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CATALYSIS IN THE TRACE CLASS AND WEAK TRACE
CLASS IDEALS

GUILLAUME AUBRUN, FEDOR SUKOCHEV, AND DMITRIY ZANIN

ABSTRACT. Given operators A, B in some ideal Z in the algebra £(H) of all
bounded operators on a separable Hilbert space H, can we give conditions
guaranteeing the existence of a trace-class operator C' such that B ® C' is
submajorized (in the sense of Hardy-Littlewood) by AQ C ? In the case when
T = L1, a necessary and almost sufficient condition is that the inequalities
Tr(B?P) < Tr(AP) hold for every p € [1,00]. We show that the analogous
statement fails for Z = L1 o by connecting it with the study of Dixmier traces.

1. INTRODUCTION

Let H be an infinite-dimensional separable Hilbert space, L(H) be the algebra
of all bounded operators on H and Cy = Co(H) the set of compact operators.

Given A € Cy, we denote by u(A) := {u(k, A)}x=0 the sequence of singular
values of the operator A (that is, eigenvalues of the operator |A4|) arranged in the
decreasing order and taken with multiplicities (if any). We say that B € Cy is
submajorized by A € Cy in the sense of Hardy—Littlewood (written B << A) if for

every integer n
n n

Z pu(k, B) < Z pu(k, A).
k=0 k=0
If A,B € Cy are such that B << A, then B® C << A® C for every C €

COEIThe converse does not hold, even in the finite-dimensional setting: if A, B,C
are such that u(A) = (0.5,0.25,0.25,0,---), u(B) = (0.4,0.4,0.1,0.1,0,---) and
w(C) = (0.6,0.4,0,- ), one checks easily that B® C << A ® C while B is not
submajorized by A. This example appears in [7] and is related to the phenomenon
of catalysis in quantum information theory (the operator C being called a catalyst).
This corresponds to the situation where the transformation of some quantum state
(in that case, B) into another quantum state (in that case, A) is only possible in
the presence of an extra quantum state (in that case, C') although the latter is not
consumed in the process. It is argued in [7] that this phenomenon can be used to
improve the efficiency of entanglement concentration procedures.

The research of GA was supported by the ANR projects OSQPI (ANR-11-BS01-0008) and
StoQ (ANR-14-CE25-0003). The research of F'S and DZ has been supported by the ARC projects
DP140100906 and DP 120103263.

1Suppose first that C > 0 has finite rank. That is, C = Zz;é w(k, C)pk, where pg, 0 <
k < n, are pairwise orthogonal rank one projections. Set Ay = A ® u(k,C)px and By = B®
w(k, C)pk. It is immediate that By << Ay for 0 < k < n. It follows from Lemma 2.3 in [4] that
ZZ;& By << ZZ;& Ay or, equivalently, BRQC << A®C. For an arbitrary C, the assertion follows
by approximation.
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In the following we restrict ourselves to A, B being positive elements in ﬂp>l L,
(£, denoting the Schatten—von Neumann ideal) and compare the following state-
ments.

(i) There exists a nonzero C € £ such that BQ C << A® C.
(ii) For every p > 1, we have Tr(B?) < Tr(AP).
One checks that (i) implies ([d). This follows from the monotonicity of A —
Tr(AP) with respect to submajorization and from the formula

Tr(SQT) = Te(S) - Te(T), S,T e L.

There is some hope to reverse the implication (i) = (@) if we allow closure of the
set
{B:3C € L; such that BQC << AR C}

with respect to some topology (for the finite-dimensional case, see [11 [9, [15]).

