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Abstract—Blockchain has become one of the most attractive
technologies for applications, with a large range of deployments
such as production, economy, or banking. Under the hood,
Blockchain technology is a type of distributed database that
supports untrusted parties. In this paper we focus Hyperledger
Fabric, the first blockchain in the market tailored for a pri-
vate environment, allowing businesses to create a permissioned
network. Hyperledger Fabric implements a PBFT consensus in
order to maintain a non forking blockchain at the application
level. We deployed this framework over an area network between
France and Germany in order to evaluate its performance when
potentially large network delays are observed. Overall we found
that when network delay increases significantly (i.e. up to 3.5
seconds at network layer between two clouds), we observed that
the blocks added to our blockchain had up to 134 seconds offset
after 100th block from one cloud to another. Thus by delaying
block propagation, we demonstrated that Hyperledger Fabric
does not provide sufficient consistency guaranties to be deployed
in critical environments. Our work, is the fist to evidence the
negative impact of network delays on a PBFT-based blockchain.

I. INTRODUCTION

Blockchains are distributed databases with no central au-
thority and no point of trust. Unlike centralized systems or
client/server databases where data is stored only in one or a
group of servers, Blockchain database, also called “ledger”, is
stored on every peer in the network. Although being invented
more than 30 years ago [1], blockchains received attention
only after the explosion of Bitcoin [2].

Bitcoin [2], Ethereum [19] and many other popular
blockchains are established on a public permissionless
blockchain technology, opened to anyone, where participants
interact anonymously. That is, in public or permissionless
blockchains, everyone can join and use its services without
providing any identity. Private or permissioned blockchains,
in contrary, are closed blockchains open only to a set of
known, identified users. Hyperledger Fabric [5], [13], [20] is
an innovative project started at Linux Foundation [9], now
led and managed by two companies: IBM and Digital Asset.
Hyperledger Fabric aims at providing a resilient, flexible, and
confidential blockchain framework. It is considered the foun-
dation of private, open-source blockchain applied to business.
Along the spree of Hyperledger Fabric development and usage
since the first release in 2016, Fabric is being constantly
improved into newest versions (version 1.4 at the end of 2018).

Hyperledger Fabric follows an Execute-Order-Validate phi-
losophy while most of the existing PBFT blockchains imple-
ment an Order-Execute architecture.

This paper focus on understanding the function of Hyper-
ledger Fabric through the 3-phase procedure execute-order-
validate. To do so we present a thorough explanation of how
the components of Fabric interact with each other. Then we
dive deep into the roles of Hyperledger Fabric at applica-
tion and network layer. Then we evaluate its performances
by varying delays at the network layer. We experiment a
simple scenario where blocks are produced every 900ms. We
increase the transmission delays up to 3.5 seconds. This yield
to dramatic blockchain desynchronisation. The 100th block
may be received by a peer with 134 seconds delay, making
Hyperledger Fabric not suitable for critical applications such
as banking or trading.

This paper is organized as follows: the next section briefly
presents related work, Section III discusses the main com-
ponents of Hyperledger Fabric, while Section IV explains in
details its Execute-Order-Validate architecture and the strength
of this novel architecture with respect to the Order-Execute
architectures. Section V presents our methodology and the
experimental results obtained with Hyperledger Fabric de-
ployed on two clouds situated in France and Germany. Finally,
Section VI concludes our article.

II. RELATED WORK

There are two major trends in the design of blockchain
systems: proof-of-work based blockchains (e.g. Bitcoin,
Ethereum) and PBFT-based blockchains (e.g. Hyperledger,
Tendermint, Byzcoin, or Bitcon-NG). In the Proof-of-Work
(PoW) based blockchains, a miner must solve a complex puz-
zle in order to have the ability to add a block to the blockchain.
This is what the cryptocurrency world calls “mining” where
clients “prove” that they have done the “work”. This is a public
blockchain which is based on old Order-Execute architecture
and a perfect case study for the possible inefficiencies of
blockchain that system takes about ten minutes to add a
new block to the blockchain. Bitcoin is the most successful
cryptocurrency in the last few years. Everybody can join into
this blockchain network.

