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CATALYSIS IN THE TRACE CLASS AND WEAK TRACE CLASS IDEALS

Given operators A, B in some ideal I in the algebra LpHq of all bounded operators on a separable Hilbert space H, can we give conditions guaranteeing the existence of a trace-class operator C such that B b C is submajorized (in the sense of Hardy-Littlewood) by A b C ? In the case when I " L 1 , a necessary and almost sufficient condition is that the inequalities TrpB p q ď TrpA p q hold for every p P r1, 8s. We show that the analogous statement fails for I " L 1,8 by connecting it with the study of Dixmier traces.

Introduction

Let H be an infinite-dimensional separable Hilbert space, LpHq be the algebra of all bounded operators on H and C 0 " C 0 pHq the set of compact operators.

Given A P C 0 , we denote by µpAq :" tµpk, Aqu kě0 the sequence of singular values of the operator A (that is, eigenvalues of the operator |A|) arranged in the decreasing order and taken with multiplicities (if any). We say that B P C 0 is submajorized by A P C 0 in the sense of Hardy-Littlewood (written B ăă A) if for every integer n If A, B P C 0 are such that B ăă A, then B b C ăă A b C for every C P C 0 . 1 The converse does not hold, even in the finite-dimensional setting: if A, B, C are such that µpAq " p0.5, 0.25, 0.25, 0, ¨¨¨q, µpBq " p0.4, 0.4, 0.1, 0.1, 0, ¨¨¨q and µpCq " p0.6, 0.4, 0, ¨¨¨q, one checks easily that B b C ăă A b C while B is not submajorized by A. This example appears in [START_REF] Plenio | Entanglement-assisted local manipulation of pure quantum states[END_REF] and is related to the phenomenon of catalysis in quantum information theory (the operator C being called a catalyst). This corresponds to the situation where the transformation of some quantum state (in that case, B) into another quantum state (in that case, A) is only possible in the presence of an extra quantum state (in that case, C) although the latter is not consumed in the process. It is argued in [START_REF] Plenio | Entanglement-assisted local manipulation of pure quantum states[END_REF] that this phenomenon can be used to improve the efficiency of entanglement concentration procedures.
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1 Suppose first that C ě 0 has finite rank. That is, C " ř n´1 k"0 µpk, Cqp k , where p k , 0 ď k ă n, are pairwise orthogonal rank one projections.

Set A k " A b µpk, Cqp k and B k " B b µpk, Cqp k . It is immediate that B k ăă A k for 0 ď k ă n. It follows from Lemma 2.3 in [4] that ř n´1 k"0 B k ăă ř n´1 k"0 A k or, equivalently, B bC ăă AbC.
For an arbitrary C, the assertion follows by approximation.

In the following we restrict ourselves to A, B being positive elements in Ş pą1 L p (L p denoting the Schatten-von Neumann ideal) and compare the following statements.

(i) There exists a nonzero

C P L 1 such that B b C ăă A b C.
(ii) For every p ą 1, we have TrpB p q ď TrpA p q.

One checks that (i) implies (ii). This follows from the monotonicity of A Þ Ñ TrpA p q with respect to submajorization and from the formula TrpS b T q " TrpSq ¨TrpT q, S, T P L 1 .

There is some hope to reverse the implication (i) ñ (ii) if we allow closure of the set tB :

DC P L 1 such that B b C ăă A b Cu
with respect to some topology (for the finite-dimensional case, see [START_REF] Aubrun | Nechita I. Catalytic majorization and lp norms[END_REF][START_REF] Klimesh | Inequalities that completely characterize the Catalytic Majorization Relation[END_REF][START_REF] Turgut | Catalytic transformations for bipartite pure states[END_REF]).