To explain why some closure is needed, we give an example of a pair A, B of pos-
itive operators satisfying (ii) but not (i). Consider positive operators with p(A) #
u(B) and such that Tr(B?) < Tr(AP) for p € (1,0), while Tr(BP?) = Tr(AP°) for
some pg € (1,0) (such an example exists among finite rank operators). Note that
the norm in £, is strictly monotone with respect to submajorization (see Proposi-
tion 2.1 in [2]). That is, if K € £,,(H) and if L << K, then either p(L) = pu(K) or
IL|py < |K|p,- Suppose that (i) holds, i.e. that B&C << A®C for some nonzero
C € £; (that is, no closure is taken). We then have Tr((B® C)P°) = Tr((A®Q C)?0)
and, by strict monotonicity, u(k, B®& C) = u(k, A® C) for all k = 0. Now, taking
into account that the sequences u(B ® C) and u(A ® C) coincide with decreasing
rearrangements of sequences u(B) ® pu(C) and pu(A) ® u(C) respectively, we infer
that pu(A) = u(B).

As we shall see, the choice of the topology plays a crucial role. Prior to stating
the precise question, we recall a few definitions and relevant facts.

There is a remarkable correspondence between sequence spaces and two-sided
ideals in £L(H) due to J.W. Calkin, [3]. Recall, that a linear subspace J in L(H)
is a two-sided ideal if X € 7 and Y € L(H) imply Y X, XY € J. Every non-trivial
ideal necessarily consists of compact operators. A Calkin space J is a subspace of
co (the space of all vanishing sequences) such that z € J and p(y) < up(z) imply
y € J, where p(x) is the decreasing rearrangement of the sequence |z|. The Calkin
correspondence may be explained as follows. If J is a Calkin space then associate
to it the subset J in L(H)

J ={Xel:u(X)eJ}.
Conversely, if J is a two-sided ideal, then associate to it the sequence space
J:={zxecy: plx)=pu(X) for some X € J}.

For the proof of the following theorem we refer to Calkin’s original paper, [3], and
to B. Simon’s book, [13] Theorem 2.5].

Theorem 1 (Calkin correspondence). The correspondence J < J is a bijection
between Calkin spaces and two-sided ideals in L(H).

In the recent papers [8], [I4] this correspondence has been specialised to quasi-
normed symmetrically-normed ideals and quasi-normed symmetric sequence spaces
[10]. We use the notation | - |4 to denote the uniform norm on L£(H).
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Definition 2. (i) An ideal £ in L(H) is said to be symmetrically (quasi)-normed
if it is equipped with a Banach (quasi)-norm | - | s such that

[ XY, [V X]e < [ XelY]w, Xe&YeL(H).

(ii) A Calkin space E is a symmetric sequence space if it is equipped with a Banach

(quasi)-norm || - |g such that |ly|g < |z|g for every x € E and y € ¢y such
that p(y) < p(x).
For convenience of the reader, we recall that a map || - | from a linear space X

to R is a quasi-norm, if for all x,y € X and scalars a the following properties hold:
(i) 2] > 0, and o] = 0 < 2 — 0;

(ii) Jaz| = [of|z];
(iil) |z +yll < C(|z| + |y|) for some C' > 1.
The couple (X, | - ) is a quasi-normed space and the least constant C' satisfying

the inequality (iii) above is called the modulus of concavity of the quasi-norm | - |
and denoted by Cx. A complete quasi-normed space is called quasi-Banach.

It easily follows from Definition 2l that if (€, |- |¢) is a quasi-Banach ideal, X € £
and Y € L(H) are such that pu(Y) < pu(X), then Y € £ and |[YV]g < |[X|le. In
particular, it is easy to see that if E is Calkin space corresponding to &, then
setting ||z||g := |X|e (where X € & is such that p(z) = p(X)) we obtain that
(E,| - |g) is a quasi-Banach symmetric sequence space. The converse implication
is much harder and follows from main results of [8], [I4].

With these preliminaries out of the way, we are now in a position to formulate
the main question.

Question 3. Let T be a (quasi-)Banach ideal such that T < )
Z. Consider the sets

PM(A,T) = {o <BeT: Ti(BY) < Ti(AP) ¥p > 1}.

Ly, Let0< Ae

p>1

Catal(A,I)={O<BeI: 0<Cely: C+0, B®C<<A®C}.

Let also Catal(A,T) denote the closure of Catal(A, ) with respect to the quasi-norm
of Z. Is it true that PM(A,7T) = Catal(A,7)?