One of the most representative PoW blockchains are Bitcoin
and Ethereum( [3], [19]). Ethereum is the first blockchain
that use smart contracts. Ethereum is similar to Bitcoin, as



Fig. 1. Structure of Fabric: the main components.

it offers a cryptocurrency but extends Bitcoin capability with
smart contract. The theoretical study of proof-of-work based
blockchains started with the analysis of the Bitcoin agreement
aspects in various synchronous models. The major criticisms
for the proof-of-work approach are as follows: it is assumed
that the honest miners hold a majority of the computational
power, the generation of a block is energetically costly which
yielded to the creation of mining pools and finally, the multiple
blockchains that may coexist in the system.

In order to overcome these drawbacks, permissioned
blockchains such as Tendermint [4], Byzcoin [27], or
Bitcon-NG [28] have been proposed. These blockchains use
Byzantine-fault tolerant (BFT) consensus [23] of Practical
Byzantine-Fault Tolerant [24] or other variants of these two
classes of consensus protocols. However, they all follow
the same Order-Execute approach. The limitations of Order-
Execute architecture will be explained deeply in Section IV.
Hyperledger Fabric ( [13], [20]) builds on top of a PBFT
protocol but its architecture follows a Execute-Order-Validate
architecture that will be explained in details in the next section.

Blockchain systems, beyond their incontestable features
such as decentralization, simple design and relative easy use,
are not free of incidents and limitations. The most popular in-
cident reported for Ethereum, for example, was the 60 million
dollars Ether theft, which was possible by simply exploiting
an error in the code and the lack of system specification.
Moreover, Blockchains are now the new attack targets of
hackers around the world and also the main subject for the
security researcher. One type of attack they can do is the
hijacking attack, a type of network security attack in which the
attacker takes control of the communication at the networking
level.

In [25] the authors describe two methods for hijacking
Bitcoin: one by BGP hijacking and the second one by delaying
propagation. They demonstrated that “any network attacker
can hijack few (<100) BGP prefixes to isolate ∼50% of the
mining power”, “slow down block propagation by interfering
with few key Bitcoin messages”.

Hijacking attack is also the premise for a full-fledged attacks

on Ethereum blockchain to steal coins [25]. They can multiply
an asset by 200,000 in just 10 hours in consortium or private
context.

To the best of our knowledge no previous work has been
done in hijacking PBFT-based blockchains. In this work
we target hijacking Hyperledger Fabric by delaying block
propagation. Interestingly, this type of attack can be easilly
performed although Hyperledger Fabric is a private blockchain
where participants use their credentials and all the traffic
between them is signed and encrypted.

III. FABRIC COMPONENTS AND ACTORS

In this section, we describe some important components of
Hyperledger Fabric in more details. Fig. 1 shows some of
them.

Smart contract or chaincode- A smart contract, or “chain-
code” called by Hyperledger Fabric, is a business logic or
rules, represented by an application and invoked by a client
application external to the blockchain network in order to
manage access and modification to a set of key-value pairs
in the “World State” of Ledger. It is installed onto peer nodes
and started (instantiated) on channels.

Ledger- A ledger (see Fig. 2) is a place to store the
databases. There is only one logical ledger for each channel
and every peer in that channel has the same copy of that logical
ledger. It consists of two distinct sub-databases, though related,
a “blockchain” and the “world state”, also called as “state
database”.

• “Blockchain” is a chain of blocks that each block contains
a hash of the previous block and its data. These blocks
are immutable, that means if once a block has been added
to the chain, it cannot be changed or deleted.

• In contrast, the “world state”, also known as the “current
state” or “state database”, is a database containing the
latest values for all keys in order to read, query, update
or delete from chaincode efficiently. Peers commit the
latest values to the ledger world state for each valid
transaction included in a processed block. Supported
databases include LevelDB [8] and CouchDB [7].



