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CATALYSIS IN THE TRACE CLASS AND WEAK TRACE

CLASS IDEALS

GUILLAUME AUBRUN, FEDOR SUKOCHEV, AND DMITRIY ZANIN

Abstract. Given operators A,B in some ideal I in the algebra LpHq of all
bounded operators on a separable Hilbert space H, can we give conditions
guaranteeing the existence of a trace-class operator C such that B b C is
submajorized (in the sense of Hardy–Littlewood) by AbC ? In the case when
I “ L1, a necessary and almost sufficient condition is that the inequalities
TrpBpq ď TrpApq hold for every p P r1,8s. We show that the analogous
statement fails for I “ L1,8 by connecting it with the study of Dixmier traces.

1. Introduction

Let H be an infinite-dimensional separable Hilbert space, LpHq be the algebra
of all bounded operators on H and C0 “ C0pHq the set of compact operators.

Given A P C0, we denote by µpAq :“ tµpk,Aqukě0 the sequence of singular
values of the operator A (that is, eigenvalues of the operator |A|) arranged in the
decreasing order and taken with multiplicities (if any). We say that B P C0 is
submajorized by A P C0 in the sense of Hardy–Littlewood (written B ăă A) if for
every integer n

n
ÿ

k“0

µpk,Bq ď
n

ÿ

k“0

µpk,Aq.

If A,B P C0 are such that B ăă A, then B b C ăă A b C for every C P
C0.

1The converse does not hold, even in the finite-dimensional setting: if A,B,C

are such that µpAq “ p0.5, 0.25, 0.25, 0, ¨ ¨ ¨ q, µpBq “ p0.4, 0.4, 0.1, 0.1, 0, ¨ ¨ ¨ q and
µpCq “ p0.6, 0.4, 0, ¨ ¨ ¨ q, one checks easily that B b C ăă A b C while B is not
submajorized by A. This example appears in [7] and is related to the phenomenon
of catalysis in quantum information theory (the operator C being called a catalyst).
This corresponds to the situation where the transformation of some quantum state
(in that case, B) into another quantum state (in that case, A) is only possible in
the presence of an extra quantum state (in that case, C) although the latter is not
consumed in the process. It is argued in [7] that this phenomenon can be used to
improve the efficiency of entanglement concentration procedures.

The research of GA was supported by the ANR projects OSQPI (ANR-11-BS01-0008) and
StoQ (ANR-14-CE25-0003). The research of FS and DZ has been supported by the ARC projects
DP140100906 and DP 120103263.

1Suppose first that C ě 0 has finite rank. That is, C “
řn´1

k“0
µpk, Cqpk, where pk, 0 ď

k ă n, are pairwise orthogonal rank one projections. Set Ak “ A b µpk,Cqpk and Bk “ B b
µpk,Cqpk. It is immediate that Bk ăă Ak for 0 ď k ă n. It follows from Lemma 2.3 in [4] that
řn´1

k“0
Bk ăă

řn´1

k“0
Ak or, equivalently, BbC ăă AbC. For an arbitrary C, the assertion follows

by approximation.
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In the following we restrict ourselves to A,B being positive elements in
Ş

pą1 Lp

(Lp denoting the Schatten–von Neumann ideal) and compare the following state-
ments.

(i) There exists a nonzero C P L1 such that B b C ăă A b C.
(ii) For every p ą 1, we have TrpBpq ď TrpApq.

One checks that (i) implies (ii). This follows from the monotonicity of A ÞÑ
TrpApq with respect to submajorization and from the formula

TrpS b T q “ TrpSq ¨ TrpT q, S, T P L1.

