
HAL Id: hal-02073774
https://hal.science/hal-02073774

Submitted on 20 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Building Hierarchical Component Directories
Nour Aboud, Gabriela Beatriz Arévalo, Olivier Bendavid, Jean-Rémy Falleri,
Nicolas Haderer, Marianne Huchard, Chouki Tibermacine, Christelle Urtado,

Sylvain Vauttier

To cite this version:
Nour Aboud, Gabriela Beatriz Arévalo, Olivier Bendavid, Jean-Rémy Falleri, Nicolas Haderer, et
al.. Building Hierarchical Component Directories. The Journal of Object Technology, 2019, 18 (1),
pp.21–37. �10.5381/jot.2019.18.1.a2�. �hal-02073774�

https://hal.science/hal-02073774
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Building Hierarchical Component
Directories

Nour Aboudd Gabriela Arévaloa Olivier Bendavidd

Jean-Rémy Fallerib Nicolas Hadererc Marianne Huchardd

Chouki Tibermacined Christelle Urtadoe Sylvain Vauttiere

a. DCyT (UNQ), Buenos Aires, Argentina

b. LaBRI, CNRS and ENSEIRB, Bordeaux, France

c. LIFL/INRIA Nord Europe, University of Lille 1, France

d. LIRMM, University of Montpellier and CNRS, France

e. LGI2P, IMT Mines Ales & Montpellier University, Alès, France

Abstract Component-based development is the software paradigm focused
on building applications using reusable software components. Applica-
tions are built by assembling components, where the required interfaces
of a component are connected to compatible provided interfaces of other
components. In order to have an effective building process, software ar-
chitects need adequate component directories that both index available
components and ease their search. So far, existing approaches provide
only a limited structure and indexation to store/register components and,
as a consequence, they propose an inadequate searching process. Even
when the indexes are built as flat or hierarchical structures, the indexed
elements are not the components themselves, but part of them, such as
services or functions, making the search of the needed compatible com-
ponents imprecise. To cope with searching and compatibility problems,
the contribution of this paper is twofold: it is composed of both a refined
methodology (improving a previous approach) and a tool to build a hi-
erarchically structured component directory. The component directory
solves the identified problems letting an architect find components that are
compatible with a given specification (to be assembled) or components that
can substitute to a given one. This directory uses Formal Concept Analysis
to build component type hierarchies thanks to a three step classification
process that successively classifies functionality signatures, interfaces and,
at last, component types. The refinement of the methodology is based on a
substitutability relationship between components, where the notion of not
having a parameter or an interface of some type makes our methodology
more robust when considering required interfaces. The tool made possible

Nour Aboud, Gabriela Arévalo, Olivier Bendavid, Jean-Rémy Falleri, Nicolas Haderer, Marianne Huchard,
Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier. Building Hierarchical Component Directories.
Licensed under Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). In
Journal of Object Technology, vol. 18, no. 1, 2019, pages 2:1–37. doi:10.5381/jot.2019.18.1.a2

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.1.a2
http://dx.doi.org/10.5381/jot.2019.18.1.a2


2 · N. Aboud et al.

to overcome scalability issues implementing several variations on the clas-
sification strategy. We present several experiments on three case studies
to classify components from on-line open-source component repositories as
a validation of our methodology.

Keywords Component-based development; Component directories; Com-
ponent classification; Component substitution; Formal Concept Analysis;
AOC-poset

1 Introduction

In the past two decades, component-based software development (Cbsd) has emerged
from existing software engineering paradigms as a challenging discipline for software
engineers. Standards, such as Uml [OMG07], have evolved their specification to
integrate components as first-class modeling elements, while in the past they were
considered as simple deployment units. The proposal of methodologies, languages and
tools has thus been a major step to make this promising way of building software
concrete [CSAC11, OMG07]. In this paradigm, applications are built by assembling
several “prefabricated” software units, called components, which publish interfaces that
make both the provided (served) and the required (used) services explicit.

There are two major concerns in component-based software development that
motivate our work:

1. Building a component-based software architecture. The building principle of
component-based software architectures is that the required interfaces of a
component are connected to compatible provided interfaces of other components.
Two interfaces of two components are compatible if a component’s provided
interface at least includes the functionalities1 specified in the other component’s
required interface or more general functionalities. Finding a suitable component
with adequate interfaces is an important concern to build a sound architecture.

2. Evolving an already built component-based software architecture in which a
component is not operational anymore. When a component fails or disappears,
searching for a possible substitute is another concern.

These two concerns can be tackled by providing an adequately structured component
directory which classifies components and eases compatible or substitutable component
search. Such a directory should be automatically built, in order to scale and have a
hierarchical index that naturally classifies components according to their potential
substitutability relationship.

It is important to mention that the component specification is provided by its type,
which is defined by its (required and provided) interfaces and functionality signatures.

By classification, we mean that we need to group components that share specifica-
tions (component types) and provide an order among these groups. Such a classification
eliminates redundancies between type definitions and provides an accurate indexing of
components: a set of queried characteristics (interfaces or functionality signatures)
is matched with a type which represents the set of all the components that hold

1In the rest of the paper, we will refer to the functionality of a component as methods and/or
functions in an interface of a component.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 3

these characteristics. This classification process cannot be handled manually when
component directories grow bigger.

The contribution of this paper is a refined methodology (improving a previous work
[AAF+09]) and a prototype tool named DICOSOFT that builds the hierarchical classi-
fications based on specialization and substitution principles [Lis87] that are adapted to
components. The classifications can thus be easily browsed to find a component that
can replace another one (the type of the former component is a subtype of the type of
the latter). Such a classification mechanism is implemented using the Formal Concept
Analysis (Fca) framework [GW99] and the classification is based on information
that characterizes components (functionality signatures, interface specifications and
component structural descriptions). Our work assumes that components which are
classified come from a single provider, because, in that case, specialization relations
between types are known.

Compared to our previous work [AAF+09], this paper refines the definition of
the substitutability relationship. Indeed, the notion of not having a parameter or
an interface of a specific type enables our new methodology to take into account the
removal of required interfaces in component when descending the substitutability
hierarchy. It extends the scope of our previous approach by allowing more substitution
possibilities.

The DICOSOFT prototype tool implements the described methodology. It intro-
duces three variations of the classification: classifying all component types using their
whole description; classifying the required and provided parts of component types sep-
arately; classifying subgroups of component types which share several characteristics.

The paper is structured as follows. Section 2 presents the state of the art and shows
that no existing work automatically classifies components as we would like to do, with
a substitutability relationship that considers the duality brought by their provided and
required interfaces (descending the substitution hierarchy corresponding to providing
more and requiring less). Section 3 illustrates the problem tackled in this paper by
means of an example and presents the motivations of the work. Section 4 provides a
high level overview of the three-step classification process in which we show how we
classify functionality signatures, interfaces and component types based on substitution.
Section 5 describes the prototype tool that we developed as an implementation of
the proposed approach, introducing two other variations to provide complementary
views on the components. It presents the results of applying the approach on three
repositories, including one that contains around 220 components, and discusses the
obtained results. Section 6 concludes this paper.

2 State of the Art

In existing approaches, directories, repositories and registries are key concepts to
leverage reuse in Cbsd [ITV04]. We will provide the different definitions from our
viewpoint to give the context of our approach.

Component repositories provide stores where component implementations (code and
configuration files) are saved to be later retrieved to build an application. Repositories
are the place where the code of component types can be retrieved. The repositories
provide some primitives to import the different component types.

Component registries act as locator for component instances. They index the
actual available component instances within an execution environment.

Upon registries or repositories, component directories can be built to enable

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


4 · N. Aboud et al.

providers to publish information on available components, and users to know which
components are available. The latter ones search by querying components that match
their requirements, and retrieve existing (matching) components.

From white to yellow pages: Early component registries were proposed in the
context of distributed programming as companion facilities for middlewares. Most
of them, such as Rmi registry [Pit01], Corba Cos [Sie00], JNDI[LS00] and Equinox
extension registries [MVA10], provide white-pages in which components are indexed
by symbolic names. White pages only store bindings between symbolic names and
references of available components instances. No meta-information documents the
registered components and thus queries are limited to direct name lookups. Content
structuring is limited to the manual creation of directories (similar to file systems).
Fewer registries, like the Corba Trading Object Service [OMG00], the Osgi Service
registry [All06] or Jini [Edw00], provide yellow-pages in which component instances
are indexed by the kinds of the services they provide. These latter directories conform
to the principles of the Odp standard [ISO98] and are suited to component-based and
service-oriented architectures [HTL+08, EH07]. Basic queries enable users to retrieve
a set of components providing a service type (exact matching).

Marvie et. al.[MMGL01] propose an extension that supports relaxed matching
between the queried service types and the service types provided by the indexed
components. Thus, retrieved components may not exactly match the queried service
types but still be compatible. Unfortunately, the service type hierarchy is not built
nor maintained automatically: it is an ad-hoc structure, built by the component
providers, using explicit specialization declarations in the component advertisements
they publish.

Compared to these works, our approach is a yellow pages directory. In addition,
so far, the difference is that no current component-based development framework
proposes an automatic structuring mechanism of its components directories as in our
approach.

Theoretical work on component specialization: Zaremski et al. [ZW97]
extensively studied specialization rules to structure object class libraries as type
hierarchies, regarding different substitution principles, as introduced in statically-
typed object-oriented languages [Lis87, LW94, Cas95]. These theoretical works do not
propose any practical scheme to automatically build type hierarchies. Besides, they
study object type hierarchies, which can be regarded, when dealing with component
definitions, as provided interface type hierarchies (no required part).

