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Abstract 
To achieve a fast and low cost diagnostic, we propose a new tool based on wavelet leaders in which 

the PEMFC diagnosis is made by the observation of the one and only stack voltage. The steps of our 

strategy are the following ones: 

- The PEMFC is operated under a variety of conditions (nominal or severe) using a characterization 

testbench developed in lab. The severe operating conditions refer either to single fault types or to 

different combinations of faults. 

- The recorded stack voltages are analyzed using a Wavelet Leader based Multifractal Analysis 

(WLMA) in order to identify their singularity spectra as fault signatures. This novel method based on 

leader discrete wavelet coefficients for the estimation of the singularity spectrum is a well-suited 

technique for non-stationary and non-linear signals. 

- A feature selection method is used to select the most relevant singularity features and to remove 

the redundant ones. 

- The selected singularity features are classified using Support Vector Machine and K-Nearest 

Neighbors techniques according to the considered operating situations (faults and combinations of 

faults). 

Our results show that the proposed PEMFC diagnosis tool allows identifying simple operating failure 

cases and even more complicated situations that contain several failure types. 

 

Keywords: Diagnostic, Fault Classification, Fractals, Fuel Cells, PEMFC, Singularity Analysis, 

Wavelet Leaders. 

 

1 Introduction and Motivation 

In the era of renewable and clean energies, the Fuel Cell (FC) technology gradually imposes its 

developments and applications in a wide spectrum of fields [1-3]. The fault detection and the 

diagnosis of FC stacks are obviously of prime importance when FC assemblies constitute the new 

key device of the emerging energy converter systems. Therefore, over the years, the level of 

requirements for the FC safety and reliability increases leading therefore to systematic automations 

and controls, to efficient monitoring and fault diagnosis processes able to optimize the performances, 

the availability and the durability of the complete generator. The performance of a diagnostic module 

used inside an energy converter system can be related with its capability to identify and isolate some 

failures before the equipment damage. After the fault identification step, the task of supervision 

triggers some alarms for manual maintenance procedures or for automatic actions in order to correct 
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the failure. A reliable diagnostic module allows a greater safety to avoid accidents, an increase of 

production by reducing the downtime of the system, and an increase of its lifetime. To these ends, 

recent researches have focused on the development of relevant techniques for FCs diagnostic [4, 5]. 

Among these techniques, the data-driven techniques [6, 7] attract more and more attention due to 

their relative simplicity of implementation and because they take advantage from efficient signal 

processing methods such as: Fourier transform, Wavelets transform, pattern recognition methods, etc. 

The method we have chosen is based on the pointwise singularity analysis of the FC stack voltage 

which is a typical non-linear signal. Actually, it is reasonable to assume that the operation of a FC 

under severe conditions affects the morphology of its voltage. The analysis of its local fluctuations 

can therefore provide direct information on the dynamics of the device and on its state-of-health as 

well. To perform a right characterization of these complex signals, some appropriate and robust 

techniques are obviously necessary.  

In our study, we adopt the multifractal analysis of voltage signals based on wavelet leaders [8] in 

order to extract some latent information hidden in the singularity features and then to identify the 

signature of singularities for different fault operations. Indeed, the multifractal features can fully 

display the distribution of signal singularities, while the geometric characteristics and the local scaling 

behaviors are described more precisely [9]. The principle of the multifractal formalism consists to 

calculate two sets of coefficients associated to the signal: the Hölder exponent (h), that quantifies the 

local regularity strength of the signal and the Hausdorff dimension (D(h)) that associates each group 

of points with the same regularity strength to a non-Euclidean dimension. The graph ℎ → 𝐷(ℎ) 

provides a Singularity Spectrum (SS). Since the 80s, the research field of fractals has been the subject 

of several methods to compute the SS of natural and physical signals. The first pioneers in the 

development of this research are Stanley and Ostrowsky [10], and Pietronero and Tosatti [11]. The 

SS is intimately related with the generalized dimensions based on the box-counting or entropy 

techniques on which Grassberger and Procaccia have published widely [12, 13]. Besides, Peng and 

co-workers have proposed another method named, “Detrended Fluctuations Analysis” (DFA) [14]. 