To explain why some closure is needed, we give an example of a pair A, B of positive operators satisfying (ii) but not (i). Consider positive operators with µpAq ‰ µpBq and such that TrpB p q ď TrpA p q for p P p1, 8q, while TrpB p0 q " TrpA p0 q for some p 0 P p1, 8q (such an example exists among finite rank operators). Note that the norm in L p0 is strictly monotone with respect to submajorization (see Proposition 2.1 in [START_REF] Chilin | Characterisations of Kadec-Klee properties in symmetric spaces of measurable functions[END_REF]). That is, if K P L p0 pHq and if L ăă K, then either µpLq " µpKq or }L} p0 ă }K} p0 . Suppose that (i) holds, i.e. that B b C ăă A b C for some nonzero C P L 1 (that is, no closure is taken). We then have TrppB b Cq p0 q " TrppA b Cq p0 q and, by strict monotonicity, µpk, B b Cq " µpk, A b Cq for all k ě 0. Now, taking into account that the sequences µpB b Cq and µpA b Cq coincide with decreasing rearrangements of sequences µpBq b µpCq and µpAq b µpCq respectively, we infer that µpAq " µpBq.

As we shall see, the choice of the topology plays a crucial role. Prior to stating the precise question, we recall a few definitions and relevant facts.

There is a remarkable correspondence between sequence spaces and two-sided ideals in LpHq due to J.W. Calkin, [START_REF] Calkin | Two-sided ideals and congruences in the ring of bounded operators in Hilbert space[END_REF]. Recall, that a linear subspace J in LpHq is a two-sided ideal if X P J and Y P LpHq imply Y X, XY P J . Every non-trivial ideal necessarily consists of compact operators. A Calkin space J is a subspace of c 0 (the space of all vanishing sequences) such that x P J and µpyq ď µpxq imply y P J, where µpxq is the decreasing rearrangement of the sequence |x|. The Calkin correspondence may be explained as follows. If J is a Calkin space then associate to it the subset J in LpHq J :" tX P C 0 : µpXq P Ju.

Conversely, if J is a two-sided ideal, then associate to it the sequence space J :" tx P c 0 : µpxq " µpXq for some X P J u.

For the proof of the following theorem we refer to Calkin's original paper, [START_REF] Calkin | Two-sided ideals and congruences in the ring of bounded operators in Hilbert space[END_REF], and to B. Simon's book, [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 2.5].

Theorem 1 (Calkin correspondence). The correspondence J Ø J is a bijection between Calkin spaces and two-sided ideals in LpHq.

In the recent papers [START_REF] Kalton | Symmetric norms and spaces of operators[END_REF], [START_REF] Sukochev | Completeness of quasi-normed symmetric operator spaces[END_REF] this correspondence has been specialised to quasinormed symmetrically-normed ideals and quasi-normed symmetric sequence spaces [START_REF] Lindenstrauss | Classical Banach Spaces I[END_REF]. We use the notation } ¨}8 to denote the uniform norm on LpHq.

Definition 2. (i) An ideal E in LpHq is said to be symmetrically (quasi)-normed if it is equipped with a Banach (quasi)-norm } ¨}E such that }XY } E , }Y X} E ď }X} E }Y } 8 , X P E, Y P LpHq.
(ii) A Calkin space E is a symmetric sequence space if it is equipped with a Banach (quasi)-norm } ¨}E such that }y} E ď }x} E for every x P E and y P c 0 such that µpyq ď µpxq.

For convenience of the reader, we recall that a map } ¨} from a linear space X to R is a quasi-norm, if for all x, y P X and scalars α the following properties hold:

(i) }x} ě 0, and }x} " 0 ô x " 0;

(ii) }αx} " |α|}x};

(iii) }x `y} ď Cp}x} `}y}q for some C ě 1.

The couple pX, } ¨}q is a quasi-normed space and the least constant C satisfying the inequality (iii) above is called the modulus of concavity of the quasi-norm } ¨} and denoted by C X . A complete quasi-normed space is called quasi-Banach.

It easily follows from Definition 2 that if pE, } ¨}E q is a quasi-Banach ideal, X P E and Y P LpHq are such that µpY q ď µpXq, then Y P E and }Y } E ď }X} E . In particular, it is easy to see that if E is Calkin space corresponding to E, then setting }x} E :" }X} E (where X P E is such that µpxq " µpXq) we obtain that pE, } ¨}E q is a quasi-Banach symmetric sequence space. The converse implication is much harder and follows from main results of [START_REF] Kalton | Symmetric norms and spaces of operators[END_REF][START_REF] Sukochev | Completeness of quasi-normed symmetric operator spaces[END_REF].

