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Understanding and controlling the way excitons propagate in solids is a key for tailoring materials
with improved optoelectronic properties. A fundamental step in this direction is the determination of
the exciton energy-momentum dispersion. Here, thanks to the solution of the parameter-free Bethe-
Salpeter equation (BSE), we draw and explain the exciton energy-momentum map of hexagonal
boron nitride (h-BN) in the first three Brillouin zones. We show that h-BN displays strong excitonic
effects not only in the optical spectra at vanishing momentum q, as previously reported, but also at
large q. We validate our theoretical predictions by assessing the calculated exciton map by means
of an inelastic x-ray scattering (IXS) experiment. Moreover, we solve the discrepancies between
previous experimental data and calculations, proving then that the BSE is highly accurate through
the whole momentum range. Therefore, these results put forward the combination BSE and IXS as
the tool of choice for addressing the exciton dynamics in complex materials.

I. INTRODUCTION

The response of materials to electromagnetic fields is
determined by electronic excitations that are strongly in-
fluenced by electron-hole (e-h) interactions. In particu-
lar, the e-h attraction leads to the formation of excitons,
which are a fundamental aspect in the functionality of
many optoelectronic devices, as excitons can propagate
in materials carrying excitation energy that can be trans-
formed and exploited by different means. Excitons can
be identified in electronic spectra as sharp peaks within
the band gap of insulators*? or, beyond the band gap,
as spectral intensity enhancement towards lower energies
with respect to a non-interacting theoretical picture?. A
reliable description and analysis of those two-particle cor-
relation effects is therefore the key to understand mate-
rials’ dielectric properties, guide the realisation of new
experiments and foster the development of new techno-
logical applications.

Nowadays, the ab initio solution of Bethe-Salpeter
equation (BSE)*'? represents the state-of-the-art method
to obtain spectra in very good agreement with experi-
ments in a large variety of materials®. These theoret-
ical achievements have mainly focused on optical ab-
sorption and electron energy-loss spectroscopy (EELS)
spectra for vanishing momentum transfer q — 0. How-
ever, judging whether a theoretical approach captures
fully the physics of the electron dynamics requires strin-
gent tests that are offered by the measurement of the
full dynamic range of the relevant variables (momentum
and energy). This assessment is now possible thanks
to the spectacular progress of inelastic x-ray scattering
(IXS) experiments, both in the resonant (RIXS) and non-
resonant (NRIXS) conditions. They allow one to probe
electronic excitations at finite momenta (q)? with a re-

solving power that has improved by orders of magnitude
in the last two decades!®13, The challenge for theory
is hence the first-principles description of the full elec-
tron dynamicstV, which is well beyond the sole simulation
of optical absorption spectra. The investigation of the
energy-momentum dispersion of elementary excitations
(excitons, plasmons, etc.) provides fundamental infor-
mation on the way they propagate in materials. More-
over, spectroscopic features measured at larger q allow
for the study of excitations that in real space occur on
shorter interatomic scales and/or are not visible in optics
because they are dipole forbidden (see e.g. Refs14HY).

Recently, some of us have shown that these ambitious
goals are within reach, thanks to the extension of the
BSE to describe e-h excitations carrying a finite mo-
mentum 7. In the case of a prototypical wide-gap in-
sulator such as lithium fluoride, the dynamic structure
factor S(q,w) was obtained in excellent agreement with
accurate NRIXS datal®. However, in contrast to LiF,
in hexagonal boron nitride (h-BN), a layered material
that is the insulating counterpart of graphite, a recent
comparison!? between BSE calculations and NRIXS data
revealed a mismatch at high momentum transfers. The
experiment displays a sharp peak at ~ 7 eV whose ori-
gin has still to be understood, as pointed out in Ref. 19l
Moreover, despite the accurate BSE results in LiFM, a
recent study based on a simplified exciton kinetic ker-
nel model?? raised doubts about the capability of the ab
initio BSE in general to address the issue of the exciton
band structure. Therefore new questions arise: Is LiF
only a fortunate case for BSE? For spectra at finite q
should we hence go beyond the standard BSE implemen-
tation that has been successfully applied for optics? Or,
on the contrary, is the sharp peak measured in h-BN an
artifact of the NRIXS experiment? Finally, is the BSE



the appropriate method in general to study the exciton
band structure of complex materials?