Note that PM(A,Z) is a closed subset in Z. Indeed, let B,, € PM(A,Z) and
let B, — B in Z as n — o0. Observe that it follows from Definition [2] that Z is
continuously embedded into £(H) and therefore, it follows from the Closed Graph
Theorem that for every fixed p > 1, the identical embedding 7 < £, is continuous,
in particular, there exists a constant ¢(p,Z) such that |C||, < ¢(p,Z)|C|z, C € T.
Thus,

|Bnllp = I1Blp| < [B = Bullp < ¢(p, I)| B = Balz — 0.

Hence,
Te(BP) = lim Tr(BP) < Tr(AP), p> 1.

n—o0
We also have that Catal(4,Z) c PM(A4,Z). Indeed, if B® C << A® C, then
_T(BOF) _ Tr((A®C))
Tr(CP) = Tr(CP)
Since PM(A,7) is closed, it follows that the inclusion Catal(A,Z) < PM(A,T)
always holds.

Tv(BP) — Tr(4A%), p> 1.
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In this paper, we show that the answer to Question [Blis positive when Z = £,
and negative when 7 = £ . Recall that £; o is the principal ideal generated by
the element Ay = diag({1, %, %, -+ }). Equivalently,

L0 = {A €Cy: Sup(k + 1)[&(I€,A) < +OO}.
k=0

It becomes a quasi-Banach space (see e.g. [8, [14]) when equipped with the quasi-
norm
Al = sup(h + Dk, A), A€ L
k=0

Here are our main results. We leave open the question of giving a complete
description of the set Catal(A, £1,4).

Theorem 4. For every 0 < A € Ly, the sets PM(A, L1) and Catal(A, L) coincide.

Theorem 5. There exists 0 < A € L1, such that the set PM(A, L1,) strictly
contains the set Catal(A, L1 ).

It is actually simple to deduce Theorem H from the finite-dimensional considera-
tions from [I], as we explain in Section[2l This is in sharp contrast with Theorem [B]
whose proof is infinite-dimensional in its nature and uses crucially fine properties of
Dixmier traces, which we introduce in Section[Bl The heart of the argument behind
Theorem [l appears in Section @ while we relegate some needed computations to
Section

The authors thank the anonymous referees for careful reading of the manuscript
and numerous suggestions which have improved the exposition.

2. THE CASE OF £;

We derive Theorem M from the following result which appears in [I5] (see also
Lemma 2 in [I).

Lemma 6. Let A, B be positive finite rank operators. Assume that for every 1 <
p < +00, we have the strict inequality |B|, < |A|p. Then there exists a nonzero
finite rank operator C such that BQC << AR C.

Proof of Theorem[j} Let us show the non-trivial inclusion, i.e. that every B €
PM(A, £1) belongs to Catal(A4, L1).

Let p, k = 0, be a rank one eigenprojection of the operator A which corresponds
to the eigenvalue u(k, A). Similarly, let g, k = 0, be a rank one eigenprojection of
the operator B which corresponds to the eigenvalue u(k, B). We have

0 0
k=0 k=0

Without loss of generality, p(0, A) = 1. It follows that
I-Q=-e))Tr(AP) = (1 — (1 —e)P)u(0,A)P =1— (1 —¢)? = &P.
The latter readily implies
Tr(AP) —e? = (1 —e)PTr(AP), p=1, e€(0,1).
Now, fix € € (0,1) and select n such that

0

0
wu(k, A) < e, Z w(k,B) < e.
k=n

k=n
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Set
n—1 n—1
Ap = > ulk, Apr,  Bn =) pu(k, B)gx.
k=0 k=0

It is clear that

Tr(AR) = Tr(AP) — Y p(k, AP > Te(AP) — (D u(k, A))?

k=n

> Tr(AP) —e? = (1 — e)PTr(4P), p=1.

o

=N

Therefore,
(1 —e)PTr(B2) < (1 —&)PTr(B?) < (1 — &)PTr(AP) < Tr(A2), p=1.

