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We present a general picture of the exciton properties of layered materials in terms of the excitations of their
single-layer building blocks. To this end, we derive a model excitonic Hamiltonian by drawing an analogy with
molecular crystals, which are other prototypical van der Waals materials. We employ this simplified model to
analyze in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the ab initio
solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way, we identify the
character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole
exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations

in layered materials.
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I. INTRODUCTION

In many nanostructured materials, while strong covalent
bonding provides the stability of the subnanometric elementary
units, the whole assembly is held together by weak van
der Waals interactions. The individual building blocks hence
maintain most of their intrinsic characteristics also when
arranged together to form a crystalline solid. In principle, novel
materials properties can be thus tailored by controlling those of
the elementary units. This bottom-up strategy in the synthesis
of new materials has been intensively followed since the
1980s, when small atomic aggregates, nanoclusters, fullerenes,
nanotubes, etc. started to attract enormous attention [1-4].
After the isolation of graphene in the mid-2000s, the focus
of interest in nanotechnology applications largely shifted
towards two-dimensional (2D) materials [5]. In recent years,
monolayers or few-layer crystals of hexagonal boron nitride
(hBN), black phosphorus, transition-metal dichalcogenides,
and several other materials have also been heavily investi-
gated [6,7]. The technological challenge now resides in the
ability to stack together different atomically thin layers in
order to build new kinds of “van der Waals heterostruc-
tures,” with the goal of realizing devices with customized
functionalities [8,9].

In order to design materials with desired features
for improved nanoelectronics and optoelectronics applica-
tions [10,11], the optical properties of layered materials need
to be understood in detail. Due to the reduced effective
screening [12], the optical response of 2D materials is domi-
nated by strong electron-hole (e-h) interactions giving rise to
bound e-h pairs, i.e., excitons. Nowadays, the state-of-the-art
method to describe excitonic effects in condensed matter is
the solution of the Bethe-Salpeter equation (BSE) [13,14]
within the GW approximation (GWA) [15] of many-body
perturbation theory [16]. As a matter of fact, in the last
couple of decades, the ab initio BSE scheme [17-20] has been
successfully applied to a wide variety of materials, including
systems with reduced dimensionality [16,21,22].

Here, on the basis of ab initio GW-BSE calculations, we
derive a general formalism to describe excitons in layered
crystals, starting from the knowledge of the excitations of
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a single layer. To this end, we proceed by analogy with
molecular crystals [23—25], which can indeed be considered as
the prototypical case of van der Waals materials. In this way, we
obtain a general picture of excitonic effects in layered systems
in terms of the interplay between e-h exchange interaction
and band dispersion (i.e., interlayer hopping), which allows
us to distinguish in a simple manner excitons of different
character (e.g., intralayer and interlayer excitons). To numer-
ically illustrate our analysis, we have chosen a prototypical
layered material, namely hexagonal boron nitride, for which
GW-BSE calculations are well established [26-36]. In hBN,
the calculated dielectric function has already shown to be in
excellent agreement with experiment in a wide range of energy
and momentum [34]. Here we obtain the eigenvalue spectrum
of the excitonic Hamiltonian as a function of momentum [37]
and discuss its relation with quantities that are accessible via
experiments.

The present work also extends to the exciton case (via
the BSE formalism) the previous ab initio investigations
that studied plasmons (i.e., collective electronic excitations)
in prototypical layered systems such as graphite [38—40] or
multilayer graphene [40,41]. In those materials, dielectric
properties as a function of momentum q and interlayer
distance d were calculated in the random-phase approxima-
tion (RPA) within the framework of time-dependent density
functional theory. Those studies already addressed general
questions such as the effects of crystal local fields due to
spatial inhomogeneities in the charge density variation of
the Hartree potential, the role of the interlayer coupling
due to the long-range Coulomb interaction between charge
oscillations on different layers, and the possibility to adopt
a local-response approximation to formally relate 2D and
3D response functions [40]. More recently, a “quantum-
electrostatic heterostructure” model [42] was similarly derived
to describe the dielectric properties of complex multilayers
starting from those of the single-layer building blocks, also
taking into account the long-range coupling between layers
due to the Coulomb interaction. However, in both cases,
hybridization effects were neglected: in the present work,
they will be analyzed in detail in terms of interlayer hopping
mechanisms.

©2017 American Physical Society
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II. THEORETICAL FRAMEWORK AND
COMPUTATIONAL DETAILS

The BSE is a formally exact Dyson-like equation relating
the electron-hole correlation function L to its independent-
particle version L [43]. Within the GWA to the self-energy,
the BSE reads

L(1,2,3,4) = Lo(1,2,3,4) + Lo(1,2,5,6)
x [v(5,7)5(5,6)6(7,8)
— W(5,6)5(5,7)6(6,8)1L(7,8,3,4), (1)

where we have used the shorthand notation (1) for position,
time, and spin (ry,#;,071) and repeated indices are integrated
over. In Eq. (1), v is the bare Coulomb interaction and W its
statically screened version calculated at the RPA level. The
former enters the kernel of the BSE (1) as an e-h exchange
repulsive interaction and is responsible for crystal local-field
effects. The latter is a direct attractive e-h interaction that
is at the origin of excitonic effects, including the formation
of bound excitons. For triplet excitons, the e-h exchange
interaction v is absent.

The diagonal of the correlation function L yields the
density-density response function x(1,2) = L(1,1,2,2). In a
crystal, by taking the Fourier transform of yx to frequency and
reciprocal-lattice space, one directly obtains the loss function

-1
—Imey,; as

-~ 47
~Imey,' (q,0) = —?Imx (q.9,0). 2)

Here, €, is the macroscopic dielectric function and q is a
wave vector such that q = q, + Gy, where q, belongs to
the first Brillouin zone (1BZ) and Gy is a reciprocal-lattice
vector. The loss function, which can be measured by inelastic
x-ray scattering (IXS) and electron energy loss spectroscopy
(EELS), describes the longitudinal linear response of the sys-
tem to an external potential. Hence it gives access to collective
excitations such as plasmons, and (screened) electron-hole
excitations.

Optical absorption spectra are related to the vanishing-
q limit of Imey(q,w), which can be obtained from the
Fourier transform of the modified response function j(1,2) =
L(1,1,2,2),

4
ImeM(‘l»C‘)) = _?Imx (qaqaw)v (3)

where L satisfies the BSE (1) with the modified Coulomb
interaction v at the place of v. In the reciprocal space, ¥ is
defined to be equal to v, except for the Gy component for which
it is set to O [37]. Therefore, the difference between optical
absorption and loss function at q = 0is given by the long-range
Gy = 0 component of the Coulomb interaction [22,44,45]
[which is absent for Imey; in the BSE (1)].

The loss function can also be explicitly written in terms
of the imaginary and real parts of the macroscopic dielectric
function,

Imep(q,w)

_ —1 —
(99 = Reen@ o)l + Imes(@.o)l”

“
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Plasmon excitations are peaks in —Imel\jl1 corresponding to the
frequencies where Reey, is zero and Imey; (which provides the
damping of the plasmon) is not too large.

In order to describe correlated e-h pairs explicitly, the
BSE (1) (with ¥ at the place of v) can be cast in the form
of a two-particle Schrodinger equation with an excitonic
Hamiltonian,

H,, (q) ZZ Eck+qach+qack+q - Z Evkakbvk
vk

ck
28 —vck chk T bT b
+ [ mvu’c’k’(q)_ U’c/k’(q)]ack-‘rq vkOvk Ack'+g-
vck,
V'K

)

Here k, belonging to the 1BZ, and v(c) denote a valence
(conduction) Bloch state of energy Ek (E k) calculated within
the GWA; a' (a) and b’ (b) are creation (annihilation) operators
for electrons and holes, respectively; 6, is 1 for the singlet and
0 for the triplet channel.

The first line of (5) is an independent particle Hamiltonian
H; p» [corresponding to L in the Dyson equation (1)], while the
second line contains the interaction terms stemming from the
kernel of (1). The matrix elements of # and W are calculated
in the basis of Bloch states as [21,37]

@) = [ drdr v OO
X Yer s W (), ©
Wik @ = [ drdr ¥y O cncsaW )

X Yok (X) Py (). @)

In Eq. (5), we have adopted the Tamm-Dancoff approxima-
tion (TDA), which amounts to neglecting antiresonant ¢ — v
transitions and their coupling with resonant v — c¢ transitions
(extension to the general case can be seen in [37]).