Liskov’s substitution principle [LW94] is one of the founding works on type
compatibility. It introduces the definition of substitution as the possibility to replace
a given object by another one while guaranteeing the same behavior. One of the
mechanisms that can be used to implement sub-typing is inheritance combined with
sound specialization. Components need similar specialization rules (covariance for
what is provided, contravariance for what is required), but adapted and extended so as
to take into account not only their required interfaces (which define different semantics
as compared to their provided ones) but also more complex types (component types
as higher level concepts holding interfaces with opposite directions). Research work on
component-based approaches proposes type concepts and specialization rules that apply
to components, interfaces or services [SR06, Fis98, Lin95, GFS08]. Compared to our
approach, no work studies the automatic construction of component type hierarchies
nor proposes concrete directory indexing mechanisms that could be implemented and
used in component registries or repositories.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 5

Code repositories indexed with keywords or full text analysis: Most
directories do not use classification and hierarchies. Code search engines, for instance
Koders 2, Google code search 3, Krugle4 and Merobase5, are derived from web search
engines and use full-text indexation to build code repositories that can be queried by
keywords. Merobase [HJA08] uses meta-information (syntactic structure of classes)
and not only source code (considered as raw textual documents) to support more
relevant queries: keywords can be associated with syntactic elements (classes, methods,
variables, etc.) to query classes with specific features. This is thus the only code search
engine which can be compared to our work, as it enables to execute type-oriented
queries on functions or classes. However, it is nonetheless based on keywords and
full-text indexation. Thus, it only supports exact type matching (no type hierarchies)
and is dedicated to object-oriented code, thus not taking into account the explicit
description of a required part.

Some work has used Fca [Lin95] to structure such keyword-based indexes in order
to build browsable software libraries [Fis98, SR06] using a concept lattice. In this
context, a query is formulated incrementally as a set of keywords that gradually
narrows a set of matching functions, as a traversal from the concept lattice root down
to the concept which corresponds to the searched keywords. The concept lattice can
even suggest new keywords that can be added to refine the query (keywords associated
to concepts in the sub-lattice of the current concept). In the current paper, we use
FCA with a very different point of view: We build several lattices for operations,
interfaces, components description levels. Besides we consider provided but also
required operations and interfaces.

Many kinds of meta-information can be used to index software libraries. For
instance, Fischer et al. [Fis98] use fragments of the formal specifications of functions
(elementary pre- and post- conditions) to index them by the definition of their expected
effects. On the other hand, Sigonneau et al. [SR06] build a function index based on
the syntactical types of their input and output parameters, applying covariant and
contravariant specialization rules. As compared with our proposal, these works aim at
building browsable functionality directories, using a concept lattice calculated in a
single step process. We have introduced an original multi-step process to compute
lattices for higher-level, more complex structures (component types). This enables
to provide repositories that not only deal with the provided interfaces of components
but also with their required ones. This is mandatory to soundly handle queries for
connectable and substitutable components [DHT+08], as a tool to support architecture
building and evolution processes [ZUV10].

Web service classification: In our previous work we have used Fca and Rca
(Relational Concept Analysis [HHNV13]) to classify libraries of Web service interface
descriptions. In [AHT+08], we have used the operation signatures in service interfaces
in order to classify services. This classification does not take into account type
variance in the signatures (types of input and output parameters). Matching between
a signature requested by a user and the ones in the classification is exact (exact names
and types). In [AHM+11], we have classified web service interface descriptions by
measuring the similarity between operation signatures. This similarity is measured
using semantic and lexical metrics, like Levenshtein distance. Then, a threshold is
used in order to build binary contexts. The resulting classification enables us to

2http://code.ohloh.net/
3http://code.google.com/p/codesearch/
4http://krugle.com/
5merobase.com/

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


6 · N. Aboud et al.

find similar operations for a failing operation invoked in a composite Web service.
There are some other similar works in the field of Web service computing. Peng et
al. [PHWZ05] propose a classification based on Fca where in the contexts, objects
are Web services and attributes are their operations. In [ABC+06], the authors
present different configurations of contexts in order to build classifications of Web
services, based on keywords extracted from the documentation and from the input and
output parameters and their simple/complex types. Other related works using Fca
and Rca to classify Web services by integrating QoS includes [DMJ+10, CLL+10].
In [ADH+11], we have extended the approach proposed in our previous work to include
the quality of service (QoS) and composability levels between services. The obtained
classification enables us to find a set of compositions of Web services that answer some
user requirements expressed as a task workflow, each task being described with a set
of keywords (representing names of services, operations and their input and output
parameters). In this work on Web services, we also consider QoS and composition
requirements expressed as minimal accepted values in a Likert scale. Contrarily to the
work presented in this article, work on Web services hardly considers type variance
and substitution. In addition, services in the libraries are filtered according to the
user requirements, so that classifications are not composed of the whole collection
of Web services. This supposes that user requirements are known a priori. In the
current classification of software components, we suppose that user requirements are
not known and we do not consider QoS (which dynamically varies). Classifications are
thus built only once. Besides, the current paper considers a description with required
interfaces (and operations) in addition to the provided interfaces (and operations),
while services expose only provided operations.

Test-based classification: In his dissertation [Hum08], O. Hummel addresses the
discovery of components (source code, executable, etc.). He goes further keyword-based
searching (with general search engines) and regular expressions-based searching (like
in Google Codesearch). He proposes syntactical queries based on different information
including name and method signature. The approach is completed by steps where
(1) it is checked whether the component can be compiled, and (2) it passes tests that
define the desired semantics. Our context is not using the whole Web as a software
repository as it is proposed in [HA06]. In our case, we hypothesize a knowledge
of a type hierarchy which is relevant to apply the Liskov approach, and a reduced
vocabulary. There is also a certain normalization of the form of the signature. This is
the case in the context of a specific component library, or if a uniform description has
been proposed. Our purpose in this paper is not to address neither linguistic aspects,
nor behavior, nor adaptation of input/output. The syntactic substitution verification
that we propose is a needed step before checking other aspects as possible behavioral
substitution between two components. Our contribution involves classification through
an index we find meaningful regarding subtyping and navigation between existing
components. Our approach can be applied to indexing a group of close components
that have been retrieved with other approaches (including test-based) and described
appropriately. It is useful for improving next retrieval operations, for example if
a component is missing, to find a similar one. Also we consider components that
are not source code components, but described as in CBSE approaches by required
and provided interfaces, containing operations described by their signatures which is
specific to our problem. Libraries such as Fractal libraries are described under this
form and do not need additional effort to be used.

OWL-based approaches: Ontologies are used in [YRZM10] to represent concepts

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 7

of the domain and types of components and their relationships. A query is then defined
as a pattern graph which is applied to component library description in order to retrieve
components. Components are described by meta-data in the form of an OWL ontology
that represents the domain in [GK13]. In these works, the kind of components that
are dealt with is not specified. There is no syntactic description or organization (based
on required / provided functionalities and interfaces) and no classification of the
components is proposed. An ontology is used in [SST10] to describe many different
features of components in a CBSE context, including names of required and provided
interfaces, operations, parameters, programming languages, code complexity, Qos
properties, etc. Ontology concept similarity is used to map a query and component
specifications. But no classification involving a subtyping or a specialization ordering is
proposed. In the context of Web services, authors of [BJAR11] annotate the inputs and
outputs of the provided operations. They use this annotation to build a classification
of services based on covariant signatures. The classification is restricted to the specific
domain of geology, reducing possible problems of vocabulary and heterogeneity of
description. They do not consider nor subtyping, neither the required point of view.
They have only two levels of description (services and operations) which simplify
the process and the classification is not built in a systematic way, as it is the case
with Formal Concept Analysis approach and they do not approach the problems of
component replacement. The classification is mainly designed for experts that have to
choose a component to be composed in a workflow.

3 Motivation and Illustrative Example

To motivate our approach, we use the example of a component repository that contains
six components, which implement various route calculation algorithms and drivers for
phones and Dvd players. Firstly, we illustrate how we build a hierarchical component
directory and then, with a variation of the example, we show how we ease component
connection and component substitution.

We work on a simple component model based on generally accepted definitions.
Components are black boxes that embody reusable code, which is externally described
by interfaces. Provided interfaces describe the component’s server capabilities (pro-
vided to others), and required interfaces describe the component’s needs as a client. To
assemble components into the architecture of an application, it is needed that required
interfaces connect to provided interfaces of compatible types. When we further look
inside interfaces as abstract types, we see that interfaces are sets of functionality
signatures. Each signature is defined with a functionality name and the input and
output parameters and types. In our approach, interface type compatibility is based
on their functionality signature compatibility. We must remark that the components
in our approach are stateless.

Figures 1 to 3 show the components of our example and illustrate all these notions.
For example, the PubTransportRouteCalculation component (Figure 1) declares
three required interfaces (IGpsMap, IConversion and IDVD) and one provided interface
(IPubTranspRoute). These interfaces group functionalities, which have typed input
and output parameters. For example, the IConversion required interface groups
three convert functionalities. The first convert functionality has an input parameter,
called addr, of MailAddr type and an output parameter of GPScoord type. Similarly,
the other components can be described.

In the following, we explain our process to classify functionality signatures, in-

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


8 · N. Aboud et al.

Figure 1 – A component for public transportation route calculation

Figure 2 – A component for museum route calculation

terfaces and components. A description of the provided facet (provided interface,
provided functionality signatures) in the classification steps can be found in Aboud et
al. [AAF+09]. In the current paper, we refine the substitutability relationship for the
required facet.

3.1 Building a Hierarchical Component Directory

Our three-step process relies on a specialization hierarchy of the data types6 (Figure 4)
involved in the functionality signatures of the sample components.

For example, Route is specialized by both PubTranspRoute (public transportation
route) and TouristicRoute.

The initial flat (non hierarchical) set of components is easy to use for a given
specified purpose: if a software architect wants to build a component assembly dedicated
to touristic routes, she/he will use the TouristicRouteCalculation component (Fi-
gure 5) and connect it to a (required) component providing zoomable maps and to

6For clarity’s sake, types that have no supertype nor subtype (e.g., Date) are not shown in Figure 4.
Complex types (such as collections or graphs) are considered to have no supertypes nor subtypes.

Figure 3 – Two components for information exchange

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 9

Figure 4 – Type hierarchy for route computation components’ functionality parameters

components requiring the route or the agenda. However, many questions can appear
when using such a flat set of components.

Figure 5 – A component for touristic route calculation

What can be done if the TouristicRouteCalculation component fails? How
can the architect rapidly determine which other component can replace it? How can
architects build high-level assemblies with components that are general enough to
be easy to replace rather than too specific assemblies that are difficult to repair at
runtime?