In the present work, we demonstrate that it is possi-
ble to reconcile theory and experiment if the microscopic
details of the screened Coulomb e-h interaction are ex-
plicitly taken into account in the calculations. We show
that in h-BN excitonic effects not only produce a redshift
of the peaks, as observed in Ref. [19) but also lead to im-
portant spectral shape redistributions. We reproduce all
the details of the NRIXS spectra measured in Ref. [19]
including the 7 eV peak at large q, and we consistently
explain the appearance of excitonic features at various q
as a multiple manifestation of the same large joint den-
sity of states (JDOS). Moreover, by calculating the entire
map of S(q,w) in the first 3 Brillouin zones of h-BN, we
identify new “hot spots” in dynamics, where the proba-
bility for creating an exciton is the largest. These predic-
tions are fully confirmed by the new NRIXS experiment
that we have performed at the beamline ID20 of the Euro-
pean Synchrotron Radiation Facility (ESRF) in Grenoble
(France). Therefore these new results demonstrate that
the combination of first-principles BSE calculations and
accurate NRIXS experiments is a very powerful tool to
explore and understand the exciton dynamics.

II. THEORY

The spectrum obtained in an NRIXS experiment is
proportional to the dynamic structure factor:

q2

S(a,w) = gy Imey/ (a.0), 1)

where n is the average electron density. The inverse of

the macroscopic dielectric function el\_/[l can be expressed
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where in the Tamm-Dancoff approximation (TDA 2! the
sum is over valence-conduction (v-c¢) transitions ¢, the
oscillator strengths are p'(q) = (Pyk—q, |6 "¥|Pek), k
and q, are in the first Brillouin zone, and q = q, + G
is the measured momentum transfer with a reciprocal-
lattice vector G. The BSE can be cast into an effective
two-particle Schrodinger equation®™: H..(q)Ax(q) =
Ey(q)Ax(q), where Ay(q) and Eyx(q) are the exciton
eigenvectors and eigenvalues, respectively. The exciton
hamiltonian Hexe: (¢|Hexc|t’) = Eidpy + (tlve — W)
contains the quasiparticle e-h transition energies F; cal-
culated in the GW approximation??, and the matrix el-
ements in the transition basis of the bare Coulomb in-
teraction v, and the statically screened Coulomb inter-
action W = e lv., which describes the e-h attraction
(i.e. gives rise to excitons) and is here obtained in the
random phase approximation (RPA). We have calculated

the ground state of h-BN within the local density approx-
imation (LDA)?¥ of density functional theory“% using
norm-conserving Troulliers-Martin pseudopotentials®® in
a plane wave approach?® with an energy cutoff of 30
Hartree. In order to approximate GW quasiparticle en-
ergies, following” we corrected the LDA band structure
with a scissor operator of 1.98 eV for the band gap and
stretching the valence bands by 5% . The BSE spectra
at finite q are obtained from the EXC code®® using 25
bands and a 18 x 18 x 4 k-point grid for calculations with
q parallel to the hexagonal plane and with a 12 x 12 x 8
k-point grid for calculations with q perpendicular to it.

III. EXPERIMENT

In the NRIXS experiment the incident x-ray beam
from three undulators was monochromated to an energy
of 7.5 keV by a combination of a Si(111) double crystal
and a Si(311) channel-cut. The beam was focused to a
spot of ~ 10 pm x 20 pum (V x H). The spectrometer
used a diced Si(533) analyzer crystal in the Johann geom-
etry with a Rowland circle diameter of 2 m. The active
diameter of the analyzer crystal was 80 mm, yielding a
momentum-transfer resolution of ~ 0.15 A=!. The en-
ergy resolution was 200 meV (FWHM). The scattering
plane was vertical, i.e., perpendicular to the plane of lin-
ear polarization of the incident and scattered radiation.
The detector was based on a Timepix chip, with a pixel
size of 55 um and enabling us to use the dispersion com-
pensation algorithm??3%, The analyzer Bragg angle was
fixed at 87° and the energy-loss spectra were measured
by scanning the incident-photon energy. The h-BN sin-
gle crystal was a colorless and transparent platelet with
a thickness of 0.5 mm and lateral size of 2.1 mm, which
was produced by a high- pressure and high-temperature
(HPHT) method using a barium-related solvent system
as reported in®l. The samples were aligned using x-ray
diffraction on the beamline.