The macroscopic dielectric function,

2
o Zk A} @huek(@)
em(q0) =1 - ?; o Bwrm . ®
with the oscillator strengths p,.k(q) defined as
Puek(@) = (vk — q,|e ™9 |ck), ©)
and the exciton wave function
W @) =Y A (@albli o |0), (10)
ek

where q is the total momentum of the two-particle state, can
be thus written in terms of the eigenvectors A*(q) and the
eigenvalues E*(q) of the excitonic Hamiltonian H,, (5),

H.(@)A*(@) = EX@)A*(q). an

The ex§itonic eigenvalues E*(q) of I:ng are hence the poles
of the L and €y functions in the frequency domain. They give
rise to peaks in the spectrum of Imey(q,w) whose intensity is
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given by the numerator of Eq. (8). If it is negligibly small, the
corresponding excitonic state is said to be dark.

The inverse macroscopic dielectric function el\_,ll can be
analogously obtained from the eigenvectors and eigenvalues
of the excitonic Hamiltonian H that, in addition to H,, (5),
also includes the long-range component of the Coulomb
interaction,

2
> A% (@ Fuek(q)

_ 81 -
EMl(q’w)zl'i_FZ v:;
A

12)

— E™qQ) +in

Therefore, the loss function —Imel\_,[1 (q,w) can also be decom-
posed in terms of the eigenvalues E*(q) and the eigenvectors
A*(q) of H, .

In our first-principles calculations, we obtain the single-
particle states ¥, using Kohn-Sham (KS) density functional
theory within the local-density approximation (LDA) [46]. We
use Troullier-Martins pseudopotentials [47], and expand the
KS wave functions in a plane-wave basis set with a cutoff of
30 Hartree. The lattice parameters for the bulk are optimized
using the LDA. We also consider hBN systems with variable
interlayer distances d for which the in-plane lattice vectors
are kept constant to the bulk value. On the basis of the results
of GW calculations for hBN bulk [36], we apply a scissor
operator of 1.96 eV to correct for the LDA underestimation
of the single-particle band gap. For larger interlayer distances
d, the GW correction increases [29]: for example, it becomes
2.47 eV for d = 1.5d,, where dj is the interlayer separation of
the bulk. For the GW-BSE computational details of the hBN
monolayer, we refer to Ref. [35]. In all the other cases, we
sample the Brillouin zone using a 48 x 48 x 4 I'-centered
grid. For the BSE calculations at finite q, we follow the
same procedure as described in Ref. [34]. To simplify the
analysis of the results in Sec. IV, here we use a minimal e-h
transition basis set comprising two valence and two conduction
bands and solve the BSE within TDA. As a consequence of
the Kramers-Kronig relations, Reey; converges more slowly
than Imey; with the number of higher-energy e-h transitions
and (especially at small q) is affected by the coupling with
antiresonant transitions [48] neglected in the TDA. While in the
present case the main interest is to establish a direct connection
between the electronic excitations characterizing Imepy(q,w)
and the loss function —Imel\_,l' (q,w), for the comparison of the
calculated loss-function spectra with experiment, we refer to
Ref. [34]. In the construction of the BSE Hamiltonian, we
expand the single-particle states and static dielectric function
with plane-wave cutoffs up to 387 and 133 eV, respectively.
We perform the KS and static screening calculations using
ABINIT [49], and BSE calculations with EXC [50]. All of the
spectra presented in the following sections are calculated for
in-plane momentum transfer q along the I' M direction.

III. RESULTS

The two panels of Fig. 1 display the real and imaginary parts
of the macroscopic dielectric function €y and the loss function
—Ime{,[1 of the bulk crystal of hBN calculated by solving the
BSE for two different in-plane momenta q. At vanishing q (top
panel of Fig. 1), the prominent peak at 5.67 eV in the absorption
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FIG. 1. Thereal and imaginary parts of the macroscopic dielectric
function Reey; and Imey; and the loss function —Imel\_,ll calculated at
two different wave vectors q along the in-plane I'M direction. For
improved visibility, the loss functions have been rescaled. The vertical

arrows mark the smallest independent-particle GW transition energy
(which for q = 0 corresponds to the direct band gap).

spectrum Imey, is a tightly bound exciton, located well within
the direct band gap [51] (which in GW amounts to 6.47 eV and
is marked by the vertical arrow in the top panel of Fig. 1). In the
plot, we have labeled the main peak as A™ (the explanation of
the identification of the various excitations will be the subject
of the detailed analysis in Sec. IV). Other structures are visible
in the spectrum at higher energies, but for simplicity here and
in the following we will focus on the lowest-energy excitations.
As explained in previous works [28-31], the main absorption
peak derives from w — m* transitions between top-valence and
bottom-conduction bands that are visible for in-plane light
polarization [52]. Through the Kramers-Kronig relation, this
AT peak of Imey induces a strong oscillation in Reeyy, which
crosses the zero axis with a positive slope at 5.99 eV. Imey
being small at this energy, this zero of Reey gives rise to a
plasmon resonance in the loss function —Imel\jll, which shows
a peak at the same energy [see Eq. (4)]. Here it is worth
noticing that in hBN, this plasmon excitation also lies within
the direct gap, since the collective charge excitation of the
electrons is strongly affected by the e-h attraction [34]. As
discussed in details in Refs. [33,34], for increasing (, this &
plasmon disperses to higher energies and, at larger q, it enters
the continuum of particle-hole excitations.

As a matter of example, the bottom panel of Fig. 1 shows
the spectra obtained for the second smallest finite q that we
have considered in our calculations (for the other momentum
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FIG. 2. Exciton eigenvalue spectrum E*(q) in bulk hBN for in-plane q along I'M for (a) the electron-hole correlation function L
corresponding to Imey(q,w) featuring singlet excitons, (b) the electron-hole correlation function L corresponding to the loss function

—Imey;' (q,w), displaying plasmons and e-h excitations, and (c) triplet excitons. The ['M length is 1.45 A™". For the explanation of the
peak labels, see the main text. In the loss-function plot (b), the solid black line is a guide for the eye in order to better track the plasmon

dispersion (corresponding to the At feature).

transfers, not shown here, similar considerations can be made).
Globally, the spectra at finite q remain qualitatively similar to
the q = 0 case shown in the top panel of Fig. 1. Still we can
recognize that in Imeys, a new small structure A~ appears on
the low-energy side of the main A* peak. The A~ feature also
induces a new shoulder in Reey; in the same energy range.
Finally, a new small peak “X” is visible in the loss function
—Imel\*,[1 at 5.88 eV, i.e., before the w plasmon. This new peak
(which does not take place in correspondence with a zero of
Reey, and hence is not a plasmon) matches a new very weak
peak in Imey;, so it has to be ascribed to a new many-body
electron-hole excitation that becomes active at q # 0.

As discussed in Sec. I, the spectra for Imey; and —Imel\_,ll
can also be analyzed in detail by making use of the eigenvalues
and eigenvectors of the excitonic Hamiltonian that enter
Egs. (8) and (12), respectively. Figure 2(a) shows the 18 lowest
energies E* as a function of q for the singlet excitons that are
obtained from the diagonalization of excitonic Hamiltonian
H,., (5). They are hence the poles of ey (8) and of the
modified two-particle correlation function L. The color scale
represents their intensity |A” - | at the numerator of Eq. (8).
Red squares are for states that have a visible peak in Imey;,
while blue squares are dark exciton states with no intensity in
the spectrum. The other two panels of Fig. 2 use the same repre-

SINGLET

LOSS FUNCTION

sentation. Figure 2(b) displays the exciton eigenvalues E(q)
obtained from the diagonalization of H/  that includes the
long-range Coulomb interaction: they enter the loss-function
spectra —Imel\_,ll(q,a)) (12). Finally, in Fig. 2(c), the triplet
exciton energies are also reported for comparison (they cannot
be directly measured by loss or absorption spectroscopies).
They are calculated from the excitonic Hamiltonian H,, (5),
where the e-h exchange interaction ¥ is absent. With respect
to the singlet excitons, the triplet energies are globally lower
[compare Figs. 2(a) and 2(c)], as the e-h exchange interaction
is repulsive and hence yields singlet states that have higher
energies than the corresponding triplets.

The first and third q points in Figs. 2(a) and 2(b) allow us
to better understand the absorption and loss spectra plotted in
the two panels of Fig. 1. For example, in Fig. 2(a), we discover
that in the optical limit q — 0, the first visible exciton A™
is degenerate with a dark state [53] (labeled B* here) and
that below them there are two other degenerate dark excitons
A~ and B~ that do not contribute to the q — 0 absorption
spectrum in the top panel of Fig. 1 (this point was already
the subject of discussion in Refs. [28,30,31]). We can also see
that at finite q, one of the two lowest dark excitons becomes
visible, giving rise to the low-energy peak A~ in the absorption
spectrum of Fig. 1, bottom panel. Finally, the weak peak X at

TRIPLET

Energy [eV]
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FIG. 3. Same as Fig. 2 for increased interlayer distance d = 1.5d, (where dj is the experimental interlayer separation of hBN).
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5.88 eV is due to another exciton state that is dark at ¢ = 0 and
switches on at q # 0. For all wave vectors (, at higher energies
the exciton states become very dense, forming a continuum of
excitations. In Sec. IV, we will focus on the four lowest-energy
discrete states that are well within the fundamental gap.