Since both A,, and B,, are finite rank operators, it follows from Lemma [6] and the
first footnote that there exists a finite rank operator C), such that

(1-e)B,®C, << A4,®C, << AR C,.

In particular, we have that (1—¢)B,, € Catal(A, £1). Observing that |B— B, |1 < 1,
we further obtain

|B—(1—&)Bulh <e|Bli+ (1 -¢)[|B—Bn|i <e(|B]1 +1).
Since ¢ is arbitrarily small, it follows that B € Catal(A4, £4). O

3. DIXMIER TRACES

The crucial ingredient in the proof is the notion of a Dixmier trace on L£i .
Let ¢ stand for the Banach space of all bounded sequences x = (z,,),>0 equipped
with the usual norm |z||o := sup,>¢ |#n|. A generalized limit is any positive linear
functional on ¢, which equals the ordinary limit on the subspace ¢ of all convergent
sequences.

Remark 7. Given a sequence (Xn)n>0 € Lo, there is a generalized limit w such
that w((xy)) = Umsup,, ., Tn-

Proof. Fix 2 = (x,,) € £« and let the sequence (ny)g=o be such that limg_,o 2y, =
limsup,,_, ., Zr. Consider the set of functionals (¢, )k=0 on £y defined by ¢y, (yn) :
Yner Y = (Un) € Lo, k= 0. The set (¢n, )r=0 belongs to the unit ball B of the Ba-
nach dual ¢% . The set B is compact in the weak™® topology o (€%, () and therefore
the set (¢n, )k=0 possesses a cluster point w € £* in that topology. The fact that w
is a generalized limit on ¢y, such that w((x,)) = limsup,,_,,, =, follows immediately
from the definition of the weak™ topology. O

The Dixmier traces are defined as follows.

Theorem 8. Let w be a generalized limit. The mapping Tr,, : ﬁioo — R* defined
for 0 < Ae Ly, by setting

1 o ”
Tr, (A) :=w<{710g(N+2);M(k,A)} >

=0 N=0
is additive and, therefore, extends to a positive unitarily invariant linear functional
on Ly, called a Dizmier trace.
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Note that the positivity of generalized limits implies that
(1) Tro,(A)] < | Af1,e0

for every Dixmier trace Tr,, and A € Ly .

Let us comment on how additivity is proved in Theorem This is usually
achieved under the extra assumption that w is scale invariant (see Theorem 1.3.1
in [I1]), i.e. that wooy = w for all positive integer k, where oy, : €5, — o is defined
as

Op(T1, T2, Ty o) = (X1, oy L1, X2y e o 3 Xy e ey Ty e v ey Ty e - )
—_— — —————
k times k times k times

Under this extra assumption the map Tr, is actually additive on the larger ideal
M o (we refer to [11l, Example 1.2.9] for the definition of the latter ideal and to
[11l Section 6.8 | for historical background). In the form presented here, Theorem
follows from Theorem 17 in [I2]. For the reader’s convenience we reproduce the
argument here.

Proof of Theorem[8 Given A € L1 4, consider the sequence (zn(A4))%_, defined
by

N
1
A= ——— j, A).
N (A) og(N 1 9) ;N(]a )
It is not hard to check that for all all positive integer k,
(2) lim :Z?N(A) - :Z?kN(A) =0.
N—w

Let E < { be the subspace
E =span{o;({zn(A)}) : k=1, A€ L1 }.

It follows from () that the equation w o oy () = w(x) is satisfied for z € E. By a
version of the Hahn—Banach theorem (see [6], Theorem 3.3.1), the linear functional
w|g can be extended to a generalized limit w’ : £, — R which is scale-invariant.
The usual argument ([I1], Theorem 1.3.1) implies that Tr,, (which coincides with
Tr, on L4 ) is additive on £y . O

We also need a version of Fubini’s theorem for Dixmier traces.

Theorem 9. For every A€ Ly o and for every C € L1, we have AQC € L1 o and

(3) IA® Cli,00 < [All1,00[ Cl1-
Moreover, for every Dizmier trace Tr,, on L1 o, we have
(4) Tr,(A® C) = Tr, (A)Tr(C).