There is some hope to reverse the implication (i) ñ (ii) if we allow closure of the
set

tB : DC P L1 such that B b C ăă A b Cu

with respect to some topology (for the finite-dimensional case, see [1, 9, 15]).
To explain why some closure is needed, we give an example of a pair A,B of pos-

itive operators satisfying (ii) but not (i). Consider positive operators with µpAq ‰
µpBq and such that TrpBpq ď TrpApq for p P p1,8q, while TrpBp0q “ TrpAp0q for
some p0 P p1,8q (such an example exists among finite rank operators). Note that
the norm in Lp0

is strictly monotone with respect to submajorization (see Proposi-
tion 2.1 in [2]). That is, if K P Lp0

pHq and if L ăă K, then either µpLq “ µpKq or
}L}p0

ă }K}p0
. Suppose that (i) holds, i.e. that B bC ăă AbC for some nonzero

C P L1 (that is, no closure is taken). We then have TrppB bCqp0q “ TrppAbCqp0q
and, by strict monotonicity, µpk,B b Cq “ µpk,A b Cq for all k ě 0. Now, taking
into account that the sequences µpB b Cq and µpA b Cq coincide with decreasing
rearrangements of sequences µpBq b µpCq and µpAq b µpCq respectively, we infer
that µpAq “ µpBq.

As we shall see, the choice of the topology plays a crucial role. Prior to stating
the precise question, we recall a few definitions and relevant facts.

There is a remarkable correspondence between sequence spaces and two-sided
ideals in LpHq due to J.W. Calkin, [3]. Recall, that a linear subspace J in LpHq
is a two-sided ideal if X P J and Y P LpHq imply Y X,XY P J . Every non-trivial
ideal necessarily consists of compact operators. A Calkin space J is a subspace of
c0 (the space of all vanishing sequences) such that x P J and µpyq ď µpxq imply
y P J , where µpxq is the decreasing rearrangement of the sequence |x|. The Calkin
correspondence may be explained as follows. If J is a Calkin space then associate
to it the subset J in LpHq

J :“ tX P C0 : µpXq P Ju.

Conversely, if J is a two-sided ideal, then associate to it the sequence space

J :“ tx P c0 : µpxq “ µpXq for some X P J u.

For the proof of the following theorem we refer to Calkin’s original paper, [3], and
to B. Simon’s book, [13, Theorem 2.5].

Theorem 1 (Calkin correspondence). The correspondence J Ø J is a bijection
between Calkin spaces and two-sided ideals in LpHq.

In the recent papers [8], [14] this correspondence has been specialised to quasi-
normed symmetrically-normed ideals and quasi-normed symmetric sequence spaces
[10]. We use the notation } ¨ }8 to denote the uniform norm on LpHq.
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Definition 2. (i) An ideal E in LpHq is said to be symmetrically (quasi)-normed
if it is equipped with a Banach (quasi)-norm } ¨ }E such that

}XY }E , }Y X}E ď }X}E}Y }8, X P E , Y P LpHq.

(ii) A Calkin space E is a symmetric sequence space if it is equipped with a Banach
(quasi)-norm } ¨ }E such that }y}E ď }x}E for every x P E and y P c0 such
that µpyq ď µpxq.

For convenience of the reader, we recall that a map } ¨ } from a linear space X

to R is a quasi-norm, if for all x, y P X and scalars α the following properties hold:

(i) }x} ě 0, and }x} “ 0 ô x “ 0;
(ii) }αx} “ |α|}x};
(iii) }x ` y} ď Cp}x} ` }y}q for some C ě 1.

The couple pX, } ¨ }q is a quasi-normed space and the least constant C satisfying
the inequality (iii) above is called the modulus of concavity of the quasi-norm } ¨ }
and denoted by CX . A complete quasi-normed space is called quasi-Banach.

It easily follows from Definition 2 that if pE , } ¨ }Eq is a quasi-Banach ideal, X P E

and Y P LpHq are such that µpY q ď µpXq, then Y P E and }Y }E ď }X}E . In
particular, it is easy to see that if E is Calkin space corresponding to E , then
setting }x}E :“ }X}E (where X P E is such that µpxq “ µpXq) we obtain that
pE, } ¨ }Eq is a quasi-Banach symmetric sequence space. The converse implication
is much harder and follows from main results of [8, 14].

With these preliminaries out of the way, we are now in a position to formulate
the main question.