We can now repeat the same analysis for the loss functions
—Imel\_,ll(q,a)) in Fig. 1 using the poles of L represented in
Fig. 2(b). We thus discover that at q = 0, the plasmon excita-
tion at 5.99 eV is not the lowest-energy eigenvalue. Itis actually
already located in the energy region where e-h excitations are
rather dense. So it is not easy to track its dispersion after the
first few q points. At the bottom of the eigenvalue spectrum,
there are instead three dark states (two of them are degenerate
at q = 0) that are well separated from the other excitations.
They have a dispersion as a function of q that is similar to that
of the lowest poles of L in Fig. 2(a). It is hence tempting to
make a connection between them. In Sec. IV, we will explain
rigorously why this is indeed the case (so they are labeled A~
and B* here) and why the plasmon excitation instead has a
AT character. Finally, at q = 0 at 5.88 eV, we recognize the
same X excitation that is also present in the spectrum of L
in Fig. 2(a) and is responsible for the weak structures in the
absorption and loss spectra in the bottom panel of Fig. 1.

IV. DISCUSSION

A. The exciton Hamiltonian in layered crystals

In order to interpret the numerical results of the previous
section, here we generalize the approach that some of us

J

H, = Z Z Z ERSIi(k, ,kz)aiklmackzsj -
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introduced in Ref. [23] to explain the excitonic properties of
molecular crystals. We thus rewrite the excitonic Hamiltonian
ﬁex [which in Eq. (5) is expressed in terms of Bloch wave
functions delocalized all over the crystal] in the basis of wave
functions localized on the elementary units of the system.
While in molecular crystals the elementary units are the single
molecules, in the present case they are the single layers of BN
(stacked along the z axis). We assume that the one-particle
wave functions ¥ (r) localized on different layers do not
overlap and can be factorized in in-plane ¢(p) and out-of-
plane x (z) components, with r = (p,z). Specifically, for given
in-plane wave vector k and out-of-plane k,, the single-particle
wave function ¥y x_(r) is expanded in the basis of single-layer
wave functions as Y p; cke’ "Rl (0)x'(z — R). Here R is
the lattice vector along z and the index i denotes the layers
inside the unit cell. We also consider the possibility that the
various layers stacked along z are rotated one with respect to
another by an angle 8 (in hBN, 8 = 60°), and therefore also
the 2D first Brillouin zones are rotated by an angle 8 [54].
Hence, choosing a reference layer i = 1, we define k® =k
fori = 1 and k') = B~'k for i # 1, with Bk being the wave
vector obtained rotating k by an angle 8 (see Appendix A
for more details). For simplicity, we further consider for
each layer a two-band system, with only one valence v
and one conduction ¢ band. Under these assumptions, the
whole excitonic Hamiltonian H,, of the crystal given by
Eq. (5) takes the simple form of the sum of three terms
H,, = [-Iip + Ker + Krg:

YOS ERSI k) Ko)bly pibus;

kik, RS ij ki k,

RS ij

Z Z vR, Sk ckyukacky) — Sg;, si Wairs (vkickoukscks)]a CszlbIk]Rlbuk;sjachsp

k]k2k3k4 Ri S]
Ker =—
kikoksks Ri,S

with

Z Z(l - 8Ri.Sj)WSS;;.RR;(UklCkZUkSCk4)aik2RibiklsjbvkgsjacmRi7 (13)

Wsj’R, (vkickyvkscky) —/dl‘dl‘ P (X (2 = R)XJ (@ = S)piy (0 YW (X )l () xi(z — Ry (pHx) (2 —8),  (14)

%fwmdwmdo—/mmwmwuﬁ&—mmuﬂmf@ S)0(r, )%, (P11l (@ — S)ey (P)xiz —R). (1)

In the Bloch picture, ﬁ,-,] contains independent e-h tran-
sitions between single-particle bands. Equivalently, here I:Ii,,
describes scattering processes from layer to layer, indepen-
dently for electrons and holes, being

ERS (k) k) = E

i k, .k
Eyq E} o KDORi 8k 0 + Iy g, (16)

where E; (k) is the single-layer band dispersion and tﬂgcg];' o
are interlayer hopping matrix elements (see Appendix A) that
give rise to the finite k, dispersion of the bands in the crystal
(see Fig. 8 in Appendix B).

In Eq. (13), the second and third terms I%pR and I?CT
describe the interaction between an electron and a hole that are

(

localized on the same layer or on different layers, respectively.
In order to keep a closer contact with the exciton physics of
molecular crystals, here we name the intralayer configuration
as a “Frenkel” (FR) exciton and the interlayer configuration
as a “charge-transfer” (CT) exciton. In other words, in the
present context, we call FR an exciton that is fully localized
on a single layer, independently of being localized or not
within the layer. Therefore this definition applies equivalently
for excitons with different in-plane localization characters,
as, for example, in hBN (where the exciton is tightly bound
also within the single layer [28]) or in MoS, (where it is
weakly bound [55]). We note that the e-h exchange interaction
v is different from zero only for e-h pairs localized on
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the same layer, and therefore it is absent for CT excitons
in Eq. (13).
The FR and CT interaction terms in Eq. (13) are coupled

by the interlayer hopping terms in H; »- Without the interlayer

hopping tl'{(%ljl ko

into two independent blocks: a CT Hamiltonian Her = H !+

the excitonic Hamiltonian (13) factorizes

K7 describing an interacting e-h pair localized on dlfferent
layers and a FR Hamiltonian Hpp = H +K rr describing
an interacting e-h pair on the same layer (1n both cases, we set
tl"é%l;‘ * —0inH 0)-

The CT exciton wave functions [56],

Zch, @), (17)

ijt

vl (@) =

PHYSICAL REVIEW B 95, 035125 (2017)

with

1 hijt oyt t

T 2 2 Ak @ om Do gm0
R k

(18)

|/ (@) =

are already the eigenfunctions of Hcr that can be directly
built from the excitations of the single layers. The Frenkel
Hamiltonian H g instead also contains an interlayer coupling
that needs additional consideration.

By further splitting the e-h exchange interaction v into
a long-range contribution ¥y (corresponding to the G =0
component in reciprocal space) and a short-range contribution
7 such that o = 9y + ¥, the FR Hamiltonian Hrg can be
separated into an 1ntra1ayer term A, and an interlayer coupling

V HFR—HL+V with

A =H/, + Z Z EfR,(Uklckzvk%CkU gg’(vklckzvksckﬂ] LkZR,blklR,bukmzacmRz, (19)
kikoksks Ri
2 _Sj
V=" ) ik (vkickovkscka)aly bl gibukssdcks; (20)

kikoksks Ri,Sj

where

=Sj (1) (ONPYES )] ()
UR{R! (vkickovkscks) = Z(Skl kz+q§;> ks.ks+q) Z Z q+ G|2 pckzvk| (q + G )pcjkwk] (qJ GH] )

q 4:G. G”;éo
dzxj(z)ei(qvaG:)ZXU e*iq:~(S*R)e*i(qz+Gz)du’ 1)
Domon: (VK1 ckovkacky) = 8 )8 Y e @ @)
Uoml vKickyvkscky ki ko+q! Oks kg |q+G|2'06kzvk1 qn Pexyvk, 4]
q 4::G; #0,
GH =0
2
dZXf(Z)ei(q’+G’)ZXv(Z) e_iqz‘(S_R)e_i(f{z+GZ)dij’ (22)
~i i i i i +G{)p i
Phne(@ + G[) = [ dpgii(p)e WPl (p). (23)
Equivalently, Eq. (21) can be written in terms of the partial Fourier transform of the Coulomb potential [40],
2r /
v(q + Gy,z,7) = T laitGyllz—z I, (24)
I 1 lq) + Gyl
as )
=SS/ T @) )y 5 W 4 ()
Upir) (VK1 ckovkscky) = 28k1 ke 8. ketq) Z |q+—G|Pckzuk, (4, + G )p(jl:vkl(q 1 j )
q G0 Il l
* / dzf dz! X @) xo(@)e” IOy 1) (2 ye 1 CUIS Rl Gulds, (25)

From Eq. (25), we can conclude that the off-diagonal elements

S#Randi # j of szR; are actually zero, for the presence
of the exponential terms e~ U+CGiIlIS=RI with G, # 0. For its
short-range nature, the v interaction therefore does not couple
different layers.