Some years later, the wave-like oscillation named wavelet has been introduced to improve the SS 

estimation; Arneodo and his collaborators have developed the so-called “Wavelet Transform 

Modulus Maxima Method” (WTMM), which is based on the continuous wavelet transform of the 

signal [15]. Lashermes and Jaffard introduced the novel use of the Wavelet Leaders coefficients in 

the multiresolution scheme to address the same objectives [16]. 

In the literature, several studies have provided some comparisons, in terms of precision and 

computation cost, between different techniques that enable the SS determination [17, 18]. It has been 

shown theoretically and numerically that the formalism based on wavelet leaders allows an accurate 

computing of the SS for a wide variety of functions and random processes. The formalism presents 

multiple advantages: it is notably faster than other techniques; it can be easily implemented in 

dimension greater than 1 (e.g. for image processing) [19]. It has been successfully used in texture 

classification [20, 21], analysis of heart rate variability [22], fMRI (functional Magnetic Resonance 

Imaging) time series [23], and electrocardiogram signal [24]. 

This work is devoted to the development of a non-intrusive and on-line PEMFC diagnostic tool based 

on the observation of the stack voltage, and on the application of the wavelet leader based multifractal 

formalism to this signal. The test data are obtained by operating a PEMFC stack in various conditions 

corresponding to different fault scenarios; more details about the experimental and the set of recorded 

stack voltages will be given in Part 2. The theoretical basis of the “Wavelet Leaders based Multifractal 

Analysis” (WLMA) will be outlined in Section 3. The obtained multifractal features will be presented 

in Part 4 as well as the selection of the most pertinent ones that will be used to discriminate the 

different operating scenarios of the FC. The results (expressed in terms of good classification rates) 

obtained through different pattern recognition methods will be discussed, and a real-time 

implementation of the diagnosis procedure will be proposed at the end of the article. Finally, this 

paper will be completed with major conclusions. 
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2 Experimentation and Stack Voltage Data 

The experimented FC is an 8 cell PEMFC stack manufactured by CEA LITEN in Grenoble, France. 

It has been designed for automotive applications and it is made of metallic gas distributor plates. The 

electrode active surface is 220 cm2 and the nominal current I is 110A (nominal current density of 0.5 

A cm-2). The PEMFC stack was operated under a variety of scenarios using a 1 kW test bench  

developed “in-house” on the FC test platform of Belfort, France. The monitoring and controls of the 

FC test bench parameters are done using National Instruments (NI) materials and through a friendly 

Human-Machine Interface (HMI) also developed in-lab using Labview software. 

The various fault scenarios considered have been introduced by changing different parameter values 

(namely: cathode stoichiometry rate ‘FSC’, anode stoichiometry rate ‘FSA’, gas pressure ‘P’, cooling 

circuit temperature ‘T’, and carbon monoxide ‘CO’ poisoning at the anode side) from the nominal 

ones. The data sets used in this study do not only contain different single operating faults of the FCs; 

they also consist of fault mixtures (i.e. combination of single fault scenarios). More details on the 

complete set of faults scenarios explored in this work are summarized in Tables 1 and 2. 

Some examples of voltage stack signals recorded during various operating conditions corresponding 

to different fault scenarios are displayed in Fig. 1. 

As we can see in Fig. 1, each operating condition induces an irregularity signature in the FC voltage 

signal. This observation motivated us to exploit the singularity analysis of the voltage in order to 

extract some relevant features that characterize its morphology efficiently. The method adopted to 

compute a multifractal SS is described in the following Section. 

 

3 Wavelet Leaders Based Multifractal Features 
 

3.1 Definition of Wavelet Leaders 

Recently, a new formalism called wavelets leaders was built from the discrete wavelet transform. Its 

mathematical basis can be described as follow. Let a function 𝜓(𝑡) with a compact time support, 

called mother-wavelet [8] which satisfies the condition: ∫ 𝑡𝑖
𝑅

𝜓(𝑡)𝑑𝑡 ≠ 0, where 𝑖 = 0, 1, … , 𝑁𝜓 −

1 and the vanishing moment 𝑁𝜓 ≥ 1. So, a family of wavelets 𝜓𝑖(𝑡) can be generated; it is sometimes 

called daughter-wavelets. 