Question 3. Let I be a (quasi-)Banach ideal such that I Ă
Ş

pą1 Lp. Let 0 ď A P
I. Consider the sets

PMpA, Iq “
!

0 ď B P I : TrpBpq ď TrpApq @p ą 1
)

.

CatalpA, Iq “
!

0 ď B P I : D0 ď C P L1 : C ‰ 0, B b C ăă A b C
)

.

Let also CatalpA, Iq denote the closure of CatalpA, Iq with respect to the quasi-norm
of I. Is it true that PMpA, Iq “ CatalpA, Iq?

Note that PMpA, Iq is a closed subset in I. Indeed, let Bn P PMpA, Iq and
let Bn Ñ B in I as n Ñ 8. Observe that it follows from Definition 2 that I is
continuously embedded into LpHq and therefore, it follows from the Closed Graph
Theorem that for every fixed p ą 1, the identical embedding I Ă Lp is continuous,
in particular, there exists a constant cpp, Iq such that }C}p ď cpp, Iq}C}I , C P I.

Thus,
ˇ

ˇ

ˇ
}Bn}p ´ }B}p

ˇ

ˇ

ˇ
ď }B ´ Bn}p ď cpp, Iq}B ´ Bn}I Ñ 0.

Hence,
TrpBpq “ lim

nÑ8
TrpBp

nq ď TrpApq, p ą 1.

We also have that CatalpA, Iq Ă PMpA, Iq. Indeed, if B b C ăă A b C, then

TrpBpq “
TrppB b Cqpq

TrpCpq
ď

TrppA b Cqpq

TrpCpq
“ TrpApq, p ą 1.

Since PMpA, Iq is closed, it follows that the inclusion CatalpA, Iq Ă PMpA, Iq
always holds.



4 GUILLAUME AUBRUN, FEDOR SUKOCHEV, AND DMITRIY ZANIN

In this paper, we show that the answer to Question 3 is positive when I “ L1

and negative when I “ L1,8. Recall that L1,8 is the principal ideal generated by
the element A0 “ diagpt1, 1

2
, 1
3
, ¨ ¨ ¨ uq. Equivalently,

L1,8 “ tA P C0 : sup
kě0

pk ` 1qµpk,Aq ă `8u.

It becomes a quasi-Banach space (see e.g. [8, 14]) when equipped with the quasi-
norm

}A}1,8 “ sup
kě0

pk ` 1qµpk,Aq, A P L1,8.

Here are our main results. We leave open the question of giving a complete
description of the set CatalpA,L1,8q.

Theorem 4. For every 0 ď A P L1, the sets PMpA,L1q and CatalpA,L1q coincide.

Theorem 5. There exists 0 ď A P L1,8 such that the set PMpA,L1,8q strictly

contains the set CatalpA,L1,8q.

It is actually simple to deduce Theorem 4 from the finite-dimensional considera-
tions from [1], as we explain in Section 2. This is in sharp contrast with Theorem 5,
whose proof is infinite-dimensional in its nature and uses crucially fine properties of
Dixmier traces, which we introduce in Section 3. The heart of the argument behind
Theorem 5 appears in Section 4, while we relegate some needed computations to
Section 5.

The authors thank the anonymous referees for careful reading of the manuscript
and numerous suggestions which have improved the exposition.

2. The case of L1

We derive Theorem 4 from the following result which appears in [15] (see also
Lemma 2 in [1]).

Lemma 6. Let A,B be positive finite rank operators. Assume that for every 1 ď
p ď `8, we have the strict inequality }B}p ă }A}p. Then there exists a nonzero
finite rank operator C such that B b C ăă A b C.

Proof of Theorem 4. Let us show the non-trivial inclusion, i.e. that every B P
PMpA,L1q belongs to CatalpA,L1q.