With respect to the Bloch picture, such a transformation
and decomposition of the excitonic Hamiltonian (5) illustrates
much more clearly the physics of excitons in layered materials
that we want to uncover. Here the eigenstates of H; represent
the excitations of an elementary unit of our van der Waals
material, namely a single BN layer embedded in the bulk

(

crystal. They are formally analogous to the excitations of a
single molecule in a molecular solid. Thus, by analogy with
molecular crystals, a FR exciton in the present case can be seen
as an elementary excitation of a single layer, which can scatter
from one layer to another due to the interlayer coupling V.
From a mathematical point of view, this means that we expand
the FR exciton wave functions (which are the eigenfunctions
of Hrg) on the basis of the eigenstates of A,

(WiR@) = —= ) @] Vi (). (26)

\/_XRl
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where

k(@) = ZAUCk(q)acm,bvmqmm|0> @7

and where we have used the fact that for in-plane q one has
¢/9R — 1, The matrix elements of V are

A ,
Y el @]

G.#0,G=0

(\yl)i 11(q)| V|\IJR //(q)> =

2
dzx}(@2)e' % xy(2)| e 'O,

(28)

where S}(q) is the oscillator strength of the exciton A of the
layer i,
SHa) =Y AL (@)phae?), (29)

k

and where we have used the fact that X,i(z) = X,{ (z —d;j) =
Xxn(z — d;;) for both n = v,c, with d;; the distance between

the layers i and j. From Eq. (28), we realize that 1% operates
only on visible excitons and cannot couple visible and dark
excitons for which S*(q) =

B. The exciton Hamiltonian in hBN

If we consider a crystal with two inequivalent layers per unit
cell, as is the case for hBN, for each quantum number A that
defines an excitation of the single layer one has four excitons
in the bulk [we take into account only first nearest-neighbor
CT excitons and assume 7 = 0 in Eq. (17)]. The FR and CT
excitons that diagonalize the excitonic Hamiltonian H,, (13)
in the absence of interlayer hopping are then the symmetric
and antisymmetric combinations with respect to the exchange
of the e-h pair between two inequivalent layers,

‘\DA R, 12 :l: |\I]R 21)] (30)

ICTE) fz

|FRY) fZ [[WRu) £ [VR2)]  GD

The |CT?) states are degenerate, while the energy separation
between the | F R’,) states in the context of molecular crystals
is usually called Davydov splitting [57].

In the case of hBN, the two lowest excitons of the BN
monolayer, which are degenerate at q = 0, are a visible exciton
A and a dark exciton B [see Fig. 4(a)]. They originate from
transitions from the top-valence to the bottom-conduction
bands with k vectors located around the K or K’ points of the
Brillouin zone, respectively [35,58]. These two single-layer
A and B excitons hence produce eight excitons (four FR and
four CT excitons) in the bulk crystal. Since the B exciton is
dark for all q along I'M, in the bulk the A and B excitons are
not mixed by V [see Eq. (28)] and preserve their identity. The
four |C Tf’B ) excitons are located at higher energies since they
have smaller binding energies, as a result of the e-h attraction
being smaller for interlayer e-h pairs than for intralayer e-h
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pairs. In the following, we focus on the four | F RQ’B
that are the lowest-energy excitations in the bulk.

The A exciton of the single layer of energy EA4(q) =
E f‘] (q) = E »(q) gives rise to the two | F Ri) excitons,

) excitons

EXq) = EN@) + T (@) = TA(q), (32)

where T4(q) & J*(q) are the contribution to the exchange e-h

interaction V for the symmetric (+) and antisymmetric (—)
states, respectively. They are the excitation-transfer interac-
tions that are responsible for the interlayer propagation of the
FR exciton in the crystal [23]: J4 is related to the scattering
process of an e-h pair between two inequivalent layers and,
analogously, 74 between equivalent layers in different unit
cells. Explicitly, they read

_ 4
M= )Y —=Is"0P
G:#0.G=0 la+ Gl
) 2
dzx}(2)e' 9 xu(2)] (33)
Pra= Y enlstar
G.#0,G =0 q

2
dzx}(@)e' ()| e (34)

We note that 74(q) and J*(q) are both zero at q = 0, since
the oscillator strength S4(q) in the dipole limit q — 0 is
proportional to q - u*. Therefore, I and J in layered systems
do not yield any Davydov splitting between symmetric and
antisymmetric excitons at ¢ = 0, in contrast to the molecular

(a) T T [ i | T
6.8} LR - _
T R
’—‘6.5I-= g 1" " | . " ] . " 4
I L ]
gis9l  _a " I
) . "
5 56F " A .= " .
53¢ » = = § SINGLET A
5 1 1 1 1
(b) : . — =
6.8] _.==:|!|'_. -
s o= 38 o g 0" s " a "
;‘6.5:L . I | . LI i
(5} s " = = "
:62:L= g 0 = . " 4
o0 L - " i
Esgl [ ] L] - I I I I
M 56 R . g ! | B
53, e et TRIPLET -
5 1 1 1 1
0 0.2 04 o 06 08
q[A’]

FIG. 4. Dispersion of (a) singlet and (b) triplet excitons in the BN
single layer. The color key is the same as in Fig. 2.
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crystal case [23]. The matrix elements for r = (p,0) are

(FR197|0) = |S*(q)I?

X [/ dzxc*(z)xv(z)i/dzxc*(z)xv(z)]-
(35)

The symmetric |F R_’i) exciton is hence visible, while the
antisymmetric | F R?) exciton is dark, since the two integrals
in Eq. (35) exactly cancel in this case. For the B exciton, the

matrix element of V is zero [since SB(q) = 0 in Eq. (28)].
Therefore, the two |F R2) excitons remain degenerate in the
bulk,

ES(q) = E%(q). (36)

Moreover, as SB(q) is zero, they are both dark [see Eq. (35)].

In summary, by neglecting the interlayer hopping terms in
the exciton Hamiltonian (13), we would expect that the two
lowest A and B excitons of the BN single layer give rise to
three FR dark excitons and one FR visible exciton in the bulk
(together with CT excitons at high energies).

The effect of the hopping is, in general, to couple FR and CT
excitons. This coupling produces states with mixed character,
FR+CT and CT+FR, respectively, and modifies their energies.
In hBN, as demonstrated in Appendix A, at =0 one has
(CT}HT\F R%) = 0: excitons with different parities do not
couple, giving rise to |(FR + CT)%) states with well-defined
parity. Moreover, since (CT_ﬁIﬂFRi) # (CTH|T|FR") (see
Appendix A), at ¢ = 0 the hopping induces a finite Davydov
splitting between symmetric and antisymmetric excitons.
Instead, at finite q, the various excitons formally lose their
parity character as FR and CT states with different parities are
generally allowed to mix together.

C. Exciton dispersion: Electron-hole exchange
and interlayer hopping

On the basis of the previous analysis, we can now examine
in detail the properties of the four lowest-energy singlet exci-
tons in hBN [see Fig. 2(a)]. In particular, we can understand
the effect of e-h exchange by comparing singlet and triplet
excitons [see Figs. 2(a) and 2(c)] because in the latter there is
no e-h exchange. Moreover, we can also suppress the interlayer
hopping by artificially increasing the interlayer distance d.
The singlet and triplet exciton band structures obtained with
d = 1.5d,, where d| is the experimental interlayer distance of
hBN, are displayed in Figs. 3(a) and 3(c). With this increased
separation between BN layers, the interlayer hopping is
reduced so much that the &, dispersion of the top-valence and
bottom-conduction single-particle bands becomes negligible
around K (see Appendix B).

At q = 0, the four lowest singlet excitons are grouped in
two pairs [see Fig. 2(a)]. Since in the single layer the A and
B excitons are degenerate at q = 0 [see Fig. 4(a)] and the
e-h exchange terms I(q = 0) and J(q = 0) are zero for all of
them [see Eqgs. (33) and (34)], the energy splitting between the
two pairs must derive from the interlayer hopping (which we
reasonably assume to be the same for A and B excitons). At
q = 0, the hopping conserves the parity character, removing

PHYSICAL REVIEW B 95, 035125 (2017)

the degeneracy between symmetric and antisymmetric states.
Indeed, this energy splitting is present also for the triplet exci-
tons [see Fig. 2(c)], whereas it becomes zero for an increased
interlayer distance [see Fig. 3(a) and 3(c)]. Therefore, we can
conclude that at q = 0, the two excitons of the lowest pair,
which are both dark, are the antisymmetric |(FR + C T)4)
and |(FR + CT)8) states, while the two excitons of the other
pair are the symmetric [(FR + C T)ﬂ) (which is visible) and
[(FR + CT)f) (which is dark). For simplicity, in Figs. 2
and 3 we have labeled AT and B, respectively, the states
I(FR+ CT)%)and |(FR + CT)%).