Fig. 2. Ledger: “World State” and “blockchain”.

Fig. 3. Peer with the role Endorser and Committer.

Endorsement policy- determines which endorsing peers on a
channel must execute proposals and the required combination
of responses. A validated transaction must satisfy the endorse-
ment policy in order not to be marked as invalid by committing
peers. This endorsement policy must be defined at the time the
chaincode is started (instantiated).

Peer- A blockchain network component, is owned and main-
tained by members, contains ledgers and may has chaincodes
installed on in order to execute proposals from clients. Fig. 3
shows two main roles of the peer:

• Endorsing peer (Endorser): peer on which a chaincode
was installed. It has the ability to execute and reply to the
proposal attached to that chaincode. It is not mandatory
that all peers in a channel are endorsing peers.

• Committing peer (Committer): all peers in a channel
are committing peers who will verify all transactions
submitted before committing to and updating the ledger.

Ordering Service- A collection of special nodes in the
blockchain network called Orderers have a mission in ordering
transactions into a block for each channel. Orderers maintain
no ledger. There are two type of pluggable ordering service
that are “Solo” and “Kafka”. Solo is used for developing
or testing purpose with only one Orderer node. Meanwhile,
“Kafka” is intended for production with multiple Orderer
nodes combine with Kafka/Zookeeper cluster [11]. Following
the documentation of Fabric [13], in the currently available
releases, ordering service use Kafka and Zookeeper. In future
releases, it will use a Raft [6] [21] consensus ordering service
instead.

Membership Service Provider (MSP)- an abstract compo-
nent that provides credentials to clients and peers. These cre-
dentials are used for clients to authenticate their transactions,
meanwhile peers use to authenticate their proposal responses.

Proposal- A request from client to endorsing peer (endorser)
for endorsement. There are two types of proposal, one is
Instantiate, another one is Invoke (read/write).

Transaction- By gathering proposal responses from en-
dorsing peers, client package the results and endorsements
into a transaction for sending to Orderer. Invoke transaction
performs read or write data operations from the ledger. Whilst,
Instantiate transaction starts and initializes a chaincode on a
channel.

Channel- an abstract relation between organizations. Each
channel keeps data isolated by having different ledger which is
shared across the peers in the same channel. Channel is defined
by the Genesis Block (the first block of the blockchain on the
ledger) and Configuration Block.

Organization- the entities that own the peers. By adding
its Membership Service Provider (MSP) to the network, an
organization is joined to that network, map to more than one
MSP. Using MSP and valid identity issued by organizations,
members of the network may verify signatures each other (e.g.
over transactions).

IV. HYPERLEDGER FABRIC ARCHITECTURE

In this section, we describe briefly Execute-Order-Validate
paradigm in Hyperledger Fabric and explain the limitations of
Order-Execute paradigm.

A. Order-Execute Architecture

Most of the blockchain systems precedent to Hyperledger
Fabric used an Order-Execute architecture. Following this
architecture, first, it orders the transactions and propagates
to all the peers. Second, each peer executes the transactions
sequentially. This paradigm is illustrated by Fig. 4 below.

Fig. 4. Order-Execute architecture.

Although this architecture is simple and widely used, it has
several limitation when apply onto permissioned blockchain.
Here are some important limitations:

• Transactions must be deterministic. The transactions are
ordered first and then sent to all peers to execute. In this
second step, if the transactions are not deterministic, there
is no guarantee of the same result after executing and the
ledger can be different from peer to peer.

• All the peers must maintain the smart contract to execute
the transactions, lead to transaction data or smart contract
logic be easily to view. This case violates the confiden-
tiality which is required in permissioned blockchain.



• The sequential execution of all transactions by all peers
limits the performance, lead to bottleneck and easy
denial-of-service (DoS) attacks.

B. Execute-Order-Validate architecture of Fabric

Due to some limitations of the paradigm above, Hyperledger
Fabric adopts Execute-Order-Validate paradigm (showed in
Fig. 5). This new architecture is resilient, flexible, scalable,
confident with modular design for permissioned blockchains.