Proof. We may assume |A[1,. = 1. Recall that Ay = diag({1,1,3,---}). We have

for all k£ = 0,

el

1 &
u(k, A® C) < u(k, A ® C) < k—ﬂj;)u(y,m <iTT

where the second inequality follows from Proposition 3.14 in [5]. This proves (@).
Observe that both sides of (@l depend linearly on A and C' (thanks to Theorem
). Thus, we can assume without loss of generality that A, C' = 0. When C' is a rank
one projection, (@) follows from Theorem [lsince in that case u(k, AQC) = u(k, A)
for all £ > 0. Again appealing to linearity of Dixmier traces, we infer the result for
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the finite rank operator C' and when A € £; o, is arbitrary. Consider now a general
C € £y and let (C,) be a sequence of finite rank operators such that |C'—C,|; — 0.
We have

and this quantity tends to 0 as n goes to infinity. Consequently,
Tr,(ARC) = lingo Tr, (AR C,) = lingo Tr, (A)Tr(Cp) = Tr,(A)Tr(C). O

As a corollary, we obtain that Dixmier traces give necessary conditions for catal-
ysis.

Corollary 10. Let 0 < A € L1,4 and 0 < B € Catal(4, L1,x). Then for every
Dixzmier trace Tr,,, one has

(5) Tr,(B) < Try,(A).

Proof. We know from (IJ) that Dixmier traces are continuous on L o, and there-
fore we may assume that B € Catal(A4, L1 ). By definition of the latter set
(see Question []), there exists a nonzero positive C' in £ with the property that
B® C << A®C. Combining the definition of Hardy-Littlewood submajorization
<< and the definition of a Dixmier trace Tr, (see Theorem [§) we infer that the
inequality Tr,(B® C) < Tr,(A® C) holds for every Dixmier trace Tr,,. Inequality
@) now follows from () and from the fact that Tr(C) > 0. O

4. THE CASE OF L : THE MAIN ARGUMENT

Here is the main technical result used in the proof of Theorem [l In the lemma
below, we tacitly identify a sequence in the space ¢, with the corresponding diago-
nal operator. For I ¢ N, we note by x; the sequence defined by y;(n) =1ifnel
and x7(n) = 0 otherwise.

Lemma 11. Let I be the subset of N defined as
I _ U [22’!7,, 22714’1)-
n=0

Consider the opemtmﬂ
B = @ 2” X[O 2m)

mel

Then B € L1,o. Moreover,

5 2
6 li Tr(B'*®) < < lim (k,B).
(6) lsn_lj)&ps I ) 910g2 3log2 NﬁOO 1 N Z

Let us postpone the proof of Lemma [I1] and show how it implies the result
stated in T heorem Consider B as in Lemma [[1] and fix a number « such that

910g2 <a< 310 5. Recall that Ag = diag({1, 5,3, }). Since
. 14+s\ _ 12 1+s __
81_1)%1+ sTr((adp) ) = S£%1+ s¢(s)a ™ = ay

it follows from (@) that there exists 6 > 0 such that the inequality
(7) Te(B'**) < Tr((ado)' ™)

21n the subsequent formulas, the symbol @ stands for the direct sum of operators.
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holds whenever 0 < s < §. Define the operator A = oAy @ | B|1+sp where p is a
rank one projection. We claim that B € PM(A, £; «): indeed, for s > § we may
write

TH(B'H) = T (B9 55) < (Te(B'+)) 7 = | BIiT; < Tr(A'+)

while for 0 < s < § the inequality Tr(B'*%) < Tr(A'*#) follows immediately from
@.

We now assume by contradiction that B belongs to the set Catal(A4, £y ). We
know from Corollary [0 that Tr,(B) < Tr,(A) for every Dixmier trace Tr,. Ob-
serving that any such trace vanishes on finite rank operators, we see that the value
Tr,, (A) coincides with Tr, (wAp) and hence is equal to « for for every Dixmier trace
Tr,, (see the definition given in Theorem [{). On the other hand, we may choose a
generalized limit w such that

N
Tr,(B) = 1i kB
ro(B) = litmsup logN 2,

and obtain from (@) that 310g2 < «, a contradiction.