Having established the character of the excitons at q = 0,
we can now track their dispersion as a function of q. The fact
that one of the excitons of the lowest pair that is dark at q = 0
becomes visible at q # 0 for both the singlet and triplet cases
[see Figs. 2(a) and 2(c)] is another effect of the interlayer
hopping that at q = 0 mixes FR and CT states with different
parities. This means that the parity is no longer a good quantum
number and the eigenstates of the excitonic Hamiltonian are
combinations of [(FR + CT)_) and |[(FR + CT),) states. In
this way, the dark exciton |(FR + CT)?) is switched on by
the effective coupling with the visible exciton [(FR + C T)ﬁ).
Formally, all the excitons lose their defined parity, but here for
simplicity we still call them A* (the two visible states) and
B* (the two dark states).

In order to infer the effect of the interlayer hopping on
the exciton dispersion, we compare the behavior of the triplet
excitons in the bulk [see Fig. 2(c)], for the increased interlayer
distance [see Fig. 3(c)] and in the monolayer [see Fig. 4(b)].
In the monolayer, the A and B triplet excitons are almost
degenerate: there is a tiny separation due to the direct e-h
attraction W [35]. The same holds for d = 1.5d, where there
is no effect of the interlayer hopping. In the bulk, instead,
the hopping acts differently for the various excitons, giving
rise to a finite dispersion that removes the degeneracies. The
energy-level ordering remains the same for all q. From the
bottom to the top, one has the following states: B~, A~, BY,
and A*,

The difference between the dispersions of the singlet and
the triplet excitons in Figs. 2(a) and 2(c) illustrates the role
of the e-h exchange interaction in the bulk as a function of
q. While the B* excitons keep the same dispersion in the
two channels [as the e-h exchange I(q) = J(q) =0 for B
excitons], for the AT excitons we observe that the effect of the
e-h exchange is larger for small q than for large q, where the
dispersion of singlet and triplet excitons tends to be the same,
being determined by the single-particle band dispersion only.

At increased interlayer distance d = 1.5d,, in contrast
to the bulk, both for the singlet and the triplet channels
also at finite q there remain one visible and three dark
excitons, as in the limit q =0 [see Figs. 3(a) and 3(c)].
This confirms that by suppressing the interlayer hopping, the
antisymmetric | F R?) exciton cannot couple with excitons of
different parity and continues to be dark. All the excitons keep
the same parity as at q = 0. The two dark |(FR + CT)5)
excitons remain degenerate, since the e-h interaction V has
no effect on them. They are located at lower energies than the
[(FR + CT)?}) excitons as V is repulsive. In particular, the
dark [(FR + CT)") shows a larger dispersion than the visible
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FIG. 5. Dispersion of the visible A" exciton for different inter-

layer distances d (dy is the experimental value). For each case, the

exciton energies are defined with respect to the corresponding ¢ = 0
value.

|(FR + CT)%), implying that the effect of / — J is larger than
I + J.In general, the energy-level ordering is, from the bottom
to the top, |(FR + CT)%) (degenerate), |(FR + CT)?), and
[(FR + CT)*).

By increasing d, the screening of the e-h attraction W
is reduced and, as a consequence, the binding energies of
all the excitons increase (however, their absolute positions
remain almost constant [29]). In order to directly compare, for
increasing interlayer distances d, the dispersion of the visible
A exciton as a function of g = 27/, in Fig. 5 we have hence
aligned, for the different separations d, the exciton energies to
their ¢ = 0 value. By increasing the interlayer distance, the
dispersion becomes steeper at small ¢ and tends to be the
same at large g. As a result of the competition between the e-h
exchange interaction and the single-particle band dispersion, in
the exciton dispersions we can always distinguish two regimes:
(i) at large g (i.e., for A < d) the sum over G, in Eq. (33) can
be approximated with an integral. So 74 and J*4 become

_ 2
(q) ~7”ﬂ<q)|sA(q)|2, (37
JA(q) ~T*(q)e™, (38)
with
2
Blq) = ' / dzx (e (2] - (39)

Under these conditions, as shown in Ref. [35], I4 reaches
a constant value at large g. Moreover, since A < d, the
exponential factor in Eq. (38) goes to zero and J* becomes
negligible. As a consequence, in this regime the dispersion of
the symmetric and antisymmetric excitons becomes the same
and, at large g, is set by the hopping only. (ii) At small g
(i.e., for A > d), the sums over G, in Egs. (33) and (34) is
independent of ¢ and S*(q) = q - u*: I and J are quadratic
in g. Therefore, in this regime, the exciton dispersion is
also determined by the e-h exchange \A/ in addition to the
hopping contribution that is always present. At small ¢, the
e-h exchange interaction becomes more and more important
as d increases, until in the 2D limit it becomes the dominant
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FIG. 6. Energy difference between the plasmon and the visible
AT exciton as a function of momentum q for different interlayer
distances.

contribution [compare the dispersion of the singlet in Fig. 4(a)
and triplet in Fig 4(b)]. Indeed, in the 2D limit, when Eqgs. (37)
and (38) are exact for every ¢, the e-h exchange contribution
becomes linear in g, as explained in detail in Ref. [35].

D. Plasmon dispersion: Long-range Coulomb interaction

In order to describe the plasmon properties, in the excitonic
Hamiltonian (13) one has to replace the short-range v with the
full Coulomb interaction v. This implies that in the long-range
G| = 0 contribution to the e-h exchange (22), the G, =0
component also has to be included. The excitation-transfer
interactions [with 7 and J defined in Eqs. (33) and (34)] thus
become

2
+ (@), (40)

2
+ J(q). 41)

4
1(@) =IS@I’ =
q

/dZX:(Z)Xv(Z)

4
J(Q) =|S(q)|2q—f f dzx (2 10(2)

The long-range contribution of the Coulomb interaction is
responsible for the difference between the excitation spectra
of L and L, which are displayed in Figs. 2(a) and 2(b),
respectively. By comparing the poles of L and L, we note
that the long-range term of v has no effect on the lowest
excitons [(FR + CT)8), since I = J = 0 for them, and on the
antisymmetric exciton [(FR 4+ CT)%), as it exactly cancels in
the difference I — J [see Egs. (40) and (41)]. The repulsive
long-range interaction is felt only by the symmetric state
[((FR+C T)j‘_) that is the plasmon excitation in L. As a
consequence, its energy at q = 0 is upshifted with respect
to the corresponding At pole of L by ~ (87/¢*)S(q =
0) = 87| - m|>. At finite q, the plasmon energy displays a
quadratic dependence on q. Without interlayer hopping (i.e.,
for interlayer spacing d > 1.5dy), the plasmon dispersion is
hence similar to that of the triplet exciton energy. This is
a consequence of the cancellation at finite q occurring to a
large extent between the first and second terms in Eqs. (40)
and (41). While the first terms account for the difference
between plasmon and singlet exciton (see Fig. 6), the second
terms are responsible for the difference between singlet and
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FIG. 7. Energy difference between the singlet and triplet A™
excitons as a function of momentum q for different interlayer
distances.

triplet excitons (see Fig. 7). As a matter of fact, by comparing
Figs. 6 and 7, we notice that for each interlayer separation,
they have an opposite behavior as a function of ¢.

At large g (i.e., for A < d), the long-range contribution
becomes negligible. As shown in Fig. 6, for increasing d
the plasmon energy approaches the visible-exciton energy for
smaller and smaller g: the loss function —Imel\jll becomes
equal to Imey; when gd > 1. In the 2D limit (i.e., d — 00),
as for any completely isolated system [44,45], —Ime{,ll and
Imeyr mathematically coincide for all q.

V. SUMMARY

From the solution of the ab initio Bethe-Salpeter equation
(BSE) as a function of momentum q, we have obtained the
eigenvalue spectrum of the excitonic Hamiltonian for the
electronic excitations of hexagonal boron nitride and we have
established the connection with measured optical absorption
and energy-loss spectra. We have discussed the properties of
both visible and dark excitons on the basis of a simplified
model that we have derived from the full ab initio BSE and
by analogy with the case of molecular solids. This model
has allowed us to provide an efficient description of the
excitations in the bulk crystal starting from the knowledge of
the excitons in the single layer. In this way, we have obtained
a general picture of the exciton physics in layered materials.
Our analysis uncovers the interplay between the electronic
band dispersion and the electron-hole exchange interaction
in setting the exciton properties in this important class of
materials. Holding a general validity, it can be similarly applied
to other van der Waals systems.
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APPENDIX A: CHARGE-TRANSFER AND
FRENKEL EXCITONS IN hBN

In our model, we start from the assumption that the effective
single-particle Hamiltonian that defines the electronic band
structure of a layered system can be written as the sum of
a single-layer Hamiltonian H, (p,z) and an effective out-of-
plane potential 8U(z), which describes the crystal field along
the z axis. Under these conditions, the band index »n and the
in-plane wave vector k that define the eigenstates of H; (p,z)
are also good quantum numbers for the bulk wave function
Ynk,k, (k; being the corresponding out-of-plane wave-vector
component in the 3D Brillouin zone). Hence, ¥,k , can be
expanded in terms of qb,’;k(p) X:(z —R) (here, i denotes the
layer in the unit cell and R the lattice vector along z).