A suitable solution is a browsable component repository with the following charac-
teristics:

1. Easy (non time consuming) search process. This search can be semi-automatic
or automatic.

2. Relevance in finding components based on a specification defined by the develop-
er/architect. We mean specification by the provided & required interfaces and
the signatures of the methods/operations in the components. The components
resulting from a query might need to be assembled at runtime and easily adapted
(if needed).

3. Suggestion of new component specifications to the architects. If such new
components are developed, this will increase the number of reuse possibilities.

4. Easy browsing GUIs to present a relevant subset of the components, or a point
of view (required or provided) on them.

Thus, we propose a hierarchical classification, in a directory organization shown
in Figure 6 for our small example. In this organization, arrows represent potential
substitutability relationships. For example, BotanicRouteCalculation (Figure 7)

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


10 · N. Aboud et al.

Figure 6 – Components ordered by substitutability. Arrows represent the relation "can
replace" (or "can substitute itself for")

can replace a TouristicRouteCalculation (Figure 5). Conversely, MuseumRouteCal-
culation (Figure 2) cannot soundly replace TouristicRouteCalculation (Figure 5),
because the latter one indeed has not an IPhone required interface while the former
component needs to connect that interface to work. To clarify how to read the rest of
the lattices in the paper, it is worthwhile to mention that the Cx notation (where x
can be between 1 to 10) represents concepts, and that if a concept corresponds to a
component, the name of the component is inside the box representing the concept,
above the name of the corresponding concept. For example, we have the name
of TouristicRouteCalculation above C10, meaning that the concept C10 defines the
component TouristicRouteCalculation.

Besides the concrete aforementioned components, the unnamed ones (defined by C0,
C2, C6, C7) correspond to new abstract suggested components. Their insertion inside
an assembly would increase replacement possibilities and produce a more reusable
assembly. For example, if we chose to implement the component defined by C2,
an assembly using it (instead of the TouristicRouteCalculation component, for
example) would be more reusable and easier to repair. Indeed, in case that component
defined by C2 failed, any of the three touristic components (that are lower than one
defined by C2 in the classification) could be used to replace it. These new, more general,
components could also be used in abstract assemblies, or architectural patterns.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 11

Figure 7 – A component for botanic route calculation

3.2 A Component Substitution Scenario

Figure 8 shows two components to be used in a substitution scenario (shown in
Figures 9 and 10) that uses a variant of our example with the TouristicRouteCalcu-
lationForPhoneDevice and SimpleTouristicRouteCalculation components that
both have a different number and different types of interfaces.

Figure 8 – TouristicRouteCalculationForPhoneDevice and SimpleTouristicRouteCalcu-
lation

Figure 9 shows the initial assembly where the objective is to have the TravelPlanner
component work. The required ITouristicRoute interface of the TravelPlanner
component is satisfied by the same provided interface of TouristicRouteCalcula-
tionForPhoneDevice component. In turn, the TouristicRouteCalculationFor-
PhoneDevice component satisfies its IPhone and ILocZoomMap interfaces connecting
them to a PhoneDevice and a ZoomableMapProvider (map-delivery specialized in
zoomable maps) components respectively. In this assembly, interfaces and functionality
signatures all match exactly.

Now we have the problem that the TouristicRouteCalculationForPhoneDe-
vice component fails. Figure 10 gives the example of a repaired assembly where a
SimpleTouristicRouteCalculation component replaces the defective Touristic-
RouteCalculationForPhoneDevice component. In this repaired assembly, connected
interfaces and functionality signatures are not strictly identical. Changes are underlined
on Figure 10. This substitution can be considered as safe:

• The SimpleTouristicRouteCalculation component provides the additional
ITouristicAgenda interface which can simply be ignored.

• The SimpleTouristicRouteCalculation component does not require an IPhone
interface. The PhoneDevice component can then disappear from the assembly
which continues to satisfy the requirements of the TravelPlanner component.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


12 · N. Aboud et al.

Figure 9 – An assembly
Figure 10 – A possible substitution (changes

are underlined)

• The ILocMapSimple required interface can be connected to the ILocZoomMap
provided interface: not requiring the map(Location): ZoomableMap function-
ality does not cause a problem because the SimpleTouristicRouteCalculation
component can simply ignore that this functionality is available.

• When calling the findMap functionality from the SimpleTouristicRouteCalcu-
lation component, a return value of type Map is expected. The corresponding
functionality provided by the ZoomableMapProvider component provides a
ZoomableMap, which is a subtype of Map (it provides more), according to the
type hierarchy. These return parameter types can therefore be considered as
compatible, so do the functionalities and the interfaces.

• The ITouristicRouteWithDuration provided interface offers an additional,
unused duration functionality. The TravelPlanner component can ignore it.

• There is also a variation on the input parameters of the route functionality.
The TravelPlanner component assigns a value to these input parameters (of
GPScoord type) when calling the route functionality. These parameter values are
passed to the SimpleTouristicRouteCalculation component which expects
parameters of Location type. As GPScoord is a subtype of Location (it provides
more), the route functionality in SimpleTouristicRouteCalculation can be
accepted in this assembly.

More complex substitution scenarios could be proposed[DHT+08]. Based on
our example, we see that any scenario searching for components that meet some
specification (whether it is for connection or substitution), strongly needs an adequately
structured component directory that eases component search.

4 The Three-step Classification Process

In this section we provide an overview of the three-step classification process in which
we show how we classify functionality signatures, interfaces and components.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 13

4.1 A Classification Strategy based on Component Substitution

As a solution to our component search problem, this paper proposes a three-step
classification process (cf. Figure 11) by using the type hierarchies (cf. Figure 4) as the
low level classification. The process is described as follows:

1. Functionality signatures are classified using the type hierarchy of their input
and output parameters.

2. Interfaces are classified using the classification of their functionality signatures.

3. Components are classified using the classification of their provided and required
interfaces.

Figure 11 – Synopsis of the three-step component classification process

4.2 Classification Technique

In our approach, the classification process relies on the definition of sound component
substitution. This definition is obtained by first considering functionality and interface
substitution.

As a classification technique, we are using Formal Concept Analysis [Wil82] (Fca)
which is a theoretical framework to analyse data. It extracts a partially ordered set
(poset) of concepts (the concept lattice) from a dataset composed of objects described
by attributes (the formal context). A concept is composed of two sets: an object set
called the concept’s extent and an attribute set called the concept’s intent. These

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


14 · N. Aboud et al.

sets satisfy the following property: the extent is the maximal set of objects that share
all the attributes of the intent. Reciprocally, the intent is the maximal attribute set
that is shared by all the objects of the extent. The partial order on concepts is based
on top-down inclusion of intents (and, conversely, bottom-up inclusion of extents).
For simplicity’s sake, the concept lattice is often represented considering simplified
intents (respectively simplified extents) which omit the top-down inherited attributes
(respectively bottom-up inherited objects). In the figures representing concept lattices,
concepts are represented as boxes where the simplified intent is the upper part and
the simplified extent is the lower part.

We also consider the AOC-poset (for Attribute-Object-Concept poset [BGH+14]),
which is the sub-order of the concept lattice restricted to object-concepts and attribute-
concepts (the poset restricted to concepts which have either a non-empty simplified
extent or a non-empty simplified intent). AOC-posets scale much better than lattices as
their number of concepts is bounded by the sum of the number of attributes and of the
number of objects whereas the number of concepts in lattices can be exponential with
regard to the minimum cardinal of the object set or the attribute set. Furthermore,
the AOC-poset contains all the needed information to build the lattice, so that no
data is lost.

4.3 A Simple Method for Classifying Component Types

Software component connection and substitution are our main concerns. The principles
that govern component substitution thus guide our classification strategy. The general
substitution principle states that a component Cp1 can be a substitute for (can replace)
a component Cp2 if Cp1 provides more and requires less from the environment than
Cp2. This principle has counterparts at the interface and functionality levels.

4.3.1 Classifying Functionality Signatures

A functionality can replace (be a substitute for) another functionality if it requires
less from and provides more to the environment. We can intuitively consider that a
required functionality behaves like a function call inside the component and that a
provided functionality behaves like a function declaration in object-oriented software.
For substitutability foundation, we also base our approach on a classical strongly-
typed object-oriented background [Car84, Lis87, LW94] where subtypes extend their
supertypes and contain more information.
A functionality can replace another if it requires less. This means:

• contravariant input on provided side. As input parameters in provided
functionalities come from the environment, input parameter types might be gen-
eralized (less information is embedded) in provided signatures of the substitute,
or might be removed.

• contravariant output on required side. As output (return) parameter
types of required functionalities come from the environment, output (return)
parameter types might be generalized (less information) in required signatures
of the substitute or removed.

On the contrary, a functionality can replace another if it provides more. This means:

• covariant output on provided side. As output (return) parameter types in
provided functionalities come from the component, output parameter types might

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 15

be specialized (more information) in provided functionalities of the substitute or
output parameters might be added.

• covariant input on required side. As input parameter types in required
functionalities come from the component, input parameter types might be
specialized (more information) in required functionalities of the substitute or
input parameters might be added.

We do not detail here how to encode this information in contexts for substitutability-
based classification. A tricky part is that we need to encode the fact of not having
a specific type as an input or output parameter. For example, the signature route
(MailAddr, MailAdddr): PubTransRoute does not have an input parameter of
Date type (that other route signatures have), which is denoted by IN=!Date in the
lattice representation (intents). For further details, the interested reader can refer to
the paper of Aboud et al. [AAF+09]. In previous papers, we have only explained the
classification of provided functionality signatures, but as there are some differences
with required ones, we explain the classification of functionality signatures of both
directions. Functionality signatures with the same name and direction (provided or
required) are classified in the same lattice.

Classifying provided functionality signatures. Figure 12 shows the concept
lattice Lroute of the provided route signatures. When an initial signature appears
in the lower part (simplified extent) of a concept, this signature is exactly described
by this concept. Otherwise, there is a new inferred signature that emerges from the
classification process. We associate a canonical functionality signature with each
concept. In the provided case, this canonical functionality signature is computed by
removing from input and output parameters those that can replace others, that is:
(1) the most general type among comparable input parameter types from the concept
intent, (2) the most specific type among comparable output parameter types from the
concept intent, (3) removing a type T when IN=!T is in the intent. For example:

• The input parameters IN=CompleteLocalization and IN=Date, and output
parameter OUT=Route define the canonical functionality signature of concept C0,
which is a new signature.