IV. RESULTS

In layered h-BN the electronic states can be classified
according to the even (o) and odd (7) parity with respect
to the single BN sheet2. Optical and EELS spectras3 30
in the low-energy range, where excitonic effects are more
relevant, are determined by 7 — 7* transitions that are
mainly visible for in-plane q — 0. The weak screening
of the Coulomb e-h interaction, in concomitance with a
JDOS peak due to vertical transitions between parallel
bands (see Fig. [2) in the HKML plane of the Brillouin
zone*237 in the q — 0 spectra gives rise to prominent
exciton peaks with large binding energieg238/59,

Fig. [1] shows the dynamic structure factor S(q,w) in
the energy range of the m — 7* transitions at three finite
momentum transfers: q = A, K, and M, which are lo-
cated at the boundaries of the first Brillouin zone (see
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FIG. 1. Dynamic structure factor at three Brillouin zone
boundaries q = A, K, and M calculated in the GW-RPA and
from the solution of the BSE compared to the NRIXS data
from Ref™.
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FIG. 2. (a) GW band structure of hBN in the (b) first Bril-
louin Zone with the irreducible part delimited by yellow lines
and shaded.

Fig. [2). As noticed in™, the e-h attraction induces a
redshift of the peaks, which is larger for the in-plane q
directions at K and M (redshift of 1.5 ¢V) than for q at
A (redshift of 0.4 eV), i.e. along the direction perpen-
dicular to the BN layers, implying an anisotropic effect
of the e-h interaction®. This is evident from the com-
parison of the BSE spectra with the GW-RPA results,
obtained starting from the GW band structure and ne-
glecting the e-h attraction W in the exciton hamiltonian
Hexe. At variance with™®, where the shift was inferred
from the adjustment of the calculations to the experi-
mental spectra, the anisotropic redshift of the spectra
is here the direct outcome of the BSE calculations that
result in very good agreement with NRIXS. Our simu-
lations of the experimental spectra, being free from any
adjustable parameters, allow us to additionally observe
that excitonic effects also induce an important redistri-
bution of the spectral weight towards lower energies with
respect to the non-interacting e-h picture.

At q = M the two main peaks are located at ~ 8 and
~ 12 eV. At the K point, the first peak at ~ 6-7 eV
appears as a shoulder of the second one. In both cases
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FIG. 3. Dynamic structure factor for q along I'K direction
calculated in the GW-RPA and from the solution of the BSE
compared to the NRIXS data from Ref™. The q=25A""!
is the M’ point (see text).

the 12 eV peak originates from non-vertical (i.e. k —
k' =k +q) 7 — 7" transitions that disperse isotropically
as a function of in-plane q, shifting the energy of the
peak from 9 eV at ¢ — 0 to 12 eV in both 'K and T'M
directions. The first peak, instead, is due to a peculiar
property of the hexagonal Brillouin zone, see Fig. (a).
For q =M it derives from vertical e-h transitions between
k points belonging to the ML line in the band structure
(see Fig. [2)) (analogous, for =K, is the HK line). These
are the same vertical 7 —7* transitions with large JDOS
that are at the origin of the tightly bound exciton in the
spectra at q — . The same strong excitonic effects
are hence appearing also at ¢ =M and K as a spectral
shape redistribution that similarly strongly enhances the
first peak in the spectrum. They create a new shoulder
at q =K (entirely absent in GW-RPA) and at g =M they
make the first peak become more intense than the second
one, in contrast to the GW-RPA results.

Having clarified the diverse role of excitonic effects at
various q, we are ready to discuss what happens along
the 'K direction, where for q > 2.0 A=! a peak appears
in the NRIXS spectra at ~ 7 eV that was unexplained
in Ref™ The spectra that we have calculated for dif-
ferent momentum transfers along 'K demonstrate that
the BSE is actually able to reproduce the 7 eV peak that
is measured in the NRIXS experiment™ (see Fig. [3).
Moreover they show that the peak has indeed an exci-
tonic character as it is completely absent in the GW-RPA
calculations. In order to better understand the origin of
this excitonic peak one has to note that it has the largest
intensity at q = 2.5 A~!. This momentum transfer along
the I'K direction is in fact another M point, which is lo-
cated at the boundary of the third Brillouin zone and
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FIG. 4. (a) Color map of S(q,w) calculated from the BSE for fixed w = 7 eV and for all q spanning the first 3 Brillouin zones
with q. = 0. To enhance its visibility, S(q,w) in the first BZ has been magnified by a factor 3. The high-symmetry points
relevant for the discussion in the main text are explicitly indicated (in parenthesis those belonging to the q. = 0.5 plane).
Adding g = T'M (solid violet line) to k =M (L) one obtains another k' = k + q =M (L) (see dashed violet line). Equivalently
adding q = 'K (solid red line) to k =K (H) one obtains again k' =K (H) (see red dashed line). (b) Comparison between

calculated and measured S(q,w) for q along the I'M direction.

