELF produced is then fed
into Bliss which begins simulating the software.

Some of the notable features of Bliss include simulating
timer interrupts, simulating hardware interrupts as well as
breaking on function entry (breakpoints).

In what concerns the actual Bliss simulation, the approach is
different on AVR and MSP430, because of the former being an
extended Harvard and the latter a Von Neumann architecture.
On AVR, because of the flash and the RAM having different
address spaces, the variables have to be fetched to internal
registers and the operations performed on the registers. On the
MSP430 side, data and flash memory share the same address
space and operations can be made between a register and a
memory location or even between two memory locations, for
example. In both cases, after each instruction, the processor
flags are updated and the interrupt timers are evaluated for
under/overflow.

The Bliss simulation ends when an instruction jumping to
its own address (an endless void loop) is reached. Output is
written in the form of a C++ header file and consists of a
structure mapping function names to their equivalent number
of clock cycles.

In order to validate the correct amount of simulated clock
cycles, we first compared Bliss with the clock cycles count
taken from AvrStudio and IAR Workbench for several types
of well-known algorithms. Because actual implementation can
vary, and in order to test the de-facto, baseline implementation
of these algorithms, we used C-Lab’s WCET (worst-case
estimation) benchmarks [18].

The results are presented in Table II.
Bliss AVR has furthermore been validated through compar-

ison with the work of [19]. It is worth mentioning that in the
case of sorting algorithms (BubbleSort, InsertSort), the time
to sort the vectors depends on the actual values being sorted.

IV. RESULTS

In order to see actual simulation energy consumption data,
we chose to send the text from the abstract of this article
over radio from eight nodes to one coordinator, using a simple
unslotted CSMA scheme. We wanted to see how much gain
(if any), in terms of energy , would result by compressing it
as opposed to sending it raw. The intention was to use our

extended IDEA1 framework and simulate this scenario on 10
different compressions per node, repeating it 20 times.

Using data from the Bliss analysis of the compression time,
we know it takes the number of clock cycles presented in
Table III to compress and decompress the data.

Parameter Quantity Units
Compress abstract 407919 clock cycles

Compress Time (8Mhz) 50.98 ms
Decompress abstract 233195 clock cycles

Decompress Time (8Mhz) 29.14 ms
Uncompressed size 769 bytes
Compressed size 463 bytes

Total energy mean per
packet, compressed

2719.8 (Node)
5214

(Coordinator)
uJ

Total energy mean per
packet, uncompressed

5015.2 (Node)
5403.2

(Coordinator)
uJ

TABLE III: Parameters to send and receive the com-
pressed/raw abstract of this paper.

As can be seen in Figure 3, Figure 4 and Table III, by
compressing the abstract and sending it to the coordinator,
a mean total of 2719 uJ per packet were needed by the
node. The coordinator received and decompressed it using
5214 uJ. We can see how the compression algorithm increases
the consumption of the microcontroller in in the active state.
However, the node spends less time in sending the data
because of it being of shorter length.

Fig. 3: Mean node energy requirements (uJ) to send the raw
(left) and compressed (right) form of the abstract.

Fig. 4: Mean Coordinator energy requirements (uJ) to receive
the raw (left) and compressed (right) form of the abstract.



Algorithm Bliss (AVR) AvrStudio Bliss(MSP430) Iar Workbench Mohan et al [19]
Bubble Sort(500) 3,538,519 3,538,519 3,297,421 3,297,421 3,900,998

InsertSort(10) 1,449 1,449 1,221 1,221 1,978
Fibonacci 319 330 366 366 258

Matrix
Multiply([2][2])

2,724 2,724 2,219 2,219 2,318

Matrix
Multiply(20)

526,130 526,130 378,164 378,164 -

TABLE II: Bliss Simumation Results

Because in the case of the compressed format the nodes
spend less time in sending the data, the chance of a collission
(and hence a radio backoff) is reduced. The nodes also spend
less time in assessing the clear channel (CCA). The mean
energy requirement for sending a packet compressed compared
to sending it raw is reduced by a factor of 1.84.

V. CONCLUSION AND PERSPECTIVES

With this article, we presented an extension to the initial
IDEA1 implementation. We included support for the MSP430
family microprocessors which we modelled in TLM. IDEA1
handles the TLM part concerning the communication of the
microcontroller with the radio transceiver. Bliss, our custom
built instruction set simulator, outputs the number of clock
cycles for each function that makes up an application. Hence,
Bliss handles the TLM part concerning the actual instructions
executed by the microcontroller.

The current Bliss implementation takes instruction lengths
from the datasheet directly as specified by the manufacturer.
However, it does not take into account the pipelines present in
the microcontrollers. One possible improvement would be to
refine its output. Also, the current TLM scheme only supports
MSP430. In future versions, we will offer support for both
AVR and PIC.