• The canonical functionality signature of concept C5 is defined by:

– IN=MailAddr which can replace the specialization IN=CompleteLocaliza-
tion,

– IN=!Date which can replace IN=Date.
– OUT=PubTranspRoute which can replace (thus hides in some sense) the

generalization OUT=Route.

With the above defined substitution rules, this canonical signature does not take into
account the number of parameters of a specific type. Indeed, it is considered that
if a provided functionality which deals with addresses needs two data, it may also
work (maybe in a downgraded form) if the counterpart provides only one, or even
provides three. As for the other choices made to model substitutability, this does not
diminish the generality of our classification process as changing this would simply
require another encoding schema. However, we made this choice to ensure flexibility
in the substitution possibilities.

Analyzing the lattice, we then learn that (for the provided functionalities):

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


16 · N. Aboud et al.

Figure 12 – The Lroute lattice of provided route operations

• route(GPSCoord, GPSCoord, Date):BotanicRoute (concept C3) can replace
route(GPSCoord, GPSCoord, Date):TouristicRoute (superconcept C1)

• route(GPSCoord, GPSCoord, Date):MuseumRoute (concept C4) can replace
route(GPSCoord, GPSCoord, Date):TouristicRoute (superconcept C1)

• All known signatures (concepts C1, C3, C4, C5) can replace a new suggested
signature (the canonical functionality signature of concept C0) route(Complete-
Localisation, Date): Route. New signatures will be denoted later with
the Lattice_ prefix. For the previous canonical signature example, and with
an interpolation specific to our example (implemented in our tool), using the
fact that all route signatures include two addresses, we will use the notation
Lattice_route-Provided(CompleteLocalisation CompleteLocalisation
Date):Route

• When the extent of the bottom node of the lattice is empty, it is not considered
pertinent in the classification.

In our approach, the functionality signature lattices are especially helpful to expose
partial matching between signatures (with missing, additional or generalized/special-
ized parameters depending the direction). For example, in the lattice of provided route
operations (Fig. 12), Concept C0 presents a partial signature with two IN parameters
(of types CompleteLocalization, Date) and an OUT parameter (of type Route). This
signature shows what is the partial matching between the four signatures that are
organized in this lattice.

Classifying required functionality signatures. The findMap signatures illus-
trate how required functionality signatures are symmetrically analyzed and classified.
In required signatures, input parameter types can be specialized in a substitute. As

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 17

Figure 13 – The lattice of required findMap functionality signatures

a consequence, a signature that has IN=GPSCoord can replace a signature that has
IN=Location, which refers to a supertype. Conversely, an output parameter type can
be generalized in a substitute, explaining that having OUT=Map can replace OUT=Zoo-
mableMap (refers to a subtype). Figure 13 shows the concept lattice of the required
findMap functionality signatures. We symmetrically define the canonical required
functionality signature of a concept. Analyzing the lattice, we learn that:

• findMap(GPSCoord GPSCoord):Map (concept C1) is a potential substitute for
findMap(Location Location):Map (concept C3) and findMap(Location Lo-
cation):ZoomableMap (concept C0),

• There is no new required functionality signature in this example, just a substituta-
bility-based organization of existing required signatures.

At the end of this phase, we have contexts and lattices for all functionality signatures
from each provided and required facets. In our example, the 13 functionalities are
organized into 26 lattices, because for each functionality we have a lattice to classify
the required functionality signatures and another one to classify the provided ones.

4.3.2 Classifying Interfaces

Interfaces are classified using the functionality signature classifications. Provided and
required interfaces are separately dealt with.

Classifying provided interfaces. For provided interfaces, an interface I1 can
replace I2 if it provides more. I1 should provide the same or more functionality
signatures than I2, or functionality signatures that can replace those of I2 (contravariant
input, covariant output).

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


18 · N. Aboud et al.

Figure 14 – The LrouteInterface lattice of provided interfaces about routes

When concepts have an empty simplified intent, we compute canonical provided
interfaces. In the provided case, it means extracting the most general functionality
signatures from the intent of the concept. The lattice (Figure 14) indicates that:

• IMuseumRoute and IBotanicGardenRoute can replace ITouristicRoute.

• A new interface (Concept C0), whose canonical description includes route(Co-
mpleteLocalisation,CompleteLocalisation, Date): Route and distance-
(CompleteLocalisation, CompleteLocalisation): float is introduced, which
can be replaced by all the classified interfaces. New interfaces will be denoted
later with the Lattice_ prefix. For example this one will be the concept C0 in
route interface lattice, and will be denoted by Lattice_InterfacePro-3C07.

Classifying required interfaces. For required interfaces, an interface I1 can re-
place I2 if it requires less. I1 should require the same or less functionality signatures
than I2 or functionality signatures that can replace those of I2 (covariant input, con-
travariant output). Symmetrically to the provided interfaces, the required interfaces
may have a canonical description. The difference consists in encoding the fact that a
component that does not have a required interface can replace a component that has
this interface.

Figure 15 shows the lattice of required map interfaces. It reveals that:

• IGPSMap and ILocMap can replace a (new) required interface containing the three
signatures represented in concept C2: findMap(Location, Location):Map,
extractRoadNetwork(Map):Hypergraph, and map(Location):ZoomableMap

7All lattices are available at: http://code.google.com/p/dicosoft/downloads/list.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 19

• all required map interfaces can replace ILocZoomMap.

Figure 15 – The lattice of required interfaces about maps

4.3.3 Classifying Components

Finally, we classify components. A component Cp1 can replace a component Cp2 if it
offers more and requires less from its environment:

• Cp1 may have more provided interfaces,

• Each provided interface of Cp2 can be replaced by one of the provided interfaces
of Cp1.

• Cp1 may have fewer required interfaces,

• Each required interface of Cp1 can replace one of the required interfaces of Cp2.

The result of component classification for our example (components of Figures 1 to
7) is the lattice shown in Figure 16. Component concepts also may have a canonical
description. The canonical description of a component is composed of the union of the
most specific provided interfaces and of the most specific required interfaces from the
intent of the concept (’most specific’ refers here to their position in their respective
concept lattices). Figure 6 shows a specialization order extracted from the concept
lattice of Figure 16.

4.4 Discussion

We have presented a basic approach for organizing components in a substitutability-
based structure. There are many possible variations on the connection and substitution
model, depending on the component model and the adaptation effort that can be
admitted at substitution and connection time. A more strict connection model could

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


20 · N. Aboud et al.

Figure 16 – Component lattice

constrain the order and the number of the parameters, or the invariance in functionality
signatures (same parameter types in the same order and same return type). Fortunately,
Formal Concept Analysis offers many different encoding schemes to deal with most of
the situations [GW99]. All these variations can be understood as a parameterization
of the generic classification process. Given that we rely on functionality names and
type hierarchies of the parameter types, our approach best suits components that
come from the same component provider.

One of the critical issues concerns the use of negation in the encoding. We
use interfaces for discussion, but this also applies at the levels of parameters and
functionality signatures. To respect the substitution principle and avoid substitution
of a component by another component which has more required interfaces, we have
seen that it is sometimes necessary to encode that a component does not have an
interface. This is often the case when two components share some interfaces in the
same interface lattices and one (Comp1) has required interfaces (e.g., Req=I) that the
other (Comp2) has not. A minimum needed to respect the substitution principle is
encoding (inferring) the fact that Comp2 does not have (at least) one of the interfaces

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 21

in the lattice that contains I.
An example is the top interface that we used in the illustrative example. For

example, DVD_User and Phone_User components do not have interfaces to deal with
Map, and this can be encoded as a negation by associating the Req=!ILocZoomMap
characteristic, where ILocZoomMap is the top of the lattice of required interfaces about
Map (Figure 15). To be more precise, DVD_User and Phone_User do not require
ILocZoomMap (characteristic Req=!ILocZoomMap). This means that they can replace
a component that requires ILocZoomMap (if no other characteristics contradict this
replacement). To encode this in a formal context, this means that a component
that owns Req=!ILocZoomMap should also own Req= ILocZoomMap (we call this an
inference), to allow the replacement mentioned above. We can observe in Figure 16
that using this encoding, DVD_User in concept C12 extent and Phone_User in concept
C15 extent have Req=!ILocZoomMap and by inheritance they own Req= ILocZoomMap
(from concept C0) because of this encoding. DVD_User and Phone_User would be
able to replace a component in the extent of concept C0 (if such component existed
in our example, which is not the case).

To increase the number of substitution opportunities, it is better to encode the fact
that Comp2 does not have any of the interfaces in the lattice that contains I and infer
the positive counterpart. In this case, in our example, DVD_User and Phone_User
would have characteristics corresponding to negation of each interface from the lattice of
Figure 15: Req=!ILocZoomMap, Req=!LATTICE_InterfaceReq-0C2 Req=!IGPSMap,
Req=!ILocMap, (we can omit the bottom). Then to apply the same principle, extended
to all interfaces, DVD_User and Phone_User are assigned the positive counter-parts:
Req=ILocZoomMap, Req=LATTICE InterfaceReq-0C2 Req=IGPSMap, Req=ILocMap.
Now DVD_User and Phone_User can replace a component that requires ILocZoomMap
(as in minimal negation encoding), but also a component that requires IGPSMap, offer-
ing more substitution possibilities (as previously, if no other characteristics contradict
this replacement).

Thus, coming back to the general case, such encoding allows the component to
substitute (if the remainder of its description is adequate) for a component that
has one (any) interface in the lattice that contains I. An unwanted consequence of
encoding the negation is that the lattice size rapidly grows when we encode all the
possibilities for substitution, because many concepts appear that represent the sharing
of not owned characteristics (parameters, signatures, interfaces). Thus, introducing
negation implies that we have to know all possible combinations among properties,
and this makes it difficult to manage in a dynamic context, where components could
appear and disappear in a directory. In the illustrative example, we chose to encode
the minimum needed and this issue does not change critically the resulting lattices. In
particular, this does not change the classification of the initial components. To sum
up, in order to avoid erroneous substitutions, it is necessary to encode at least that
when a component does not have an interface, it does not own the top lattice interface.
To provide more substitution opportunities, it is useful to infer more interfaces from
the lattice.