which we call M. We can also immediately recognise
why excitonic effects are again particularly strong at this
momentum transfer M’. The exciton eigenvalues F)(q)
and eigenvectors Ay (q) at M’ must be the same as at the
M point in the first Brillouin zone since the two points
just differ by a reciprocal-lattice vector G. However the
oscillator strengths p™(q) are generally different at dif-
ferent q and this explains why the spectra at M and M’
do not entirely overlap. In particular, at q=M’ there is
a prominent peak at 7 eV emerging from a featureless
plateau at higher energy, while at q=M a double-peak
structure was observed in the same energy range.

We have therefore found that the solution of the BSE,
when the screening of the Coulomb interaction is explic-
itly calculated at the RPA level rather than obtained
from model dielectric functions! 443 g able to repro-
duce and explain the NRIXS data. This is confirmed by
the direct comparison between the calculated and exper-
imental spectra (see Appendix). The agreement is excel-
lent in all considered cases. Moreover, having understood
that strong excitonic effects for the peak at 7 eV should
be expected whenever m—m* transitions give rise to an in-
tense JDOS, we can forecast other “hot spots” with large
intensity in the dynamic structure factor, beyond what
has been experimentally detected i, In Fig. @(a) we
thus plot a color map of S(q,w) for a fixed w = 7 eV and
for all q spanning the first 3 q, = 0 Brillouin zones. In
this manner we can easily identify two other remarkable
points along the I'M direction, located between q=M and
the vertex of the hexagon q=I", which differs from the I’
point by a reciprocal-lattice vector G.

In order to confirm these predictions and assess the
whole theoretical map of S(q,w) that has been obtained
from the BSE calculations, we compare the theoretical
results to those obtained from our NRIXS experiment

in Fig. [|b). While the GW-RPA results are totally
different from the experiment, the excellent agreement
between the BSE results and the NRIXS data proves the
predictive power of the BSE. In the spectra the largest
intensity is found at q = I", displaying two prominent
peaks deriving again from the large JDOS of vertical
m — 7* transitions. The first peak, visible only close to
q = I, matches the main exciton peak at the onset of
the spectrum at q — 0. The second peak at q = I”,
which is not noticeable at q — 0, instead evolves contin-
uously from the first peak located at ~ 8 eV at q=M.
These results show that inspecting spectra at large q,
thanks to the variation of the oscillator strengths with q,
can reveal formation of excitons that are hidden in corre-
sponding optical spectra. Moreover, they evidence how
the combination of NRIXS and BSE provides the means
for their detection in the whole energy-momentum range,
allowing one to obtain the full exciton band structure.

V. CONCLUSIONS

In summary, by solving the discrepancies between pre-
vious experiments and calculations, we have successfully
established the energy-momentum map covering the first
3 Brillouin zones of the dynamic structure factor S(q,w)
of h-BN, a prototypical layered insulator. We have shown
that excitonic effects in h-BN are strong also at large
momentum q. They are essential to interpret and under-
stand the spectra (including previous unexplained fea-
tures) and cannot be neglected remaining at a level of
theory corresponding to the RPAT.  We have explic-
itly proved that such a theoretical map based on BSE
is crucial in order to guide the experimental exploration
of the electronic dynamics, as new IXS measurements
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FIG. 5. Dynamic structure factor along three high symmetry lines in the first Brillouin zone T'A, T'K, and I'M calculated in
the GW-RPA (dashed lines) and from the solution of the BSE (solid lines), compared to the NRIXS data (dotted lines) from

Ref™. The distance from T to the borders of the 1st BZ along each direction is indicated in the labels.

have fully validated the theoretical predictions. There-
fore these case-study results promote the ab initio so-
lution of the BSE, which has been already successfully
applied in optics, as an accurate and predictive method
also to investigate the charge dynamics and the exciton
band structure for a wide range of materials and techno-
logical applications.
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Appendix: Dynamic Structure Factor in the First
BZ

We report in Fig. |5 the comparison between the cal-
culated and experimental spectra along three high sym-
metry lines 'A, T'K, and I'M in the first Brillouin zone.
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