For a system characterized by two layers per unit cell,
qbﬁlk(p) X,’;(z —R) is a set of 2N degenerate states (N is the
number of unit cells) corresponding to the eigenvalues E, (k)
of Hy(p,z) and represents a complete basis set for the bulk
wave function. Moreover, in the case of hBN with the AB
stacking, the two layers in the unit cell are rotated one with
respect to the other by an angle § = 60° and, therefore, the
corresponding 2D first Brillouin zones are also rotated by the
angle 8. For a given wave vector K, the in-plane components
of the electronic wave functions associated to two inequivalent
layers are related by

Dm(0) = rpi(P).

where Bk is the wave vector obtained rotating k by an angle
B. Similarly for the corresponding eigenvalues, one has

EX(k) = E}(BK).

(AD)

(A2)

Choosing the wave vector k in the first Brillouin zone of the
reference layer i = 1, the single-layer basis set is split in two
subsets of N wave functions: ¢,1lk(p) an (z — R) with energy
E,ll(k) and ¢5ﬂ,,k(p))(3(z — R) with energy E}l(ﬁflk). The
ensemble of the two subsets represents a complete basis set
for the representation of the bulk wave functions. In a more
compact notation, the single-layer basis for both excitonic and
single-particle Hamiltonians is given by the wave functions
¢ o (Pxi(z —R) with Kk =k for i =1 and k@ = 7'k
fori = 2.

The single-particle Hamiltonian (written in second quanti-
zation) hence takes the form

H= Z Z Z EgiSj(k’k/)arTsziank’Sj’
—

nkk’ RS

(A3)

where E,l,{ i8J (k,K') are the matrix elements of H;(p,z)+

8U(z) and are given by the expression
EXSI(kK) = E\(K)Sri sk + s, (A4)

with tl'g‘;‘] denoting the effective interlayer hopping,

tlrg(sk/ Z/dquffk(p)qﬁik,(p)/dzx,’;*(z—R)SU(Z)X,{(Z =95).
(AS)
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Defining
R s = f dzy, (2 =RBSU@)x(z =S),  (A6)
we have tl'{lfskl tRisi Ok fori = j and tl';:(;] 1Ri.s ;OB 1k K

fori # j. We note that in the present case, the hopping tl'g‘;‘] is
not diagonal in k and, in this way, the single-particle energies
EXSI(k,K') in (A3) acquire a dependence on both k and K'.

We consider a two-band system (n = c¢,v) and we take
into account only the interlayer hopping between first-nearest-
neighbor layers (i # j). In this case, the hopping operators
acting on electrons and holes are given by the following
expressions:

T. = Z tc[aIleaCﬂflkafz + azﬁqkmackm], (A7)
Rk

fv = Z fv[bj_kR] bcﬂ*IkR—‘rz + blﬁ*]kRZbCle]’ (A8)
Rk

where T is the smallest lattice vector (0,0,1) and <@ =
tﬁl,R_tz = Igo.r1- The effect of the hopping is to induce
a dispersion along the z axis in reciprocal space and a
splitting of the single-layer bands without modifying their
in-plane dispersion. This is a consequence of the decoupling
approximation between in-plane and out-of-plane coordinates.
Itis justified by the fact that in hBN, the excitons originate from
a limited area in the Brillouin zone, so that we can assume
that the k. dispersion in the single-particle band structure is
constant for all of the relevant k points.

First of all, we neglect the hopping terms in such a way
that the charge-transfer and Frenkel excitons are decoupled
[see Eq. (13)]. Here we analyze the interlayer charge-transfer
exciton state, where the electron and the hole are localized
on different layers. The charge-transfer wave function for the
exciton state A is

W (@) = J—Z| YR @), (A9)

with

Mij i, t

|\IIR,I{+1 (q)> = Z Auc,]kr(q)acl-kumibik(/>+q(;’>R+T‘,~|0>v (A10)
k

where k) = k for i = 1 and k" = B~ 'k for i = 2 (the same

applies for the wave vector q), while the coefficients Aﬁ‘cf'{(’r(q)

satisfy the excitonic eigenvalue equation,

[Eé(k(i)) E/(k(]) + q(])) Z‘C’ka(q) Z WI]{{I:/RI}I vk

+ q(j)ck(i)vk/(j) + q(_l)ck (l))Af‘):j(v,T (q)
= E}; (@A (@)

Here, i identifies the index of the layer where the electron of the
CT e-h pair is located, while j the layer of the corresponding
hole; T defines the lattice-vector separation along z of the two
unit cells to which the layers i and j belong. In the following,
we will focus on the first-nearest-neighbor CT states for which
i # jand T = (0,0,0) [for the other first-nearest-neighbor CT
state, T would be (0,0, — 1)]. In this case, we have two possible

(A11)

PHYSICAL REVIEW B 95, 035125 (2017)

configurations for the e-h pair: i = 1 and j =2 ori =2 and
Jj = 1. They are described, respectively, by the equations

[E.(k) — E,(B7"'k+ B~ @A} (@)
_ Z W@B 'k + B 'qckvB 'K + B qck)AL L (@)
k/
= EL (@A K (@), (A12)
[E(B~'K) — Eu(k + @A, (@)
— ) Wk + qep koK + qcB7'K)AL (q)
k/
= E5 (@A} (@), (A13)

where we have dropped the indices i, since the functional
form of both the single-particle energies E, and E. and the
interlayer effective electron-hole interaction W is invariant
under the exchange of the layer index. By applying the rotation
B to the k space, Eq. (A12) becomes

[E(BK) — E,(k + @)]A% % (Ba)

_ Z W(vk + qcBkok’ + qcBK)AL S (Bg)

= Eﬁ(ﬁ(l)Avc sx(BQ). (Al4)
Comparing Eq. (A14) and Eq. (A13), we see that being
E.(Bk) = E (k) (thelayer is invariant under rotation of +60°),
the Hamiltonian in Eq. (A14) is the same as in Eq. (A13).
This results in the following property for the energies E* and
coefficients A* of the CT excitonic state:

E3(q) = E}(Bg), (A15)

AL @ = A5 Ba). (A16)

We now analyze the intralayer Frenkel exciton. In this case,
the excitonic state is

|W(q)) = (@] Yi (@), (A17)
e

where
|k (@) = ZAUCk<q>acm,bvkm+qu,|0>- (A18)

The electron and the hole of the excitonic pair in this case both
belong to the same layer i. The coefficients A;\;_fk(q) satisfy
the following excitonic eigenvalue equation:

[ELk?) - EL{k® + 4] AL (@

+ Z vllilzlgz(vk(i) +q(i)ck(i)vk/(i) +q(i)ck/(i))

ll:llRll{I( k(l)—i—q(l)ck(’)vk(l)—|—q(l)ck(l))] o kz((I)

= E} (@A} (@) (A19)
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Writing explicitly the eigenvalue equations for the i = 1 and i = 2 configurations, we have, respectively,
[Ec(k) — Ey(k + @A} (@) + D _[0(vk + qckvk'+qck) — W(vk + qckvk’ + qck)AL (@) = EF@ALL (@, (A20)
o
[E(B'K) — E,(B”'k+ B~ QIA} (@ + D _[0wB 'k + B~ 'qep kv 'K + B qcp'K)
o

—WB'k+ B qcB kv 'K + B qeBTIKNIAL (@) = EX(QAL (@) (A21)

Following what we have done for the CT exciton, we apply a rotation 8 to the whole k space in Eq. (A21),
[Ec(k) — Eu(k+ QA2 (Bq) + Y _[3(k + qckvk’ + qck’) — W(vk + qekvk’ + qck)]A} 5 (BQ) = E5(Q A} 5, (Bg).
k/

(A22)

Comparing Eq. (A22) with (A20), we find that in analogy with the CT state, for the FR exciton, the following properties hold:

E}(Bq) = E}(q), (A23)
ALl (BQ) = A} (q). (A24)