5 Validation

In this section, we describe the Dicosoft prototype tool which has been developed in
order to implement the classification method (Sect. 5.1) and to make experiments on
real-world component libraries. We present then an experimentation of the classification

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


22 · N. Aboud et al.

method where we wanted to answer the following research question: “Is the classification
method scalable over real-world component libraries of different sizes?” We have
quickly found out, by testing Dicosoft, that the method needs some optimizations
to be able to classify large component libraries. We proposed two variations to the
classification method (that we will consider, in the remaining text, as classification
methods per se). In addition to optimizing the classification process, these methods
provide complementary organization views on components (Sect. 5.2). In the last part
of this section, we present the experimental evaluation which has been conducted on
three Fractal component libraries of different sizes (Sect. 5.3).

5.1 The DICOSOFT tool

Dicosoft is a Java prototype tool that we developed in order to implement the
component classification method. It analyzes repositories of Fractal components
described in Fractal Adl8 and implemented in Java with Julia (the reference imple-
mentation of Fractal)9. Figure 17 shows the most important modules in Dicosoft:
the LibraryParser and the LibraryClassifier.

LibraryParser

<<External Tool>>

Galatea

<<Fractal ADL File>>
FractalArchDesc

<<File>>
JavaCode
<<Java File>>

InterfaceOrClass

<<XML File>>
TypeHierarchy

<<XMI File>>
CoCoLA Model

<<Ecore File>>
CoCoLA Metamodel

<<conformsTo>>

LibraryClassifier

LatticeGshBuilder

<<CSV File>>
ContextTable

<<uses>>

<<uses>>

<<uses>>

<<DOT File>>
LatticeOrGSH

Dicosoft

DicosoftGUI

View

Search

<<produces>>

<<uses>>

<<uses>>

<<produces>>

<<uses>>

<<uses>>

<<SVG File>>
ConceptLatticeFig <<produces>>

<<CSV File>>
ContextTable<<CSV File>>

ContextTable

<<SVG File>>
ConceptLatticeFig

<<SVG File>>
LatticeGshFigure

<<DOT File>>
LatticeOrGSH

<<DOT File>>
LatticeOrGSH

<<produces>>

Figure 17 – A Simplified Architecture of Dicosoft

The LibraryParser takes as input all the following files:

• Fractal Adl (Xml-based) files describing components, by specifying the interfaces
they provide and require and the (nested) descriptors of their potential internal
(encapsulated) components.

• Java source and class files containing interfaces and classes implementing the
components. If a flat structure of files is not available, Jar files can also be
parsed by Dicosoft to extract interface and class files.

8Fractal ADL in OW2 website: http://fractal.ow2.org/tutorials/adl/
9Julia in OW2 website: http://fractal.ow2.org/julia/

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 23

• An Xml file containing the type hierarchy (here, types are interfaces, classes
and component types).

This tool provides as output an intermediate Xml file containing a merge of all
the parsed information. This enables to have a single file with all the information
necessary for the classification. Besides, this allows us to decouple Dicosoft from the
Fractal ADL syntax. Concretely, this Xml file is an Xmi (Xml Metadata Interchange)
document that complies to the Cocola (Components in Concept Lattice Analysis)
metamodel [AAF+09].

The Cocola metamodel generalizes the Fractal component model by adding
information about component implementations. It summarizes all data on component
architecture descriptions. This metamodel has been implemented as an Ecore model
on Eclipse [Ecl09]. Thanks to the Emf (Eclipse Modeling Framework) plugin [Ecl09],
we obtained an Api to parse and generate Xmi files that comply to the Cocola
metamodel.

The LibraryClassifier takes as input the Xmi file generated by the first module
and generates context tables, according to the classification variant selected by the
user. It then uses an external tool developed by our team, named eRca10, to generate
lattices or AOC-posets.

Dicosoft includes a graphical user interface which enables end-users to choose a
component library. It then generates classifications according to the selected classifica-
tion method (variant). It provides views of the classifications (or exports them as im-
ages) and also makes it possible for the user to specify queries to analyze classifications.
These queries are names of components, interfaces or functions. Dicosoft returns
a list of possible substitutes for the chosen architectural elements. Figure 18 shows
a screenshot of our prototype tool. For more details about Dicosoft, the reader is
invited to visit: http://code.google.com/p/dicosoft/.

5.2 Implementation of the Approach: Original Method and Optimizations

To show the applicability of our approach, we have developed three different implemen-
tations named as complete, fast and smart. The last two ones were implemented
because of different problems generated by the first one to validate our approach.

Complete. Early experiments were developed with the initial classification method
(called complete). However, the serious problems arrived when building the lattices
due to time and memory space reasons. These problems showed us that we need
to find techniques to make the approach scalable. One answer we found was with
the computation of the AOC-poset[BGH+14] rather than building the lattices. In
particular, in the AOC-poset, most of the useless concepts that group only negations
of characteristics have disappeared. Following, we also explain two other classification
methods that we experimented on real-world libraries to check their feasibility and
evaluate their efficiency. Furthermore, they provide an additional usage scenario to
component substitute search, which is component refactoring that is detailed later.

Required/Provided variant (fast). Our first variant method separates the re-
quired and provided parts of the components. Lattices of functionality signatures and
of interfaces are built as in the initial approach. Component description is separated
into two parts, generating two lattices, for the required and provided parts respectively.

10http://code.google.com/p/erca/

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


24 · N. Aboud et al.

Viewing the Lattice
or the GSH

Concrete
Concepts

Abstract
Concepts

Refactoring
(Generalization)

Substitution

Architectural
Element

to Retrieve

Request
Input

New
Analysis

Classification 
Method

Starting 
Classification Status

Figure 18 – Screenshot of Dicosoft’s GUI

The provided-part context contains the components associated with the provided
interfaces they own. The required-part context contains the components associated
with the required interfaces they own, and it is also filled up by inferences as in the
complete approach.

This fast component classification approach results in smaller structures on which
it is easier to reason, identifying at first in the provided part what a designer needs
as a primary functionality, and then, in a second step, checking if the environment
is able to provide what the chosen components require. The counterpart of this
separation is that, now, determining if a component can be a substitute for another
component, requires the analysis of the relations between the two components in the
two lattices. To ease this, new lattices are generated that merge this information.
Each merged lattice contains the components that can replace a given component in
the two, required and provided, lattices where this component appears.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 25

Bipartite variant (smart). The motivation of this second variant is the observation
that subgroups of components that share a set of functionalities can often be isolated
when analyzing the contents of component repositories. If there is not (or little)
intersection between these subgroups, it might be preferable to build a separate lattice
for each subgroup. Indeed, it is uninteresting to classify together two components that
will not (or likely not) be a substitute for the other.

To find these subgroups, we build a bipartite graph associating components to
their functionality names associated with a direction. Provided and required directions
are noted as either _Pro or _Req suffixes to functionality names. Figure 19 depicts
this bipartite graph for our example.

A simple way of cutting the bipartite graph into smaller graphs consists in using
its connected subgraphs. It is unfortunately inefficient in the example, because there
is only one connected subgraph in this graph. This method was not interesting either
when applied on the analyzed repositories we experimented on, because we found very
large connected subgraphs.

Figure 19 – Bipartite graph connecting components and their directed functionality names

In the solution we chose, the bipartite graph is decomposed into particular bipartite
subgraphs such that two components belong to the same subgraph if they share at
least one directed (required or provided) functionality name. The component context
is then divided into smaller contexts, each of which corresponds to a subgraph. Some
components can appear in several subgraphs. In our example, this gives three small
contexts. Substitution can be done as in the complete approach, by looking for the
respective positions of the two components in the lattice that contains both of them.

5.3 Experimentation on three Fractal component libraries

We experimented the approach presented in our paper on three different Fractal
component libraries of various sizes: Swing (smallest in terms of number of components),
Rmi and Dream (largest). Figure 20 depicts the size of each analyzed library.

In the next subsections, we highlight different operations offered by our classification
approach such as component search for substitution or component refactoring, and we
evaluate scalability of the classification approach using these three libraries. In the
first subsection, we show how a software architect can retrieve a possible substitute
for a failed component in a library classification. This library is Fractal Swing 11. We
provide some metrics on the library and on the Galois Sub-hierarchies (AOC-poset)

11Fractal Swing on the OW2 Website: http://fractal.ow2.org/java.html

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


26 · N. Aboud et al.

Swing Rmi Dream
#components 41 57 221

#provided interfaces 19 21 70
#required interfaces 4 20 59
#provided functions 286 19 70
#required functions 82 18 56

Figure 20 – Metrics on the Fractal libraries Swing, Rmi and Dream

obtained with the three different classification variants. We discuss which is the variant
that is best suited for this task (component substitute search in a relatively small
library). In the second subsection, we expose the classification of the Fractal Rmi
library12. We illustrate a refactoring use case on this classification and explain how a
component designer can extract some interesting component descriptions which are
more abstract than the ones that already exist in the library. In this case, we use
also a relatively small-sized library of 57 components (41 components for the first
library). In the last subsection, we experiment the approach on a library of a larger
size, Dream13. We show how the last classification variant is the most useful to process
large libraries of hundreds/thousands components.

Use Case #1: “Small library & Substitute search”. Fractal Swing is a library
providing a set of Fractal components to build graphical user interfaces.

Table 1 shows the results obtained using the different classification methods (first
three columns whose common header is Swing). Even if this library contains only
41 components, the classification computation times are high comparatively to other
libraries. The minimal total computation for classifying this library is 104 seconds
with the Fast method (to be compared with the minimal time for classifying the
second library, which is 357 milliseconds). This is mainly due to the structure of this
library. In Fractal Swing, we observed that there is a high number of functions per
interface (e.g., for the provided part, 286 functions in only 19 interfaces). In addition,
most of the types (interfaces and components) inherit from each other. This structure
increases computation time of relations between objects and attributes needed to
generate the AOC-poset. However, we chose to present this library because it makes
substitution easier to understand.