REFERENCES

[1] H.-M. Tsai, W. Viriyasitavat, O. K. Tonguz, C. U. Saraydar, T. Talty,
and A. MacDonald, “Feasibility of In-car Wireless Sensor Networks: A
Statistical Evaluation,” in SECON, 2007, pp. 101–111.

[2] A. Dhamdhere, V. Sivaraman, V. Mathur, and S. Xiao, “Algorithms for
Transmission Power Control in Biomedical Wireless Sensor Networks,”
in APSCC ’08: Proceedings of the 2008 IEEE Asia-Pacific Services
Computing Conference. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 1114–1119.

[3] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang,
R. Han, D. Lawrence, and K. Mohseni, “SensorFlock: an airborne
wireless sensor network of micro- air vehicles,” in SenSys ’07:
Proceedings of the 5th international conference on Embedded networked
sensor systems. New York, NY, USA: ACM, 2007, pp. 117–129.

[4] M. A. Hussain, P. Khan, and K. K. Sup, “Wsn research activities
for military application,” in Proceedings of the 11th international
conference on Advanced Communication Technology - Volume 1, ser.
ICACT’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 271–274.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1701955.1702006

[5] R. Wang, L. Zhang, and L. Cui, “Intelligent wakening scheme
for wireless sensor networks surveillance,” in The 1st International
Workshop on Cyber-Physical Networking Systems, in conjunction with
INFOCOM 2011, ser. CPNS ’11, 2011.

[6] Microchip MRF24J40 Data Sheet, Microchip Technology Inc.
[Online]. Available: ww1.microchip.com/downloads/en/DeviceDoc/DS-
39776b.pdf

[7] A. Salhieh, J. Weinmann, M. Kochhal, and L. Schwiebert, “Power
Efficient Topologies for Wireless Sensor Networks, International
Conference on Parallel Processing,” in International Conference on
Parallel Processing, 2001.

[8] W. Du, D. Navarro, F. Mieyeville, and I. O’Connor, “Idea1: A
validated system c-based simulator for wireless sensor networks.” in
MASS. IEEE, 2011, pp. 825–830. [Online]. Available: http://dblp.uni-
trier.de/db/conf/mass/mass2011.html#DuNMO11

[9] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proceedings of the 2nd international conference
on Embedded networked sensor systems, ser. SenSys ’04. New
York, NY, USA: ACM, 2004, pp. 188–200. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031518

[10] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, “squalnet:
An accurate and scalable evaluation framework for sensor networks,”
Information Processing in Sensor Networks, 2007.

[11] J. L. Font, P. Iñigo, M. Domı́nguez, J. L. Sevillano, and
C. Amaya, “Analysis of source code metrics from ns-2 and ns-
3 network simulators,” Simulation Modelling Practice and Theory,
vol. 19, no. 5, pp. 1330 – 1346, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X11000190

[12] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar,
R. Kannan, A. Durresi, and S. Sastry. Simulating
wireless sensor networks with OMNeT++. [Online].
Available: http://csc.lsu.edu/sensor web/final%20papers/OMNet++-
IEEE-Computers.pdf

[13] Avrora: scalable sensor network simulation with precise timing, Apr.
2005. [Online]. Available: http://dx.doi.org/10.1109/IPSN.2005.1440978

[14] F. Fummi, D. Quaglia, and F. Stefanni, “A systemc-based framework for
modeling and simulation of networked embedded systems.” in Forum on
Specification, Verification and Design Languages (FDL), 2008, pp. 49–
54.

[15] W. Du, F. Mieyeville, and D. Navarro, “IDEA1: A SystemC-based
system-level simulator for wireless sensor networks,” in IEEE
International Conference WCNIS2010, W. Chen and S. Li, Eds., vol. 2.
IEEE, June 2010, pp. 618–623.

[16] W. Du, D. Navarro, F. Mieyeville, and I. O’Connor, “IDEA1: a
validated system-level simulator for wireless sensor networks,” in The
4th International Workshop on Wireless Sensor, Actuator and Robot
Networks (WiSARN-Fall 2011), Valencia, Spain, Oct. 2011.

[17] J. Eriksson, A. Dunkels, N. Finne, F. sterlind, and T. Voigt, “Mspsim
– an extensible simulator for msp430-equipped sensor boards,” in
Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands, Jan. 2007.
[Online]. Available: http://www.sics.se/ adam/eriksson07mspsim.pdf

[18] C.-L. W. benchmarks. Available from http://www.c
lab.de/home/en/download.html.

[19] S. Mohan, F. Mueller, D. Whalley, and C. Healy, “Timing
analysis for sensor network nodes of the atmega processor family,”
in Proceedings of the 11th IEEE Real Time on Embedded
Technology and Applications Symposium. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 405–414. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1048932.1049929