Finally, we discuss the effect of the hopping, which enters the excitonic Hamiltonian through the operator 7' = T, — T,
coupling intralayer Frenkel and interlayer charge-transfer states [see Eq. (13)]. In particular, this coupling is given by the matrix
elements of the hopping operator 7' between |CT*) and | F R*) states. We have the following possibilities:

2 tc i * * ] tv I * *
(CTHTIFRY) = | 30 AL@ATL @ + D0 A@AL @ | = 5 | D0 ALW@ALL @ + Y AL (@OALL (@
L k k L k k

(AES)

2 i * * tv I * *
(CTHTIFRY) = = | DA @AL @ = ) AU@AL (@ |+ 5 | D AU@AL T @ = ) AL @A (@
k k L k k

) (Aié)

2 t * * ] tv * * ]
(CTUTIFRY) = 2| 3 AL@A @ = 2 AL @A @ | — 5 | DAL @A @ = )AL @AL @
k k . L k k

(A£7)

. t¢ ¥ " 1’ " *
(CTHTIFRY) = = [Z AN @A @+ ) A @AY (q)} +5 [Z AL @AL @+ )AL @A (q)} :
k k k k
(A28)

Using the properties of the excitonic coefficients A* from Eq. (A16) for the CT state and from Eq. (A24) for the FR state, the
previous relations become

o t¢ % "
(CTHTIFRY) = 5 [Z AL @A @+ Y Aﬁ;.}(mk(ﬁq)Aﬁf;k(ﬂq)}

k k

Y . N
- [Z Al BOAT BB + D AL (@A (q)], (A29)
k k
. 1€
(CTHTIFRY) = = [Z A DA @ =) Aﬁ;?ﬁkwqmﬁféi(ﬁq)}
k

k
v " *
+5 [Z AN @A @ = Aﬁ;},,k(ﬂqmﬁ;fék(ﬁq)} : (A30)
k k
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FIG. 8. GW electronic band structure for hBN with 1.0d, and for 1.5d.
N tC * *
(CTHTIFRY) = [Z AL @ALR @ =) Aﬁ;}ﬁk(ﬂq)Aﬁfékwq)}
k k
-3 [Z AR @A @ =) Aﬁ;?,gkwq)Aﬁ;,‘ﬁ’;(ﬁq)}, (A31)
k
(CTHT|FR") = [ > AL @A (@) + Z Al ﬁk(ﬂqmiféi(ﬁq)]
k
t " "
+5 [ AL @A (@) + Z Ay, ,,k(ﬂq)Avc'ﬁk(ﬂq)]- (A32)

We can thus conclude that at q = 0, the first and second term
for each row of Eqgs. (A30) and (A31) cancel each other so
that (CT*|T|FR%) = (CT*|T|FR") = 0. This means that at
q = 0, the hopping couples only Frenkel and charge-transfer
states of the same parity. As a consequence, in the presence of
the hopping, the parity of the excitonic states also remains
a good quantum number. Instead, at finite q, there is no
longer exact cancellation and a mixing between symmetric

(

and antisymmetric states occurs. The parity is no longer a
good quantum number.

APPENDIX B: SINGLE-PARTICLE BAND STRUCTURE

Figure 8 shows the single-particle band structures calcu-
lated within the GWA for bulk hBN (interlayer distance dp)
and for increased interlayer distance d = 1.5d,.

[1] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science
of Fullerenes and Carbon Nanotubes: Their Properties and
Applications (Academic, San Diego, 1996) .

[2] M. Dresselhaus, R. Smalley, G. Dresselhaus, and P. Avouris,
Carbon Nanotubes: Synthesis, Structure, Properties, and
Applications, Topics in Applied Physics (Springer, Berlin,
2003).

[3] P. Moriarty, Rep. Prog. Phys. 64, 297 (2001).

[4] Semiconductor and Metal Nanocrystals: Synthesis and Elec-
tronic and Optical Properties, edited by V. I. Klimov (CRC,
Boca Raton, FL, 2003).

[5]1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad.
Sci. USA 102, 10451 (2005).

[6] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R.
Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E.

Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson,
R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M.
Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898
(2013).

[7]1 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das,
D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G.
Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter,
H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem,
J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson,
ACS Nano 9, 11509 (2015).

[8] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[9] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro
Neto, Science 353, aac9439 (2016).

[10] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and
M. S. Strano, Nat. Nano 7, 699 (2012).

035125-13


https://doi.org/10.1088/0034-4885/64/3/201
https://doi.org/10.1088/0034-4885/64/3/201
https://doi.org/10.1088/0034-4885/64/3/201
https://doi.org/10.1088/0034-4885/64/3/201
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/acsnano.5b05556
https://doi.org/10.1021/acsnano.5b05556
https://doi.org/10.1021/acsnano.5b05556
https://doi.org/10.1021/acsnano.5b05556
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193

JAAKKO KOSKELOQ et al.

[11] F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam,
Nat. Photon. 8, 899 (2014).

[12] P.Cudazzo, 1. V. Tokatly, and A. Rubio, Phys. Rev. B 84, 085406
(2011).

[13] W. Hanke and L. J. Sham, Phys. Rev. Lett. 43, 387 (1979).

[14] G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).

[15] L. Hedin, Phys. Rev. 139, A796 (1965).

[16] R. M. Martin, L. Reining, and D. M. Ceperley, Interacting
Electrons: Theory and Computational Approaches (Cambridge
University Press, Cambridge, 2016).

[17] G. Onida, L. Reining, R. W. Godby, R. Del Sole, and W.
Andreoni, Phys. Rev. Lett. 75, 818 (1995).

[18] S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev.
Lett. 80, 4510 (1998).

[19] L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett.
80, 4514 (1998).

[20] M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998).

[21] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).

[22] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601
(2002).

[23] P. Cudazzo, M. Gatti, and A. Rubio, Phys. Rev. B 86, 195307
(2012).

[24] P. Cudazzo, M. Gatti, A. Rubio, and F. Sottile, Phys. Rev. B 88,
195152 (2013).

[25] P.Cudazzo, F. Sottile, A. Rubio, and M. Gatti, J. Phys.: Condens.
Matter 27, 113204 (2015).

[26] X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen,
Phys. Rev. B 51, 6868 (1995).

[27] G. Cappellini, G. Satta, M. Palummo, and G. Onida,
Phys. Rev. B 64, 035104 (2001).

[28] B. Arnaud, S. Lebegue, P. Rabiller, and M. Alouani, Phys. Rev.
Lett. 96, 026402 (2006).

[29] L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett. 96, 126104
(2006).

[30] B. Arnaud, S. Lebegue, P. Rabiller, and M. Alouani, Phys. Rev.
Lett. 100, 189702 (2008).

[31] L. Wirtz, A. Marini, M. Griining, C. Attaccalite, G. Kresse, and
A. Rubio, Phys. Rev. Lett. 100, 189701 (2008).

[32] A. Marini, Phys. Rev. Lett. 101, 106405 (2008).

[33] S. Galambosi, L. Wirtz, J. A. Soininen, J. Serrano, A. Marini,
K. Watanabe, T. Taniguchi, S. Huotari, A. Rubio, and K.
Hamalainen, Phys. Rev. B 83, 081413 (2011).

[34] G. Fugallo, M. Aramini, J. Koskelo, K. Watanabe, T. Taniguchi,
M. Hakala, S. Huotari, M. Gatti, and F. Sottile, Phys. Rev. B 92,
165122 (2015).

[35] P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile, and
M. Gatti, Phys. Rev. Lett. 116, 066803 (2016).

[36] H. Henck et al. (unpublished).

[37] M. Gatti and F. Sottile, Phys. Rev. B 88, 155113 (2013).

[38] A. G. Marinopoulos, L. Reining, V. Olevano, A. Rubio, T.
Pichler, X. Liu, M. Knupfer, and J. Fink, Phys. Rev. Lett. 89,
076402 (2002).

PHYSICAL REVIEW B 95, 035125 (2017)

[39] A. G. Marinopoulos, L. Reining, A. Rubio, and V. Olevano,
Phys. Rev. B 69, 245419 (2004).

[40] R. Hambach, Ph.D. thesis, Ecole Polytechnique, Palaiseau,
France, 2010, http://etst.polytechnique.fr/system/files/PhD_
Hambach_2010.pdf.

[41] P. Wachsmuth, R. Hambach, G. Benner, and U. Kaiser, Phys.
Rev. B 90, 235434 (2014).

[42] K. Andersen, S. Latini, and K. S. Thygesen, Nano Lett. 15,4616
(2015).

[43] For an extended introduction to the theoretical background, see,
e.g., Refs. [16,22].