The templates of 𝜓(𝑡) dilated to scales 2𝑗 and translated to time positions 2𝑗𝑘 where j is the 

multiresolution parameter, with an orthonormal basis of 𝐿2(𝑅), can be formulated as follow [8] [25]: 

𝜓𝑗,𝑘(𝑡) =
1

2𝑗 𝜓 (
𝑡−2𝑗𝑘

2𝑗 ) , 𝑗 ∈ ℤ and 𝑘 ∈ ℤ     (1) 

Then, the discrete wavelet transform of a signal 𝑋(𝑡) is defined by the following formula [25]: 

𝑑𝑋(𝑗, 𝑘) = ∫ 𝑋(𝑡)2−𝑗𝜓(2−𝑗𝑡 − 𝑘)𝑑𝑡
𝑅

      (2) 

Assuming the dyadic interval  and the dyadic cube Γ [8] [25]: 

𝜆 = [𝑘. 2𝑗 , (𝑘 + 1). 2𝑗]        (3) 

Γ = 3𝜆 = 𝜆𝑗,𝑘−1 ∪ 𝜆𝑗,𝑘 ∪ 𝜆𝑗,𝑘+1       (4) 

Γ denotes the union of the interval 𝜆 with its two adjacent dyadic intervals [8]. Therefore, the wavelet 

leader is the local supremum of the wavelet coefficients located in the dyadic cube over all finer 

scales [25]: 

𝐿𝑋(𝑗, 𝑘) = sup𝜆′⊂ Γ|𝑑𝑋,𝜆′|       (5) 

The formula (5) indicates that to compute 𝐿𝑋(𝑗, 𝑘), which consists of the largest wavelet coefficient 

𝑑𝑋(𝑗′, 𝑘′), we consider the indexes (𝑘 − 1)2𝑗 ≤ 2𝑗′
𝑘′ < (𝑘 + 2)2𝑗 at all finer scales 2𝑗′ ≤ 2𝑗 . A 

possible scheme illustrating this definition is given in Fig. 2 [8] [23]. 

 

3.2 Wavelet Leaders based Multifractal Features Extraction 

The purpose of multifractal analysis (or singularity analysis) is to study some signals whose pointwise 

Hölder regularity may change widely from point to point. This characterization is obtained by 

analyzing the behavior of structure functions, based on the discrete or continuous wavelets transform 
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with WLMA and WTMM methods respectively, in the limit of small scales. Let us define the structure 

functions 𝑆𝐿(𝑞, 𝑗), which quantify the spatial average of wavelet coefficients at a given scale 2𝑗 : 

𝑆𝐿(𝑞, 𝑗) =
1

𝑛𝑗
∑ |𝐿𝑋(𝑗, 𝑘)|𝑞𝑛𝑗

𝑘=1        (6) 

Where q is the order of the statistical moment, nj ≈ n / 2j is the number of leaders available at each 

scale, and n the length of the sample [8]. 

 

The multifractal formalism consists in evaluating the behavior of the logarithm of structure functions 

in the limit of fine scales; this characterization [16] is given by the scaling exponents 𝜉𝐿(𝑞): 

𝜉𝐿(𝑞) = lim
𝑗→0

inf (
log2 𝑆𝐿(𝑞,𝑗)

𝑗
)       (7) 

In other terms, the structure functions 𝑆𝐿(𝑞, 𝑗) exhibit a power law behavior with respect to the scale 

analysis, in the limit of fine scales [16], and where 𝐶𝑞 is a constant: 

𝑆𝐿(𝑞, 𝑗) ≅ 𝐶𝑞2𝑗𝜉𝐿(𝑞)        (8) 

The SS representing the function ℎ → 𝐷(ℎ) is obtained by the Legendre transform of the scaling 

exponents: 