The use case concerns a software architect whose role is to assemble components
in order to build an application. During maintenance, we suppose that a component
in the application fails (a bug might be detected while running the application, for
example). Dicosoft can thus help the architect to find a new component in the
library which can play the same role as the failed one. We take a concrete example of
the architect of Fractal Gui14, who used Fractal Swing components to build her/his
application. Fractal Gui helps software architects to graphically design Fractal software
architectures. Let us suppose that the JPanelImpl component fails (it does not perform
correct graphical rendering). Through the classification of the Fractal Swing library
using the fast method, we see which components can replace it in Fractal Gui. We
chose to use the fast method because it is the best for component substitution. We
can observe in Table 1 that the average computation time for finding a substitute is

12Fractal RMI on the OW2 Website: http://fractal.ow2.org/fractalrmi/index.html
13Dream library on the OW2 Website: http://dream.ow2.org/
14Fractal Gui on OW2 Website: http://fractal.ow2.org/fractalgui/index.html

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 27

Swing Rmi Dream

C
om

pl
et
e

F
as
t

Sm
ar
t

C
om

pl
et
e

F
as
t

Sm
ar
t

C
om

pl
et
e

F
as
t

Sm
ar
t

Number of AOC-poset 1 2 1 1 2 12 1 2 31
Max. number of concrete 41 49 29 57 57 8 221 221 53
concepts in AOC-poset
Min. number of concrete 41 49 29 57 57 1 221 221 1
concepts in AOC-poset
Av. number of concrete 41 49 29 57 57 4 221 221 7
concepts in AOC-poset
Max. number of abstract 12 0 11 20 0 8 75 0 24
concepts in AOC-poset
Min. number of abstract 12 0 11 20 0 0 75 0 0
concepts in AOC-poset
Av. number of abstract 12 0 11 20 0 2 75 0 4
concepts in AOC-poset
Total number of generated 41 82 29 57 114 53 221 442 141
concrete concepts
Total number of generated 12 0 11 20 0 29 75 0 225
abstract concepts
Total number of generated 53 82 40 77 114 82 296 442 366
concepts
Av. number of substitutions 10 7 9 16 4 5 72 4 13
per component
Max. computation time 874 50 797 5 74 2 116 577 8
for finding a substitution ms ms ms ms ms ms ms ms ms
Min. computation time 34 3 40 1 1 1 1 2 1
for finding a substitution ms ms ms ms ms ms ms ms ms
Av. computation time 198 9.89 221 1 7 1 3 67 1
for finding a substitution ms ms ms ms ms ms ms ms ms
Computation time 5.5 5.5 5 363 212 106 1.5 916 815
for classifying functions s s s ms ms ms s ms ms
Computation time 18.5 18.5 18.5 29 16 16 292 62 61
for classifying interfaces s s s ms ms ms ms ms ms
Computation time 166 80 158 1 255 235 51 986 2023
for classifying components s s s s ms ms s ms ms
Total computation time 189 104 182 1484 500 357 53 1964 2899
for classification s s s ms ms ms s ms ms

Table 1 – Metrics on the classifications of the Fractal libraries Swing, Rmi and Dream

almost 10 milliseconds, while for the other two methods it is around 200 milliseconds.
The reason is that the Fast method generates a minimal number of intermediate
abstract concepts in the AOC-poset. The AOC-poset contains only components
which are substitutable with each other.

The obtained AOC-poset15 contains both required and provided parts, so it
has been produced by merging the required and the provided AOC-poset built by
the fast method. Among 41 components available in the Fractal Swing library, the
AOC-poset proposes only 7 components as possible candidates for substitution. This
reduces of almost 82% the size of the search space. Among 7 components that are
proposed to the architect, she/he will choose the one which is the most relevant to
her/his needs, like the component JScrollPaneImpl which can replace JPanelImpl
(cf. Figure 21).

For this use case (small library & substitution), the user can choose either the
Complete or the Fast method. It is preferable to use the Fast method first, because,
as we have seen previously, even if the library is small its structure can make the

15http://code.google.com/p/dicosoft/downloads/detail?name=org2.png&can=2&q=

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


28 · N. Aboud et al.

Figure 21 – Zoom on the AOC-poset for the substitution of the JPanelImpl component

computation time for building the classification high. The user can however, by using
this method, miss some substitutes, because the Fast method provides generally less
substitutes than the Complete method: for the Swing library, 7 substitutes in average
with the Fast method, compared to 10 substitutes in average with the Complete
method (with the other two libraries the difference is more important: 4 vs. 16 and 4
vs. 72, see Table 1). In the case where the suggested substitutes do not satisfy the
user, she/he can use the Complete method to retrieve more substitutes.

Use Case #2: “Small library & Refactoring”. Fractal Rmi is a library of
Fractal components which helps in building distributed component-based applica-
tions. Figure 20 shows some measures made on this library, while Table 1 shows
the results obtained when applying the three classification methods using Dicosoft.
Dicosoft helps a component designer in discovering new component definitions which
generalize (which make more abstract) the definitions of components that already
exist in the library. These new components are more substitutable because there are
many components that are more specific to them.

We use the complete method to make this refactoring that aims to extract more
abstract component definitions. The complete method classifies all components in a
single AOC-poset to search for a more abstract definition for the two components
presented in Figure 22.

TcpIpProtocol
Protocol

ChunkFactory

MarshallerFactory

TcpIpConnectionMgr

Scheduler

ContextFactory

RmiProtocol
Protocol

LoggerFactory

Scheduler

MarshallerFactory

NamingContext

Figure 22 – Two concrete components from the Fractal RMI library

Figure 23 depicts a zoom on the AOC-poset of the Fractal Rmi library. We
see that concept 19 is a new abstract definition which factorizes the definitions of
TcpIpProtocol and RmiProtocol. When implementing this component, we obtain a

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 29

new hierarchy which is illustrated in Figure 24.

Figure 23 – Zoom on theAOC-poset of the Fractal Rmi library

In the Fractal Rmi library, there is no existing component which can be replaced
by components TcpIpProtocol or RmiProtocol. The implementation and integration
of this newly suggested component in the library thus adds two possible substitutions
(TcpIpProtocol or RmiProtocol can replace the new component). Thereby, such
component addition increases the overall flexibility of components from the library. In
this use case, we took the example of an abstract component which generalizes two
components, but if we further analyzed the generated AOC-poset, we would find
other generalizations.

LATTICE_C19

TcpIpProtocol RmiProtocol

Protocol

Protocol Protocol

MarshallerFactory

TcpIpConnectionMgr

ChunkFactory

Scheduler

ContextFactory

LoggerFactory

NamingContext

LoggerFactory

Scheduler

MarshallerFactory

NamingContext

MarshallerFactory

TcpIpConnectionMgr

Scheduler

ChunkFactory

ContextFactory

replaces replaces

Figure 24 – Hierarchy after adding the new component

With the complete method, all components are classified in a unique AOC-poset.
This classification has the drawback that if we use large libraries (of more than
100 components), the obtained classification becomes very large. If we take the
classification of Fractal Rmi, we see that for 57 components, we obtained 77 concepts
(57 concrete / 20 abstract) in a single classification. With the fast method, we obtained
114 concrete concepts, and no abstract concepts, for the same library. For Fractal
Swing (which contains 41 components), we obtained 53 concepts (41 concrete / 12
abstract) with the complete method and 82 concepts with the fast method. To
compare the classification size, one has to consider that, for "Fast" method, two AOC-
posets are computed, one for the provided part, the other for the required part (each

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


30 · N. Aboud et al.

one contains 57 concepts). For "Smart" method, there are also several AOC-posets
that are small (they have at most 16 concepts).

For this particular case of refactoring, and with libraries of a relatively small size
(less than 100 components), the designer should use the Smart method, instead of
the two others. The total time for the computation of classifications is less than the
complete method. In addition, the number of abstract concepts is generally greater
(it is almost the same for the previous library, Fractal Swing: 11 abstract concepts
with the smart method and 12 with the complete one, but it is greater for the other
libraries: 29 vs. 20 and 225 vs. 75).

Use case # 3: “Large library classification”. The third study has been con-
ducted on Dream16, which is a library of Fractal components designed to build
communication middleware. It provides a set of components and tools to specify,
configure and deploy a middleware implementing many communication paradigms.
Figure 20 depicts some metrics on this library. Dream is the largest Fractal component
libray that we have found till now. It contains 221 components.

When classifying larger libraries such as the Dream library, we observe that com-
ponents belong to distinct domains, such as communication protocols or management.
Building a single AOC-poset for such libraries is useless for multiple reasons: i) com-
plexity of the result (296 concepts for 221 Dream components), ii) higher computation
time (53 seconds for the Dream library), and iii) less chance to find a substitute for a
given component belonging to a given domain in the other domains, which are in the
same classification. Using the smart method, we identify the different domains in a
library and classify these domains separately. In the case of Dream, we identified 31
domains. The main domain is relative to protocols, coding and serialization of mes-
sages. It contains 56 components. The total computation time of all the classifications
is approximately 3 seconds, compared to 53 seconds with the Complete method. For
relatively large libraries, the user should prefer the Smart method for refactoring and
the Fast method for substitution.

To conclude this (validation) section, it is important to state the threats to the
validity of our experimentation. First, the internal validity is related to the confidence
that we have in the correctness of the component libraries we have used. It is worth
mentioning that each of these libraries has been designed by the same development
team. This can be a bias in the experimentation, since components that can substitute
each other can be put close the ones from the others in the type hierarchy, as leaves of
the same node. This makes them appear necessarily as substitutes in the classification.
Thereby they can be easily and quickly retrieved. However, this aspect (that the library
has been designed by the same team) is an important element in the construction
of accurate classifications, because signatures of functionalities provided/required by
components are likely to share the same types or to be defined by using type variance
(since types are defined by the same team). If components are defined separately, by
different teams, the types they use in their signatures are likely to be different. This
requires type matching to identify relationships between types, which do not provide
always accurate results.

Second, the external validity concerns the capacity of our experimentation to
be generalized to other component libraries. Even if the experimentation has been
conducted on Fractal libraries, our classification method can be easily used with any
object-oriented component model (as categorized in [CSAC11]). The only component

16http://dream.ow2.org/

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 31

that should be replaced in Dicosoft is the LibraryParser.