Let pk, k ě 0, be a rank one eigenprojection of the operator A which corresponds
to the eigenvalue µpk,Aq. Similarly, let qk, k ě 0, be a rank one eigenprojection of
the operator B which corresponds to the eigenvalue µpk,Bq. We have

A “
8
ÿ

k“0

µpk,Aqpk, B “
8
ÿ

k“0

µpk,Bqqk.

Without loss of generality, µp0, Aq “ 1. It follows that

p1 ´ p1 ´ εqpqTrpApq ě p1 ´ p1 ´ εqpqµp0, Aqp “ 1 ´ p1 ´ εqp ě εp.

The latter readily implies

TrpApq ´ εp ě p1 ´ εqpTrpApq, p ě 1, ε P p0, 1q.

Now, fix ε P p0, 1q and select n such that
8
ÿ

k“n

µpk,Aq ă ε,

8
ÿ

k“n

µpk,Bq ă ε.
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Set

An “
n´1
ÿ

k“0

µpk,Aqpk, Bn “
n´1
ÿ

k“0

µpk,Bqqk.

It is clear that

TrpAp
nq “ TrpApq ´

8
ÿ

k“n

µpk,Aqp ě TrpApq ´ p
8
ÿ

k“n

µpk,Aqqp

ą TrpApq ´ εp ě p1 ´ εqpTrpApq, p ě 1.

Therefore,

p1 ´ εqpTrpBp
nq ď p1 ´ εqpTrpBpq ď p1 ´ εqpTrpApq ă TrpAp

nq, p ě 1.

Since both An and Bn are finite rank operators, it follows from Lemma 6 and the
first footnote that there exists a finite rank operator Cn such that

p1 ´ εqBn b Cn ăă An b Cn ăă A b Cn.

In particular, we have that p1´εqBn P CatalpA,L1q. Observing that }B´Bn}1 ď 1,
we further obtain

}B ´ p1 ´ εqBn}1 ď ε}B}1 ` p1 ´ εq}B ´ Bn}1 ď εp}B}1 ` 1q.

Since ε is arbitrarily small, it follows that B P CatalpA,L1q. �

3. Dixmier traces

The crucial ingredient in the proof is the notion of a Dixmier trace on L1,8.
Let ℓ8 stand for the Banach space of all bounded sequences x “ pxnqně0 equipped
with the usual norm }x}8 :“ supně0 |xn|. A generalized limit is any positive linear
functional on ℓ8 which equals the ordinary limit on the subspace c of all convergent
sequences.

Remark 7. Given a sequence pxnqně0 P ℓ8, there is a generalized limit ω such
that ωppxnqq “ lim supnÑ8 xn.

Proof. Fix x “ pxnq P ℓ8 and let the sequence pnkqkě0 be such that limkÑ8 xnk
“

lim supnÑ8 xn. Consider the set of functionals pϕnk
qkě0 on ℓ8 defined by ϕnk

pynq :“
ynk

, y “ pynq P ℓ8, k ě 0. The set pϕnk
qkě0 belongs to the unit ball B of the Ba-

nach dual ℓ˚
8. The set B is compact in the weak˚ topology σpℓ˚

8, ℓ8q and therefore
the set pϕnk

qkě0 possesses a cluster point ω P ℓ˚
8 in that topology. The fact that ω

is a generalized limit on ℓ8 such that ωppxnqq “ lim supnÑ8 xn follows immediately
from the definition of the weak˚ topology. �

The Dixmier traces are defined as follows.

Theorem 8. Let ω be a generalized limit. The mapping Trω : L`
1,8 Ñ R

` defined
for 0 ď A P L1,8 by setting

TrωpAq :“ ω

˜#

1

logpN ` 2q

N
ÿ

k“0

µpk,Aq

+8

N“0

¸

is additive and, therefore, extends to a positive unitarily invariant linear functional
on L1,8 called a Dixmier trace.
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Note that the positivity of generalized limits implies that

(1) |TrωpAq| ď }A}1,8

for every Dixmier trace Trω and A P L1,8.
Let us comment on how additivity is proved in Theorem 8. This is usually

achieved under the extra assumption that ω is scale invariant (see Theorem 1.3.1
in [11]), i.e. that ω ˝σk “ ω for all positive integer k, where σk : ℓ8 Ñ ℓ8 is defined
as

σkpx1, x2, . . . , xn, . . . q “ px1, . . . , x1
loooomoooon

k times

, x2, . . . , x2
loooomoooon

k times

, . . . , xn, . . . , xn
loooomoooon

k times

, . . . q.