𝐷𝑞(ℎ) = inf𝑞≠0(1 + 𝑞ℎ − 𝜉𝐿(𝑞))      (9) 

 

3.3  Related Parameters Selection 

 

3.3.1 Analyzing Wavelet and Vanishing Moments 

The most irregular voltage signal is observed when the FSC faults are introduced, and the impact 

demonstrates that longer impulses are added on the signal support (see Fig. 1). As for the multifractal 

analysis, the vanishing moment should be larger than the largest singularity exponent. Moreover, the 

overlarge vanishing moment will introduce some border effects. Therefore, the reasonable analyzing 

wavelet is selected as Daubechies 3 (‘Db3’) function (with 3 vanishing moments) [26, 27]. 

 

3.3.2 Rang of q-Order Statistical Moments 

Let us consider the concept of the Hölder exponent. A positive exponent indicates that the function 

is continuous and has a given number of derivatives. A negative exponent implies that the function 

encloses transitions, jumps and eventually divergences to infinity. As the last characteristics are not 

observed in the studied voltage signals, we must avoid all negative values of h and 𝐷(ℎ). 

To obtain the 𝐷(ℎ) entire curve by the Legendre transform, both positive and negative values of q-

order are needed: 𝑞 ∈ [𝑞−, 𝑞+]. Note that q = q- and q = q+ amplify the small and large fluctuations 

of the signal. 

In this study, both 𝑞− and 𝑞+ are selected to avoid the negative values of the Hölder exponent h and 

Hausdorff dimension 𝐷(ℎ). So, in the case of our study: 𝑞 ∈ [−4, +5]. 
 

4 Results 

We assess the performance of the proposed SS estimation procedure by applying it to the investigated 

PEMFC stack voltages acquired under the 10 operating conditions described in Section 2 (nominal 

conditions, 5 operating scenarios with one fault at a time, and 4 ones with 2 or 3 faults 

simultaneously). In this aim, we use 30 voltage profiles acquired for each operating scenario; each 

voltage profile covers 1000 points acquired at a frequency fa =11Hz using the monitoring data system 

of the FC experimental test bench. The acquisition frequency was selected according to the technical 

possibilities offered by the test bench hardware used during the experimental campaign carried out 

with the 8 cell PEMFC stack. The window size of the analyzed signal was chosen to have enough SS 

for the classification step and to make the wavelet analysis possible (i.e. to have less side-lobe effects 

due to the wavelet transform [28]). 
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4.1 Obtained Multifractal Features 

The multifractal features can fully display the distribution of the signal singularities. The geometric 

characteristics and the local scaling behaviors are described precisely. When the operating conditions 

of the FC are changed according to the different fault scenarios, the singularities distribution of the 

stack voltage is different from the nominal conditions. The average SS computed using WLMA and 

related with the various faults shown in Fig. 1 are plotted in Fig. 3. 

As we can see at first sight, each operating fault gives its own stamp on the morphology of the stack 

voltage. This behavior is revealed by the shape and the location of the corresponding singularity 

spectra (Fig 3(a) and (b)). So, when the obtained SS is shifted to the left, that means a high irregularity 

of the voltage signal and conversely, when shifted to the right that reveals a more regular signal. 

On the one hand, the voltage signals associated to the FSC fault (single fault or combination of fault 

conditions) contain sharp and impulsive variations (Fig. 1) with relatively close magnitudes. This 

behavior is established by reduced singularity spectra (tiny concave arcs) and a high irregularity (Fig 

.3). On the other hand, large spectra are obtained with the FSA and Pressure voltage faults, which 

reveal the presence of several fluctuations sets with various magnitudes on the voltage signals. 

Based on these results, the classification of the obtained multifractal features is done in the next 

subsection. 