6 Conclusions

This paper presented a novel contribution to automate software component classi-
fication composed of both a methodology and its prototype implementation. Its
objectives are to ease queries in component directories and to improve reusability and
substitution. Through the analysis of component external descriptions (functionality
signatures, provided and required interfaces), we proposed a three step classification
process that uses Formal Concept Analysis. Summarizing, the steps are as follows:
In the first step, data type hierarchies are used to calculate functionality signature
lattices that encode the substitutability relationship. Then, functionality signature
lattices are used to calculate provided or required interface lattices. To finish, interface
lattices are used to calculate component lattices that the architects can query to search
for a component to connect or to substitute for another.

We also present three strategies to tame complexity: a complete strategy, and
two divide-and-conquer strategies named fast and smart. We have built different
prototypes to test the different strategies on real component libraries and discussed
their adequateness and scalability.

Regarding future work, we propose several approaches. Firstly, variants on the
substitutability relationships could be investigated. For example, we could take
exception types (thrown by functionalities) into account when analyzing functionality
signatures. Automating the generation of simple adapters starting from lattices would
also be interesting for architects. We would like to extend the classification criteria to
be able to compare non homonymous functions using natural language-based similarity
measures. This would make it possible to compare components that do not share the
same vocabularies (for example, components that come from different providers). The
possibility of filtering results with non-functional attributes or information gathered on
component usage (ranking or opinion mining, capitalizing previously made adaptations,
structuring architect folksonomies, etc.) would also greatly increase user confidence
and directory structure. Another subject to explore is to analyze how we can adapt
the proposed methodology to other component-based systems that have a description
like in ADLs languages. As a complement to the presented work, we can also analyze
if the methodology impact in QoS or behavioral aspects of components.

References

[AAF+09] Nour Alhouda Aboud, Gabriela Arévalo, Jean-Rémy Falleri, Marianne
Huchard, Chouki Tibermacine, Christelle Urtado, and Sylvain Vauttier.
Automated architectural component classification using concept lattices.
In Proc. of WICSA/ECSA’09, pages 21–30, Cambridge, UK, September
2009. IEEE CSP. doi:10.1109/WICSA.2009.5290788.

[ABC+06] Lerina Aversano, Marcello Bruno, Gerardo Canfora, Massimiliano
Di Penta, and Damiano Distante. Using concept lattices to support
service selection. International Journal of Web Services Research (IJWSR),
3:32–51, 2006.

[ADH+11] Zeina Azmeh, Maha Driss, Fady Hamoui, Marianne Huchard, Naouel
Moha, and Chouki Tibermacine. Selection of composable web services

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.1109/WICSA.2009.5290788
http://dx.doi.org/10.5381/jot.2019.18.1.a2


32 · N. Aboud et al.

driven by user requirements. In Proc. of The 9th IEEE International
Conference on Web Services (ICWS’11), Applications and Experiences
Track, pages 395–402, Washington DC, USA, July 2011. IEEE Computer
Society Press. doi:10.1109/ICWS.2011.47.

[AHM+11] Zeina Azmeh, Fady Hamoui, Nizar Messai, Marianne Huchard, Chouki
Tibermacine, Christelle Urtado, and Sylvain Vauttier. Backing composite
web services using formal concept analysis. In Proc. of the 9th Interna-
tional Conference on Formal Concept Analysis (ICFCA’11), volume 6628
of Lecture Notes in Computer Science, pages 26–41, Nicosia, Cyprus, May
2011. Springer-Verlag. doi:10.1007/978-3-642-20514-9_4.

[AHT+08] Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Ur-
tado, and Sylvain Vauttier. Wspab: A tool for automatic classification
and selection of web services using formal concept analysis. In Proc. of
the 6th IEEE European Conference on Web Services (ECOWS’08), pages
31–40, Dublin, Ireland, November 2008. IEEE Computer Society Press.
doi:10.1109/ECOWS.2008.27.

[All06] OSGi Alliance, editor. OSGi Service Platform, Core Specification, Release
4, Version 4.2. aQute Publishing, 2006.

[BGH+14] Anne Berry, Alain Gutierrez, Marianne Huchard, Amedeo Napoli, and
Alain Sigayret. Hermes: a simple and efficient algorithm for building the
AOC-poset of a binary relation. Annals of Mathematics and Artificial
Intelligence, may 2014. doi:10.1007/s10472-014-9418-6.

[BJAR11] Nabil Belaid, Stéphane Jean, Yamine Aït Ameur, and Jean-François
Rainaud. An ontology and indexation based management of services
and workflows application to geological modeling. IJEBM, 9(4):296–309,
2011. URL: http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/
Paper-V9_N4/A02.pdf.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In Gilles Kahn,
David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of
Data Types, LNCS 173, pages 51–67. Springer, 1984. doi:10.1016/
0890-5401(88)90007-7.

[Cas95] Giuseppe Castagna. Covariance and contravariance: conflict without
a cause. ACM Transactions on Programming Languages and Systems,
17(3):431–447, 1995. doi:10.1145/203095.203096.

[CLL+10] Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Diana Moreno-
Garcia, and Pierre Colomb. Heterogeneous service selection based on
formal concept analysis. In 6th World Congress on Services, pages 367–374,
July 2010.

[CSAC11] Ivica Crnkovic, Severine Sentilles, Vulgarakis Aneta, and Michel R. V.
Chaudron. A classification framework for software component models.
IEEE Transactions on Software Engineering, 37(5):593–615, Sep 2011.
URL: http://dx.doi.org/10.1109/TSE.2010.83, doi:10.1109/TSE.
2010.83.

[DHT+08] Nicolas Desnos, Marianne Huchard, Guy Tremblay, Christelle Urtado,
and Sylvain Vauttier. Search-based many-to-one component substitution.
Journ. of Software Maintenance and Evolution: Research and Practice,
20(5):321–344, September/October 2008. doi:10.1002/smr.377.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.1109/ICWS.2011.47
http://dx.doi.org/10.1007/978-3-642-20514-9_4
http://dx.doi.org/10.1109/ECOWS.2008.27
http://dx.doi.org/10.1007/s10472-014-9418-6
http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/Paper-V9_N4/A02.pdf
http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/Paper-V9_N4/A02.pdf
http://dx.doi.org/10.1016/0890-5401(88)90007-7
http://dx.doi.org/10.1016/0890-5401(88)90007-7
http://dx.doi.org/10.1145/203095.203096
http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1002/smr.377
http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 33

[DMJ+10] Maha Driss, Naouel Moha, Yassine Jamoussi, Jean-Marc Jézéquel, and
Henda Hajjami Ben Ghézala. A requirement-centric approach to web
service modeling, discovery, and selection. In Proc. of the 8th International
Conference on Service-Oriented Computing (ICSOC 2010), pages 258–
272, 2010. doi:10.1007/978-3-642-17358-5_18.

[Ecl09] Eclipse. Eclipse modeling framework (emf). Eclipse Board Web Site :
http://www.eclipse.org/modeling/emf/, 2009.

[Edw00] W. Keith Edwards. Core JINI. Sun Microsystems Press Java. Prentice
Halll, second edition, 2000.

[EH07] Clement Escoffier and Richard S. Hall. Dynamically adaptable applications
with iPOJO service components. Software Composition, pages 113–128,
2007. doi:10.1007/978-3-540-77351-1_9.

[Fis98] Bernd Fischer. Specification-based browsing of software component li-
braries. In Proc. of the 13th IEEE int. conf. on Automated Software En-
gineering (ASE’98), pages 74–83, 1998. doi:10.1023/A:1008766409590.

[GFS08] Bart George, Régis Fleurquin, and Salah Sadou. A component selection
framework for cots libraries. In Proc. of the Symposium on Component-
Based Software Engineering (CBSE’08), pages 286 – 301. LNCS 5282,
October 2008. doi:10.1007/978-3-540-87891-9_19.

[GK13] Suresh Chand Gupta and Ashok Kumar. Reusable Software Component
Retrieval System. International Journal of Application or Innovation in
Engineering and Management, 2(1), 2013.

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathemat-
ical Foundations. Springer Verlag, 1999.

[HA06] Oliver Hummel and Colin Atkinson. Using the web as a reuse repository.
In Maurizio Morisio, editor, Reuse of Off-the-Shelf Components, 9th In-
ternational Conference on Software Reuse, ICSR 2006, Turin, Italy, June
12-15, 2006, Proceedings, volume 4039 of Lecture Notes in Computer Sci-
ence, pages 298–311. Springer, 2006.

[HHNV13] Mohamed Rouane Hacène, Marianne Huchard, Amedeo Napoli, and
Petko Valtchev. Relational concept analysis: mining concept lattices from
multi-relational data. Ann. Math. Artif. Intell., 67(1):81–108, 2013.

[HJA08] Oliver Hummel, Werner Janjic, and Colin Atkinson. Code conjurer:
Pulling reusable software out of thin air. IEEE Software, 25(5):45–52,
2008. doi:10.1109/MS.2008.110.

[HTL+08] Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, and
Michel Riveill. SLCA, composite services for ubiquitous computing. In
Proc. of the International Conference on Mobile Technology, Applications,
and Systems, pages 1–8, New York, New York, USA, 2008. ACM Press.
doi:10.1145/1506270.1506284.

[Hum08] Oliver Hummel. Semantic Component Retrieval in Software Engineer-
ing. PhD thesis, Fakultat fur Mathematik und Informatik, Universitat
Mannheim, 1 2008.

[ISO98] ISO/IEC. ODP Trading Function Specification ISO/IEC 13235-1:1998(E),
December 1998. URL: http://webstore.iec.ch/.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.1007/978-3-642-17358-5_18
http://dx.doi.org/10.1007/978-3-540-77351-1_9
http://dx.doi.org/10.1023/A:1008766409590
http://dx.doi.org/10.1007/978-3-540-87891-9_19
http://dx.doi.org/10.1109/MS.2008.110
http://dx.doi.org/10.1145/1506270.1506284
http://webstore.iec.ch/
http://dx.doi.org/10.5381/jot.2019.18.1.a2


34 · N. Aboud et al.