Under this extra assumption the map Trω is actually additive on the larger ideal
M1,8 (we refer to [11, Example 1.2.9] for the definition of the latter ideal and to
[11, Section 6.8 ] for historical background). In the form presented here, Theorem
8 follows from Theorem 17 in [12]. For the reader’s convenience we reproduce the
argument here.

Proof of Theorem 8. Given A P L1,8, consider the sequence pxN pAqq8
N“0 defined

by

xN pAq “
1

logpN ` 2q

N
ÿ

j“0

µpj, Aq.

It is not hard to check that for all all positive integer k,

(2) lim
NÑ8

xN pAq ´ xkN pAq “ 0.

Let E Ă ℓ8 be the subspace

E “ span tσkptxN pAquq : k ě 1, A P L1,8u .

It follows from (2) that the equation ω ˝ σkpxq “ ωpxq is satisfied for x P E. By a
version of the Hahn–Banach theorem (see [6], Theorem 3.3.1), the linear functional
ω|E can be extended to a generalized limit ω1 : ℓ8 Ñ R which is scale-invariant.
The usual argument ([11], Theorem 1.3.1) implies that Trω1 (which coincides with
Trω on L1,8) is additive on L1,8. �

We also need a version of Fubini’s theorem for Dixmier traces.

Theorem 9. For every A P L1,8 and for every C P L1, we have AbC P L1,8 and

(3) }A b C}1,8 ď }A}1,8}C}1.

Moreover, for every Dixmier trace Trω on L1,8, we have

(4) TrωpA b Cq “ TrωpAqTrpCq.

Proof. We may assume }A}1,8 “ 1. Recall that A0 “ diagpt1, 1
2
, 1
3
, ¨ ¨ ¨ uq. We have

for all k ě 0,

µpk,A b Cq ď µpk,A0 b Cq ď
1

k ` 1

k
ÿ

j“0

µpj, Cq ď
}C}1
k ` 1

.

where the second inequality follows from Proposition 3.14 in [5]. This proves (3).
Observe that both sides of (4) depend linearly on A and C (thanks to Theorem

8). Thus, we can assume without loss of generality that A,C ě 0. When C is a rank
one projection, (4) follows from Theorem 8 since in that case µpk,AbCq “ µpk,Aq
for all k ě 0. Again appealing to linearity of Dixmier traces, we infer the result for
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the finite rank operator C and when A P L1,8 is arbitrary. Consider now a general
C P L1 and let pCnq be a sequence of finite rank operators such that }C´Cn}1 Ñ 0.
We have

|TrωpA b Cnq ´ TrωpA b Cq| ď }A b pC ´ Cnq}1,8 ď }A}1,8}C ´ Cn}1

and this quantity tends to 0 as n goes to infinity. Consequently,

TrωpA b Cq “ lim
nÑ8

TrωpA b Cnq “ lim
nÑ8

TrωpAqTrpCnq “ TrωpAqTrpCq. �

As a corollary, we obtain that Dixmier traces give necessary conditions for catal-
ysis.

Corollary 10. Let 0 ď A P L1,8 and 0 ď B P CatalpA,L1,8q. Then for every
Dixmier trace Trω, one has

(5) TrωpBq ď TrωpAq.