We note that the Dixmier trace considered in the proof does not behave in a
monotone way with respect to trace of powers: we have Tr(B?) < Tr(AP) for every
p > 1, but Tr,(B) > Try,(A).

5. PROOF OF LEMMA [I1]

Let I and B be as defined in Lemma [[I] and denote by Eg the spectral measure
of B. First, note that for every integer m,

(8) Tr(Ep(27™, ) < Y. 2' <
l<m

Hence, for every positive integer n, writing 2™ < n < 2™*! we infer
1

(9) Tr(Ep(—, o)) < Tr(Ep((27™ 1, ) < 2™t < 2n.
n

Recall also (see e.g. [I1, Chapter 2, Section 2.3]) that p(k, B), kK = 0 can be
computed via the formula

p(k, B) = inf{s > 0: Tr(E|g/((s,2)) < k}

Hence, it follows from (@) that u(k, B) < =5 +1 for every k > 0 and, in particular,
B € L1,. We now prove the right inequality in (@). For a given n, let N =
Tr(Ep (2_22n+1, )). We know from (8) that N < 22" Therefore,
& 2nt1 2 1
> w(k,B) = Te(BEp(2™>"",00)) = card(I n [0,22"+1]) = 3 p A

w

Hence, for N as above, we have

1 2 1 2
w(k, B) e P 1).
,;0 log(227°7) (3 3) 310g2) T W

log

as needed.
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We now focus on the left inequality in (@) and use the following summation
formula, whose proof we postpone. For a given sequence (x,,) € £y and for a given
s > 0, we have that

o0 m k 0
(10) > (Z > a:l) 27 = (127972 Y 27t
m=0 \k=01=0 1=0

Note that Tr(B'**) = > ,27™ =% x1(m)2~™ (here, x;(0) = 0). Ap-
plying ([I0) to = = x, we obtain, for every M > 0

m k
limsup s Z xr(l = limsup s(1 — 27%)? Z (Z Z xr(1)27=m*
=08 >0 s—0+ m>0 k=01=0
= limsup s(1 — 27%)? Z (;2 Z Z Xl(l)) (m+1)22ms
50+ s YO UL o e o)
< lim sup s(1 — 27%)2 +1)227m).
<m>M m+1 g; ) <ler_1)Ol_‘1_ps( ) Z (m )

Passing M — oo, we infer that

lim sup s Z x1(1)27% < Climsup s(1 — 27%)2 Z (m + 1)227™m,
s—0+ 1>0 s—0+ m=0

where
1 m
C:=1 —_— l

An elementary computation gives

o0 —
14+27°
m41)29ms — _~— =
mzzo( " ) (1 - 2_8)3

It follows that

2C
li rI\rBl+S e
N )

It remains to show that C' < 5/18 (we actually show C = 5/18). To that end,
we think of x; as an element of Ly (0,00) and define z € Ly (0,00) by setting
2= XU, p[220 22041 Observe that x; < z. Therefore,

hin sup — P J J u) duds.
—00

Since z(4t) = z(t) for every t > 0, applying Fubini’s theorem we have
¢

C< sup — | z(u)(t—u)du
te(1,4) 0
However,
I 1242 1<t<2
= | s —wan— 37
t 3~ Emy 2St<4

Hence, the latter supremum is, in fact, a maximum which is attained at ¢t = 2 and

5
equal to 15



10

GUILLAUME AUBRUN, FEDOR SUKOCHEV, AND DMITRIY ZANIN

Proof of ([I0). Write

m k

k k o0
2, (5 @2 = 3 (a2 = ) () 3 27
k=01=0

m=0

k=0 1=0 E=1=0
a0 o0 o0
=@1-27)" Y Yy 2= (1272 Y w27 O
=0 k=l 1=0
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