 

4.2 Results of Multifractal Features Classification 

To improve the performance of the fault classification method, it is recommended to select the most 

relevant features. Moreover, this task allows the reducing of the computational complexity. In our 

study, we use the Minimum Redundancy – Maximum Relevance (MRMR) technique. The MRMR 

feature selection technique was recently introduced for gene selection application [29]. This method 

selects the features according to their relevance to the concerned target and the redundancy among 

the features themselves. More details on this technique can be found in [ 29-31]. The MRMR selected 

singularity features are then classified using the pattern recognition methods named Support Vector 

Machines (SVM) and K-Nearest Neighbours (KNN). 

Actually, 20 SS per class are used to generate the learning database and the 10 others serve as test 

data to evaluate the performances of both SVM and KNN methods. Each SS contains 28 features (19 

h data and 19 D(h) data). The number of the SS features is governed by a q-order interval: from q-=-

4 with a step of 0.5 to q+=+5, we obtain 19 Hölder exponents and 19 Hausdorff dimensions. When 

all the 28 multifractal features are introduced in the diagnosis algorithm, the classification rates 

obtained are equal to 83,42 % for the KNN method and 82.63% for the SVM classifier. 

So, by applying the MRMR method on the full feature set (28 features) of the SS, the good 

classification rate obtained with the SVM classifier using the top 13 selected features is about 84.42%, 

against 85.71% obtained by the KNN method with 8 selecting optimal features. 

Besides, limiting the application of the MRMR technique only on the Hölder exponents (h features) 

leads to better results in terms of good classification rates, both for SVM and KNN. Indeed, the SVM 

classifier offers 85.71% of good classification rate with 15 selected h features and the computing time 

is about 350 ms. The best classification rate obtained by KNN is equal to 89.61% when only 6 optimal 

features are selected among 19 h features, with a fast computing time of about 4 ms (Fig. 4). 

The confusion matrix of the best results obtained on each class is shown in Table 3. As we can see, 

despite a significant number of classes and samples to distinguish, the proposed diagnosis strategy 

identifies successfully several complex operating faults. 

Thus, the combination of the MRMR technique with the KNN classifier by using only the Hölder 

exponent features offers the best discrimination between the 10 classes described previously. We can 

conclude that the punctual singularity strengths of the stack voltage reveal very useful information on 

the physical and electrochemical phenomena involved inside the FC. 

 



6 
 

4.3 Real Time Implementation of the WLMA Diagnosis Method 

In order to perform the real time diagnosis operation, the FC test bench is connected to a Personal 

Computer with the following characteristics: Intel ® Core TM i7-2960 XM, CPU @ 2.7 GHz, RAM: 

16 GO. During the PEMFC operation, the stack voltage data are recorded with an acquisition 

frequency of 11 Hz through the Labview interface of the FC test bench and shared using an internet 

link with a Matlab code that calculates the SS with the Personal Computer (Fig. 5). Then, the SS data 

are sent back to the testbench and the spectrum can be displayed on the HMI. The time cost of a full 

SS (28 features) computation is about 0.7 s. The MRMR technique reduces the computing time to 

0.15 s. Finally, the feature vector is assigned using the KNN classifier to the class of the sample that 

is the nearest one in the training database. 

 

5 Conclusions 

The proposed diagnostic strategy dedicated to the determination and monitoring of the FC state-of-

health allows achieving three main objectives. The first objective concerns the possibility of detecting 

a wide range of FC faults, including the most complex situations (combination of faults). The second 

aim is to limit the instrumentation needed for the diagnosis task (non-intrusive method based on the 

one and only stack voltage measurement). The latter is the possibility to operate in real-time mode 

(on-line method), leading to the outlook of a possible feedback on the FC control-command. The first 

objective is achieved by the powerful discrimination of the wavelet leader features. The diagnosis 

task is done by the observation of the “free” stack voltage evolution. No additional current or voltage 

solicitation needs to be applied as it is the case for Electrochemical Impedance Spectroscopy 

measurement for instance. The interesting computing time costs of the wavelet leaders and KNN 

classifier makes possible the future implementation of the algorithm on embedded technologies that 

could equip some real FC application systems. 
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Figures 
 

 

 
Figure 1: Examples of PEMFC stack voltages (U) vs. time acquired in different operating conditions. 