Proof. We know from (1) that Dixmier traces are continuous on L1,8, and there-
fore we may assume that B P CatalpA,L1,8q. By definition of the latter set
(see Question 3), there exists a nonzero positive C in L1 with the property that
B b C ăă A b C. Combining the definition of Hardy-Littlewood submajorization
ăă and the definition of a Dixmier trace Trω (see Theorem 8) we infer that the
inequality TrωpB bCq ď TrωpAbCq holds for every Dixmier trace Trω. Inequality
(5) now follows from (4) and from the fact that TrpCq ą 0. �

4. The case of L1,8: the main argument

Here is the main technical result used in the proof of Theorem 5. In the lemma
below, we tacitly identify a sequence in the space ℓ8 with the corresponding diago-
nal operator. For I Ă N, we note by χI the sequence defined by χIpnq “ 1 if n P I

and χIpnq “ 0 otherwise.

Lemma 11. Let I be the subset of N defined as

I “
ď

ně0

r22n, 22n`1q.

Consider the operator2

B “
à

mPI

2´mχr0,2mq.

Then B P L1,8. Moreover,

(6) lim sup
sÑ0`

sTrpB1`sq ď
5

9 log 2
ă

2

3 log 2
ď lim sup

NÑ8

1

logN

N
ÿ

k“0

µpk,Bq.

Let us postpone the proof of Lemma 11 and show how it implies the result
stated in Theorem 5. Consider B as in Lemma 11 and fix a number α such that

5
9 log 2

ă α ă 2
3 log 2

. Recall that A0 “ diagpt1, 1
2
, 1
3
, ¨ ¨ ¨ uq. Since

lim
sÑ0`

sTrppαA0q1`sq “ lim
sÑ0`

sζpsqα1`s “ α,

it follows from (6) that there exists δ ą 0 such that the inequality

(7) TrpB1`sq ď TrppαA0q1`sq

2In the subsequent formulas, the symbol ‘ stands for the direct sum of operators.
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holds whenever 0 ă s ď δ. Define the operator A “ αA0 ‘ }B}1`δp where p is a
rank one projection. We claim that B P PMpA,L1,8q: indeed, for s ą δ we may
write

TrpB1`sq “ Tr
´

pB1`δq
1`s

1`δ

¯

ď
`

TrpB1`δq
˘

1`s

1`δ “ }B}1`s
1`δ ď TrpA1`sq

while for 0 ă s ď δ the inequality TrpB1`sq ď TrpA1`sq follows immediately from
(7).

We now assume by contradiction that B belongs to the set CatalpA,L1,8q. We
know from Corollary 10 that TrωpBq ď TrωpAq for every Dixmier trace Trω. Ob-
serving that any such trace vanishes on finite rank operators, we see that the value
TrωpAq coincides with TrωpαA0q and hence is equal to α for for every Dixmier trace
Trω (see the definition given in Theorem 8). On the other hand, we may choose a
generalized limit ω such that

TrωpBq “ lim sup
NÑ8

1

logN

N
ÿ

k“0

µpk,Bq

and obtain from (6) that 2
3 log 2

ď α, a contradiction.

We note that the Dixmier trace considered in the proof does not behave in a
monotone way with respect to trace of powers: we have TrpBpq ď TrpApq for every
p ą 1, but TrωpBq ą TrωpAq.

5. Proof of Lemma 11

Let I and B be as defined in Lemma 11, and denote by EB the spectral measure
of B. First, note that for every integer m,

(8) TrpEBp2´m,8qq ď
ÿ

lăm

2l ď 2m.

Hence, for every positive integer n, writing 2m ď n ă 2m`1, we infer

(9) TrpEBp
1

n
,8qq ď TrpEBpp2´m´1,8qq ď 2m`1 ď 2n.

Recall also (see e.g. [11, Chapter 2, Section 2.3]) that µpk,Bq, k ě 0 can be
computed via the formula

µpk,Bq “ infts ě 0 : TrpE|B|pps,8qq ď ku

Hence, it follows from (9) that µpk,Bq ď 2
k`1

for every k ě 0 and, in particular,

B P L1,8. We now prove the right inequality in (6). For a given n, let N “

TrpEBp2´22n`1

,8qq. We know from (8) that N ď 22
2n`1

. Therefore,

N´1
ÿ

k“0

µpk,Bq “ TrpBEBp2´22n`1

,8qq “ cardpI X r0, 22n`1sq “
2

3
¨ 22n`1 ´

1

3
.