[ITV04] Luis Iribarne, José M. Troya, and Antonio Vallecillo. A trading service
for COTS components. The Computer Journal, 47(3):342–357, 2004.
doi:10.1093/comjnl/47.3.342.

[Lin95] Christian Lindig. Concept-based component retrieval. In J. Köhler et al.,
editors, IJCAI-95 Workshop: Formal Approaches to the Reuse of Plans,
Proofs, and Programs, pages 21–25, 1995.

[Lis87] Barbara Liskov. Keynote address - data abstraction and hierarchy. SIG-
PLAN Not., 23:17–34, January 1987. doi:http://doi.acm.org/10.1145/
62139.62141.

[LS00] Rosanna Lee and Scott Seligman. JNDI API Tutorial and Reference:
Building Directory-Enabled Java Applications. Addison-Wesley Profes-
sional, 2000.

[LW94] Barbara Liskov and Jeanette M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, 16:1811–
1841, 1994. doi:10.1145/197320.197383.

[MMGL01] Raphael Marvie, Philippe Merle, Jean-Marc Geib, and Sylvain Leblanc.
Type-safe trading proxies using TORBA. In Fifth Int. Symp. on Au-
tonomous Decentralized Systems, ISADS, IEEE Computer Society, pages
303–310, 2001. doi:10.1109/ISADS.2001.917433.

[MVA10] Jeff McAffer, Paul VanderLei, and Simon Archer. OSGi and Equinox:
Creating Highly Modular Java Systems. Addison-Wesley Professional, 1st
edition, 2010.

[OMG00] OMG. Trading Object Service Specification (TOSS) v1.0.
http://www.omg.org/cgi-bin/doc?formal/2000-06-27, 2000.

[OMG07] OMG. Unified modeling language superstructure, version 2.1.1 specifica-
tion, document formal/07-02-03. Object Management Group Web Site:
http://www.omg.org/cgi-bin/apps/doc?formal/07-02-03.pdf, 2007.

[PHWZ05] Dunlu Peng, Sheng Huang, XiaoLing Wang, and Aoying Zhou. Man-
agement and retrieval of web services based on formal concept analysis.
In The Fifth International Conference on Computer and Information
Technology (CIT’05), pages 269–275, Sept 2005.

[Pit01] Esmond Pitt. Java.rmi: The remote method invocation guide. Addison-
Wesley Professional, July 2001.

[Sie00] Jon Siegel. Corba 3: Fundamentals and Programming. John Wiley & Sons
Inc, 2nd revised edition, 2000.

[SR06] Benjamin Sigonneau and Olivier Ridoux. Indexation multiple et au-
tomatisée de composants logiciels. Technique et Science Informatiques,
25(1):9–42, 2006. doi:10.3166/tsi.25.9-42.

[SST10] Nedhal A. Al Saiyd, Intisar A. Al Said, and Ahmed H. Al Takrori.
Semantic-Based Retrieving Model of Reuse Software Component . IJCSNS
International Journal of Computer Science and Network Security, 10(7),
2010.

[Wil82] Rudolf Wille. Restructuring lattice theory: an approach based on
hierarchies of concepts. Ordered Sets, 83:445–470, September 1982.
doi:10.1007/978-3-642-01815-2_23.

Journal of Object Technology, vol. 18, no. 1, 2019

http://dx.doi.org/10.1093/comjnl/47.3.342
http://dx.doi.org/http://doi.acm.org/10.1145/62139.62141
http://dx.doi.org/http://doi.acm.org/10.1145/62139.62141
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1109/ISADS.2001.917433
http://dx.doi.org/10.3166/tsi.25.9-42
http://dx.doi.org/10.1007/978-3-642-01815-2_23
http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 35

[YRZM10] Wei Yan, Francois Rousselot, and Cecilia Zanni-Merk. Component
Retrieval Based on Ontology and Graph Patterns Matching. Journal of
Information and Computational Science, 7(4), 2010. URL: http://www.
joics.com.

[ZUV10] Huaxi (Yulin) Zhang, Christelle Urtado, and Sylvain Vauttier.
Architecture-centric development and evolution processes for component-
based software. In Proc. of the 22nd International Conference on Software
Engineering & Knowledge Engineering (SEKE’2010), pages 680–685.
Knowledge Systems Institute Graduate School, 2010.

[ZW97] Amy Moormann Zaremski and Jeannette M. Wing. Specification matching
of software components. ACM Transactions on Software Engineering
and Methodology (TOSEM), 6(4):333–369, 1997. doi:10.1145/261640.
261641.

About the authors

Nour Aboud holds a PhD from Université de Pau et des Pays
de l’Adour, France since 2012. During her PhD, she worked on a
service-oriented integration of software component and organiza-
tional multi-agent models. She now is a research and development
engineer at Items Media Concept, a private company of engineering
and training in computer science near Bordeaux, France. Contact
her at nour.aboud@gmail.com.

Gabriela Arévalo is full professor since 2011, and the main re-
sponsible for the Computer Science degree career since 2016 at
Universidad Nacional de Quilmes (Buenos Aires, Argentina). She
received her PhD in Computer Science in 2005. Her research inter-
ests are software reengineering mainly applied in object-oriented
applications and using Formal Concept Analysis. She can be
contacted at garevalo@unq.edu.ar.

Olivier Bendavid graduated from a computer science master
from the University of Montpellier, France in 2010. During his
master internship in Montreal (Canada), he worked on business
intelligence in the cloud.

Journal of Object Technology, vol. 18, no. 1, 2019

http://www.joics.com
http://www.joics.com
http://dx.doi.org/10.1145/261640.261641
http://dx.doi.org/10.1145/261640.261641
mailto:nour.aboud@gmail.com
mailto:garevalo@unq.edu.ar
http://dx.doi.org/10.5381/jot.2019.18.1.a2


36 · N. Aboud et al.

Jean-Rémy Falleri is currently associate professor at the Bor-
deaux INP and a member of the LaBRI laboratory where he is head
of the software engineering research group. He received his Ph.D.
degree in 2009 from the University of Montpellier 2 and his accred-
itation to supervise research in 2015. He has also worked in the
RMoD research group of Inria Lille led by Stéphane Ducasse. His re-
search interests lies in software engineering with a focus on software
evolution and maintenance. Contact him at falleri@labri.fr,
or visit http://www.labri.fr/perso/falleri/.

Nicolas Haderer graduated from a PhD in Computer Science,
University of Lille in 2014. His PhD thesis focuses on Mobile Crowd
Sensing, a new sensing paradigm based on the power of various
smart devices to massively collect data. He now is technical lead
of a decision support tool using crop models to predict growth and
disease risks of wheat in ITK, a private company near Montpellier,
France. Contact him at haderer.nicolas@gmail.com.

Marianne Huchard is full professor at University of Montpellier,
France, since 2004. She received her PhD in Computer Science
in 1992. Her research interests include theory and tools related
to Formal Concept Analysis (FCA), and applications of FCA to
Software Engineering, such as class hierarchy refactoring, interface
extraction, or software product line reengineering. She can be
contacted at marianne.huchard@lirmm.fr, or visit http://www.
lirmm.fr/~huchard/.

Chouki Tibermacine is associate professor at University of
Montpellier, France. He received his PhD in Computer Science
in 2006 from the University of Southern Brittany, France and
his accreditation to supervise research in 2018. His current re-
search focuses on the promotion of reuse in software engineering
practices through the development of new component models and
languages, and the proposition of new methods for the migration
of legacy software systems towards component- and service-based
paradigms. Contact him at Chouki.Tibermacine@lirmm.fr, or
visit http://www.lirmm.fr/~tibermacin/.

Christelle Urtado is associate professor at IMT Mines Ales,
Alès, France. She received her computer science PhD in 1998
and her accreditation to supervise research in 2016. She has
long been involved in research on component or service-based
software engineering, focusing on component reuse and software
composition and evolution. Component type issues are part of her
research as they are a cornerstone of software evolution. Contact
her at Christelle.Urtado@mines-ales.fr, or visit http://www.
lgi2p.mines-ales.fr/~urtado/.

Journal of Object Technology, vol. 18, no. 1, 2019

mailto:falleri@labri.fr
http://www.labri.fr/perso/falleri/
mailto:haderer.nicolas@gmail.com
mailto:marianne.huchard@lirmm.fr
http://www.lirmm.fr/~huchard/
http://www.lirmm.fr/~huchard/
mailto:Chouki.Tibermacine@lirmm.fr
http://www.lirmm.fr/~tibermacin/
mailto:Christelle.Urtado@mines-ales.fr
http://www.lgi2p.mines-ales.fr/~urtado/
http://www.lgi2p.mines-ales.fr/~urtado/
http://dx.doi.org/10.5381/jot.2019.18.1.a2


Building Hierarchical Component Directories · 37

Sylvain Vauttier is associate professor at IMT Mines Ales,
Alès, France. He received his computer science PhD in 1999
and his accreditation to supervise research in 2018. His work
is focused on software architecture construction, evolution and
reuse, encompassing multiple paradigms like components, ser-
vices and agents and approches like IR, MDE and SBSE. Con-
tact him at Sylvain.Vauttier@mines-ales.fr, or visit https:
//sylvainvauttier.wp.imt.fr/.

Acknowledgments Authors would like to warmly thank Nicolas Auboin and David
Pallet who contributed to the development of the Dicosoft tool.

Journal of Object Technology, vol. 18, no. 1, 2019

mailto:Sylvain.Vauttier@mines-ales.fr
https://sylvainvauttier.wp.imt.fr/
https://sylvainvauttier.wp.imt.fr/
http://dx.doi.org/10.5381/jot.2019.18.1.a2

	Introduction
	State of the Art
	Motivation and Illustrative Example 
	Building a Hierarchical Component Directory
	A Component Substitution Scenario

	The Three-step Classification Process
	A Classification Strategy based on Component Substitution
	Classification Technique
	A Simple Method for Classifying Component Types
	Classifying Functionality Signatures
	Classifying Interfaces
	Classifying Components

	Discussion

	Validation
	The DICOSOFT tool
	Implementation of the Approach: Original Method and Optimizations
	Experimentation on three Fractal component libraries

	Conclusions
	Bibliography
	About the authors