 

 

 
Figure 2: Left: example of a voltage signal decomposition using the Daubechies wavelet ‘db3’. Right: 

a zoom in on the obtained wavelet coefficient details to give an illustration of the principle used in 

tracking the wavelet leaders LX (red circle). These last ones are calculated from the discrete wavelet 

coefficients 𝑑𝑋(𝑗, 𝑘) (green dots) by taking the supremum in the time neighborhood Γ = 3𝜆 over all 

finer scales 2j’ < 2j (area in grey). 
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Figure 3: Average Singularity Spectra (SS) computed on 30 signals /operating conditions related with 

the different faults exhibited in Fig. 1. 

 

 
Figure 4: The wrapper selection / classification results on the Hölder exponents (h features). 
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Figure 5: The different devices used for the on-line implementation of the PEMFC diagnosis strategy. 
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Tables 
 

Table 1: The set of single fault scenarios applied during the experimentation with I = 110 A. 

 

Parameters value 

Nominal 

conditions 

(Ref) 

Cathode 

flow fault 

(DFSC) 

Anode 

flow 

fault 

(DFSA) 

Inlet gas 

pressures 

fault 

(DP) 

Cooling 

circuit 

temperature 

fault (DT) 

CO 

poisoning 

(DCO) 

FSC 2 1.3 2 2 2 2 

FSA 1.5 1.5 1.3 1.5 1.5 1.5 

P, Pa 1.5 × 105 1.5 × 105 1.5 × 105 1.3 × 105 1.5 × 105 1.5 × 105 

T, C 80 80 80 80 75 80 

Presence of CO, ppm 0 0 0 0 0 10 

 

 

Table 2: The set of fault combination scenarios applied during the experimentation with I = 110 A. 

 

Parameters 

value 

Nominal 

conditions 

(Ref) 

Both cathode 

flow and 

pressure faults 

(DFSC & DP) 

Both anode 

flow and 

pressure faults 

(DFSA & DP) 

Both anode and 

cathode flow 

faults 

(DFSC & 

DFSA) 

Anode and cathode 

flow faults and 

pressure fault  

(DFSC & DFSA & 

DP) 

FSC 2 1.3 2 1.3 1.3 

FSA 1.5 1.5 1.3 1.3 1.3 

P, Pa 1.5 × 105 1.3 × 105 1.3 × 105 1.5 × 105 1.3 × 105 

 

 

Table: 3 Confusion matrix of the good classification rates %, obtained with MRMR and KNN. 

 

 

With: 𝐶0 ≡ 𝑅𝑒𝑓̂, 𝐶1 ≡ 𝐷𝐹𝑆𝐶̂, 𝐶2 ≡ 𝐷𝐹𝑆𝐴̂, 𝐶3 ≡ 𝐷𝑃̂, 𝐶4 ≡ 𝐷𝑇̂, 𝐶5 ≡ 𝐷𝐶𝑂̂, 𝐶6 ≡ 𝐷𝐹𝐶𝑆 & 𝐷𝑃̂ , 
 𝐶7 ≡ 𝐷𝐹𝑆𝐴 & 𝐷𝑃̂ , 𝐶8 ≡ 𝐷𝐹𝑆𝐶 & 𝐷𝐹𝑆𝐴̂ , 𝐶9 ≡ 𝐷𝐹𝑆𝐶 & 𝐷𝐹𝑆𝐴 & 𝐷𝑃̂  

 

 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Ref 87.5 0 0 12.5 0 0 0 0 0 0 

DFSC 0 100 0 0 0 0 0 0 0 0 

DFSA 0 0 100 0 0 0 0 0 0 0 

DP 50 0 0 50 0 0 0 0 0 0 

DT 0 0 0 0 100 0 0 0 0 0 

DCO 0 0 0 0 0 100 0 0 0 0 

DFSC & DP 0 0 0 0 0 0 100 0 0 0 

DFSA & DP 0 0 0 0 0 0 0 71.43 28.57 0 

DFSC & DFSA 0 0 0 0 0 0 0 0 100 0 

DFSC & DFSA & DP 0 0 0 0 0 0 0 0 0 100 