Fig. 5. Three phases architecture of Hyperledger Fabric.

a) Execution phase: Clients sign and send the proposal
to the endorsers and wait for their reply. The endorsers, the
peers who have the chaincode installed, execute the opera-
tion on the chaincode individually without synchronization
with other endorser peers. Endorsers create two values called
Writeset and Readset with the result of the operation and then
cryptographically sign this endorsement, send it back to the
client in a proposal response. The client that receives these
responses verify if they satisfy the endorsement policy then it
creates a transactions that assembles these responses for the
next phase, Ordering phase.

b) Ordering phase: Client sends a transaction to the
ordering service after receiving enough proposal responses
from endorser peers. The ordering service order all submitted
transactions per channel. Moreover, in order to improve the
throughput, the ordering service combines transactions for a
channel into blocks. Ordering service, then, broadcasts blocks
to all the peers in a channel.

c) Validating phase: Each peer in a channel after receiv-
ing blocks from ordering service will run the following three
sequential steps:

• Verify all transactions within the block that must satisfy
the endorsement policy. If the endorsement is not satis-
fied, the transaction is marked as invalid.

• Check all transactions in the block sequentially by com-
paring the versions of the key in the READSET field to
those in the World State. If the versions do not match,
the transaction is marked as invalid.

• Append the block to the blockchain and update the ledger
as well.

The Fig. 6 below gives an overview of the whole picture how
a block is added into the blockchain in Hyperledger Fabric by
showing the process from proposal transmission to updating
ledger.

V. EXPERIMENTS

This experiment will focus on the delay between nodes in
Hyperledger Fabric and its impact on the update block into
the ledger processes.

Fig. 6. High level transaction flow.

Fig. 7. Topology of this experiment.

A. Setup

In this experiment, nodes are hosted in 2 cloud instances:
OneLab (https://onelab.eu/team, LIP6, Sorbonne University)
and the second from Heidelberg University. Each cloud in-
stance has 2 vCPU (2.6GHz in Sorbonne and 2.4GHz in
Heidelberg), 4GB of RAM, runs Ubuntu 16.04.5 LTS. Version
of Docker [12] using is 18.09.0. On this infrastructure, a
Hyperledger Fabric blockchain network in version 1.2.1 is
created. There is a single channel on Kafka ordering service
type with 3 Zookeepers nodes, 4 Kafka brokers and 3 orderers,
all on distinct VMs. There are also 6 peers in total that
belong to 3 organizations called: ”Sorbonne”, ”Heidelberg”
and ”Poland”. Each organization has 2 peers (peer0 and peer1),
one of them is endorser (peer0). The communication uses TLS
(Transport Layer Security). Moreover, Network Time Protocol
(NTP) service is used to synchronize nodes clocks.

The tool to setup delays is TC [14] (Traffic Control) of
Linux.

B. Methodology

In every experiments, we use the same endorsement policy
AND (”Heidelberg” peer, ”Poland” peer) in order to satisfy
that the Execute and Orderer phase will not affected to



Fig. 8. The result of most important delays.

Sorbonne peer. ”Sorbonne” peers only update blocks into the
ledger. The delay between the two clouds will be increased
up to lost connection. Based on this, in each delay different,
we flood 1000 transactions sequentially. We will observe the
time a block is added in ”Sorbonne” peers compared to the
time that block will be added in Heidelberg. In this way we
will know the time duration peers in Sorbonne need to wait
compare to Heidelberg peer just for adding the same block
into the blockchain.

C. Results

In our experiments we used Hyperledger Fabric version
1.2.1. The transactions were sent sequentially one after another
about 85ms in average. Blocks were create each 900ms, 46
Kbytes in size, containing 10 transactions. Using the command
PING to detect the duration between Heidelberg and Sorbonne
cloud, we achieved 21.7ms in average.