Hence, for N as above, we have

1

logpNq

N´1
ÿ

k“0

µpk,Bq ě
1

logp222n`1q
¨
´2

3
¨ 22n`1 ´

1

3

¯

“
2

3 logp2q
` op1q.

as needed.
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We now focus on the left inequality in (6) and use the following summation
formula, whose proof we postpone. For a given sequence pxnq P ℓ8 and for a given
s ą 0, we have that

(10)
8
ÿ

m“0

˜

m
ÿ

k“0

k
ÿ

l“0

xl

¸

2´ms “ p1 ´ 2´sq´2
8
ÿ

l“0

xl2
´ls.

Note that TrpB1`sq “
ř

mPI 2
´ms “

ř

mě0 χIpmq2´ms (here, χIp0q “ 0). Ap-
plying (10) to x “ χI , we obtain, for every M ą 0

lim sup
sÑ0`

s
ÿ

lě0

χIplq2´ls “ lim sup
sÑ0`

sp1 ´ 2´sq2
ÿ

mě0

p
m
ÿ

k“0

k
ÿ

l“0

χIplqq2´ms

“ lim sup
sÑ0`

sp1 ´ 2´sq2
ÿ

měM

´ 1

pm ` 1q2

m
ÿ

k“0

k
ÿ

l“0

χIplq
¯

¨ pm ` 1q22´ms

ď
´

sup
měM

1

pm ` 1q2

m
ÿ

k“0

k
ÿ

l“0

χIplq
¯

¨
´

lim sup
sÑ0`

sp1 ´ 2´sq2
ÿ

měM

pm ` 1q22´ms
¯

.

Passing M Ñ 8, we infer that

lim sup
sÑ0`

s
ÿ

lě0

χIplq2´ls ď C lim sup
sÑ0`

sp1 ´ 2´sq2
ÿ

mě0

pm ` 1q22´ms,

where

C :“ lim sup
mÑ8

1

pm ` 1q2

m
ÿ

k“0

k
ÿ

l“0

χIplq.

An elementary computation gives

8
ÿ

m“0

pm ` 1q22´ms “
1 ` 2´s

p1 ´ 2´sq3
.

It follows that

lim sup
sÑ0`

sTrpB1`sq ď
2C

log 2
.

It remains to show that C ď 5{18 (we actually show C “ 5{18). To that end,
we think of χI as an element of L8p0,8q and define z P L8p0,8q by setting
z “ χŤ

nPZ
r22n,22n`1q. Observe that χI ď z. Therefore,

C ď lim sup
tÑ8

1

t2

ż t

0

ż s

0

zpuqduds.

Since zp4tq “ zptq for every t ą 0, applying Fubini’s theorem we have

C ď sup
tPp1,4q

1

t2

ż t

0

zpuqpt ´ uqdu.

However,

1

t2

ż t

0

zpuqpt ´ uqdu “

#

1
2

´ 2
3t

` 2
5t2

, 1 ď t ď 2
4
3t

´ 8
5t2

, 2 ď t ď 4

Hence, the latter supremum is, in fact, a maximum which is attained at t “ 12
5

and

equal to 5
18
.
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Proof of (10). Write

ÿ

mě0

p
m
ÿ

k“0

k
ÿ

l“0

xlq2
´ms “

ÿ

měkě0

p
k

ÿ

l“0

xlq2
´ms “

8
ÿ

k“0

p
k

ÿ

l“0

xlq
8
ÿ

m“k

2´ms

“ p1 ´ 2´sq´1
8
ÿ

k“0

p
k

ÿ

l“0

xlq2
´ks “ p1 ´ 2´sq´1

ÿ

kělě0

xl2
´ks

“ p1 ´ 2´sq´1
8
ÿ

l“0

xl

8
ÿ

k“l

2´ks “ p1 ´ 2´sq´2
8
ÿ

l“0

xl2
´ls. �
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