[44] F. Sottile, F. Bruneval, A. G. Marinopoulos, L. K. Dash, S. Botti,
V. Olevano, N. Vast, A. Rubio, and L. Reining, Int. J. Quantum
Chem. 102, 684 (2005).

[45] F. Sottile, Ph.D. thesis, Ecole Polytechnique, Palaiseau, France,
2003, http://etsf.polytechnique.fr/system/files/Tesi_dot.pdf.

[46] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[47] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991).

[48] V. Olevano and L. Reining, Phys. Rev. Lett. 86, 5962 (2001).

[49] X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y.
Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami,
P. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L.
Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan,
Z. Kristallogr. 220, 558 (2005).

[50] See http://www.bethe-salpeter.org (unpublished).

[51] In hBN, the fundamental band gap is indirect [28] and in GW it
is 5.78 eV.

[52] E. Doni and G. P. Parravicini, Il Nuovo Cimento B 64, 117
(1969).

[53] Note that for degenerate eigenstates, the numerical diagonaliza-
tion of the excitonic Hamiltonian, in principle, can give as a
result any linear combination of them.

[54] The effect of stacking order in hBN has been investigated within
the BSE by R. Bourrellier, M. Amato, L. H. Galvao Tizei,
C. Giorgetti, A. Gloter, M. I. Heggie, K. March, O. Stéphan,
L. Reining, M. Kociak, and A. Zobelli, ACS Photon. 1, 857
(2014).

[55] A. Molina-Sanchez, D. Sangalli, K. Hummer, A. Marini, and L.
Wirtz, Phys. Rev. B 88, 045412 (2013).

[56] Charge-transfer excitons in a transition-metal dichalcogenide
heterobilayer have been recently investigated using a Wannier
model, e.g., in Refs. [59,60].

[57] A.Davydov, Theory of Molecular Excitons (Plenum, New York,
1971).

[58] T. Galvani, F. Paleari, H. Miranda, A. Molina-Sanchez, L. Wirtz,
S. Latil, H. Amara, and F. Ducastelle, Phys. Rev. B 94, 125303
(2016).

[59] H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Phys. Rev. Lett.
115, 187002 (2015).

[60] P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G.
Mandrus, W. Yao, and X. Xu, Science 351, 688 (2016).

035125-14


https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevLett.43.387
https://doi.org/10.1103/PhysRevLett.43.387
https://doi.org/10.1103/PhysRevLett.43.387
https://doi.org/10.1103/PhysRevLett.43.387
https://doi.org/10.1007/BF02725962
https://doi.org/10.1007/BF02725962
https://doi.org/10.1007/BF02725962
https://doi.org/10.1007/BF02725962
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRevLett.75.818
https://doi.org/10.1103/PhysRevLett.75.818
https://doi.org/10.1103/PhysRevLett.75.818
https://doi.org/10.1103/PhysRevLett.75.818
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevB.86.195307
https://doi.org/10.1103/PhysRevB.86.195307
https://doi.org/10.1103/PhysRevB.86.195307
https://doi.org/10.1103/PhysRevB.86.195307
https://doi.org/10.1103/PhysRevB.88.195152
https://doi.org/10.1103/PhysRevB.88.195152
https://doi.org/10.1103/PhysRevB.88.195152
https://doi.org/10.1103/PhysRevB.88.195152
https://doi.org/10.1088/0953-8984/27/11/113204
https://doi.org/10.1088/0953-8984/27/11/113204
https://doi.org/10.1088/0953-8984/27/11/113204
https://doi.org/10.1088/0953-8984/27/11/113204
https://doi.org/10.1103/PhysRevB.51.6868
https://doi.org/10.1103/PhysRevB.51.6868
https://doi.org/10.1103/PhysRevB.51.6868
https://doi.org/10.1103/PhysRevB.51.6868
https://doi.org/10.1103/PhysRevB.64.035104
https://doi.org/10.1103/PhysRevB.64.035104
https://doi.org/10.1103/PhysRevB.64.035104
https://doi.org/10.1103/PhysRevB.64.035104
https://doi.org/10.1103/PhysRevLett.96.026402
https://doi.org/10.1103/PhysRevLett.96.026402
https://doi.org/10.1103/PhysRevLett.96.026402
https://doi.org/10.1103/PhysRevLett.96.026402
https://doi.org/10.1103/PhysRevLett.96.126104
https://doi.org/10.1103/PhysRevLett.96.126104
https://doi.org/10.1103/PhysRevLett.96.126104
https://doi.org/10.1103/PhysRevLett.96.126104
https://doi.org/10.1103/PhysRevLett.100.189702
https://doi.org/10.1103/PhysRevLett.100.189702
https://doi.org/10.1103/PhysRevLett.100.189702
https://doi.org/10.1103/PhysRevLett.100.189702
https://doi.org/10.1103/PhysRevLett.100.189701
https://doi.org/10.1103/PhysRevLett.100.189701
https://doi.org/10.1103/PhysRevLett.100.189701
https://doi.org/10.1103/PhysRevLett.100.189701
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevLett.101.106405
https://doi.org/10.1103/PhysRevB.83.081413
https://doi.org/10.1103/PhysRevB.83.081413
https://doi.org/10.1103/PhysRevB.83.081413
https://doi.org/10.1103/PhysRevB.83.081413
https://doi.org/10.1103/PhysRevB.92.165122
https://doi.org/10.1103/PhysRevB.92.165122
https://doi.org/10.1103/PhysRevB.92.165122
https://doi.org/10.1103/PhysRevB.92.165122
https://doi.org/10.1103/PhysRevLett.116.066803
https://doi.org/10.1103/PhysRevLett.116.066803
https://doi.org/10.1103/PhysRevLett.116.066803
https://doi.org/10.1103/PhysRevLett.116.066803
https://doi.org/10.1103/PhysRevB.88.155113
https://doi.org/10.1103/PhysRevB.88.155113
https://doi.org/10.1103/PhysRevB.88.155113
https://doi.org/10.1103/PhysRevB.88.155113
https://doi.org/10.1103/PhysRevLett.89.076402
https://doi.org/10.1103/PhysRevLett.89.076402
https://doi.org/10.1103/PhysRevLett.89.076402
https://doi.org/10.1103/PhysRevLett.89.076402
https://doi.org/10.1103/PhysRevB.69.245419
https://doi.org/10.1103/PhysRevB.69.245419
https://doi.org/10.1103/PhysRevB.69.245419
https://doi.org/10.1103/PhysRevB.69.245419
http://etsf.polytechnique.fr/system/files/PhD_Hambach_2010.pdf
https://doi.org/10.1103/PhysRevB.90.235434
https://doi.org/10.1103/PhysRevB.90.235434
https://doi.org/10.1103/PhysRevB.90.235434
https://doi.org/10.1103/PhysRevB.90.235434
https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1002/qua.20486
https://doi.org/10.1002/qua.20486
https://doi.org/10.1002/qua.20486
https://doi.org/10.1002/qua.20486
http://etsf.polytechnique.fr/system/files/Tesi_dot.pdf
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevLett.86.5962
https://doi.org/10.1103/PhysRevLett.86.5962
https://doi.org/10.1103/PhysRevLett.86.5962
https://doi.org/10.1103/PhysRevLett.86.5962
https://doi.org/10.1524/zkri.220.5.558.65066
https://doi.org/10.1524/zkri.220.5.558.65066
https://doi.org/10.1524/zkri.220.5.558.65066
https://doi.org/10.1524/zkri.220.5.558.65066
http://www.bethe-salpeter.org
https://doi.org/10.1007/BF02710286
https://doi.org/10.1007/BF02710286
https://doi.org/10.1007/BF02710286
https://doi.org/10.1007/BF02710286
https://doi.org/10.1021/ph500141j
https://doi.org/10.1021/ph500141j
https://doi.org/10.1021/ph500141j
https://doi.org/10.1021/ph500141j
https://doi.org/10.1103/PhysRevB.88.045412
https://doi.org/10.1103/PhysRevB.88.045412
https://doi.org/10.1103/PhysRevB.88.045412
https://doi.org/10.1103/PhysRevB.88.045412
https://doi.org/10.1103/PhysRevB.94.125303
https://doi.org/10.1103/PhysRevB.94.125303
https://doi.org/10.1103/PhysRevB.94.125303
https://doi.org/10.1103/PhysRevB.94.125303
https://doi.org/10.1103/PhysRevLett.115.187002
https://doi.org/10.1103/PhysRevLett.115.187002
https://doi.org/10.1103/PhysRevLett.115.187002
https://doi.org/10.1103/PhysRevLett.115.187002
https://doi.org/10.1126/science.aac7820
https://doi.org/10.1126/science.aac7820
https://doi.org/10.1126/science.aac7820
https://doi.org/10.1126/science.aac7820