We run the experiment with different delay values and for
each delay value we execute 5 runs. Table I indicates the offset
time when add a block into ledger on Sorbonne compared to
that block in Heidelberg. 1

In case of delays smaller than 2s, the offset of adding a
block in Sorbonne and Heidelberg depend on the delay value.
In general, the offset time between them somehow we can
consider the same.

When delays are greater than or equal to 2s, this offset time
increases with the number of blocks. For example, in case of
delay 2s, when the first block is added in Heidelberg in time
t0, that first block will be added later in t1 = t0 + 4056ms, just

1All experiment result are stored on google drive [22].

TABLE I
OFFSET VALUES BETWEEN SORBONNE AND HEIDELBERG

ith-Block No delay 1000ms 2000ms 2500ms 3000ms 3500ms

1 84.2 2288.6 4056 5566 6858 8778
10 168 985.2 7893 9959 14782 19801
19 18.8 972.4 10038 14312 22468 30605
30 72 951.8 10593 21190 33642 46116
40 90.8 1042.8 14239 24631 39864 55820
49 37.8 1046.4 16392 30685 47866 70567
60 45.2 1036 18553 36192 59530 82877
70 92.4 1044.4 21825 42040 66445 96450
79 74.6 1023.8 24248 47042 74199 107545
88 58 1066 26382 51754 82357 119012
97 95.6 974 28674 56469 90585 126680

for 2s delay. And this offset is increased when more blocks are
added, it takes more than 28 seconds for the 100th block. If the
delay is set to 3500ms, the offset is increased from 8778ms
up to 128 seconds for the first blocks and 100th block. In this
situation, that means a query for an asset in Heidelberg will
be up to date value, on the contrary, the same query will get
an old value of that asset from the Sorbonne site in the same
time.

Moreover, we run one experiment using 3500ms delay and
we increased the number of transactions up to 30000, there
were nearly 3000 blocks submitted and the offset now was
increased up to 1 hour and 10 minutes.

When we increased the delay to 3580ms, we observed
that after few blocks added in Sorbonne the system stopped.
By verifying in the network layer, the Sorbonne node was
considered as disconnected to the docker swarm. That is the
cause the Sorbonne node cannot receive any blocks from the



blockchain network to update the ledger.
In order to understand this unexpected disconnection we

investigate the communications using Wireshark tool the fol-
lowing scenario. The communication delay was set to 3500ms.
We oserved that each time a peer received a block, this peer
sends back to Orderer a signal. When the Orderer received
that signal, it sends the next block to the peer. With the delay
set to 3500ms, the transmission time was increased by this
delay and linearly increases with the number of blocks.

Moreover, this offset will be increased due to the buffer size
of the Orderer. If this buffer is big, the Orderer can store more
blocks and the offset increases. When the buffer reaches its
limit, the Orderer is considered as halting which affects the
whole system.

In consequence, small network delays have a tremendous
impact on the offset. Fig. 9 illustrates this result.

Fig. 9. Impact of small network delay on the offset.

VI. CONCLUSION

This paper is the first to present the impact of network
delays on a PBFT-based blockchain, i.e. Hyperledger Fabric.
We deployed Hyperledger Fabric on two clouds situated in
France and Germany and introduced transmission delays up
to 3.5 seconds. In our experiments we observed that the 100th

block is updated in the two ledgers with a delay up to 134
seconds when the transmission delay is 3.5 seconds. Moreover,
the system brutally halts when delays are greater than 3.5
seconds. We conclude that the tested version of Hyperledger
Fabric (the most up to date at the time of our experiments)
cannot be used in critical applications such as banking or
trading.

Our study extends the recent work on hijacking permis-
sionless blockchains and advocates that existing blockchains
architectures should be redesigned in order to be resilient to
network attacks.

As future work we intend to extend our study to other types
of blockhains (Tendermint, IOTA, Hashgraphs) and to long
distance connections. We currently plan replay our experiment
by deploying Hyperledger Fabric on two clouds situated in
France and Australia.
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