With these preliminaries out of the way, we are now in a position to formulate the main question. Question 3. Let I be a (quasi-)Banach ideal such that I Ă Ş pą1 L p . Let 0 ď A P I. Consider the sets PMpA, Iq " ! 0 ď B P I : TrpB p q ď TrpA p q @p ą 1

) .

CatalpA, Iq "

! 0 ď B P I : D0 ď C P L 1 : C ‰ 0, B b C ăă A b C
) .

Let also CatalpA, Iq denote the closure of CatalpA, Iq with respect to the quasi-norm of I. Is it true that PMpA, Iq " CatalpA, Iq?

Note that PMpA, Iq is a closed subset in I. Indeed, let B n P PMpA, Iq and let B n Ñ B in I as n Ñ 8. Observe that it follows from Definition 2 that I is continuously embedded into LpHq and therefore, it follows from the Closed Graph Theorem that for every fixed p ą 1, the identical embedding I Ă L p is continuous, in particular, there exists a constant cpp, Iq such that }C} p ď cpp, Iq}C} I , C P I. Thus, ˇˇ}Bn}p ´}B} p ˇˇď }B ´Bn } p ď cpp, Iq}B ´Bn } I Ñ 0.

Hence, TrpB p q " lim nÑ8

TrpB p n q ď TrpA p q, p ą 1. We also have that CatalpA,

Iq Ă PMpA, Iq. Indeed, if B b C ăă A b C, then TrpB p q "
TrppB b Cq p q TrpC p q ď TrppA b Cq p q TrpC p q " TrpA p q, p ą 1.

Since PMpA, Iq is closed, it follows that the inclusion CatalpA, Iq Ă PMpA, Iq always holds.

In this paper, we show that the answer to Question 3 is positive when I " L 1 and negative when I " L 1,8 . Recall that L 1,8 is the principal ideal generated by the element A 0 " diagpt1, 1 2 , 1 3 , ¨¨¨uq. Equivalently, L 1,8 " tA P C 0 : sup kě0 pk `1qµpk, Aq ă `8u.

It becomes a quasi-Banach space (see e.g. [START_REF] Kalton | Symmetric norms and spaces of operators[END_REF][START_REF] Sukochev | Completeness of quasi-normed symmetric operator spaces[END_REF]) when equipped with the quasinorm }A} 1,8 " sup kě0 pk `1qµpk, Aq, A P L 1,8 .

Here are our main results. We leave open the question of giving a complete description of the set CatalpA, L 1,8 q.

Theorem 4. For every 0 ď A P L 1 , the sets PMpA, L 1 q and CatalpA, L 1 q coincide. Theorem 5. There exists 0 ď A P L 1,8 such that the set PMpA, L 1,8 q strictly contains the set CatalpA, L 1,8 q.

It is actually simple to deduce Theorem 4 from the finite-dimensional considerations from [START_REF] Aubrun | Nechita I. Catalytic majorization and lp norms[END_REF], as we explain in Section 2. This is in sharp contrast with Theorem 5, whose proof is infinite-dimensional in its nature and uses crucially fine properties of Dixmier traces, which we introduce in Section 3. The heart of the argument behind Theorem 5 appears in Section 4, while we relegate some needed computations to Section 5.

The authors thank the anonymous referees for careful reading of the manuscript and numerous suggestions which have improved the exposition.

The case of L 1

We derive Theorem 4 from the following result which appears in [START_REF] Turgut | Catalytic transformations for bipartite pure states[END_REF] (see also Lemma 2 in [START_REF] Aubrun | Nechita I. Catalytic majorization and lp norms[END_REF]). Lemma 6. Let A, B be positive finite rank operators. Assume that for every 1 ď p ď `8, we have the strict inequality }B} p ă }A} p . Then there exists a nonzero finite rank operator C such that B b C ăă A b C.

Proof of Theorem 4. Let us show the non-trivial inclusion, i.e. that every B P PMpA, L 1 q belongs to CatalpA, L 1 q.

Let p k , k ě 0, be a rank one eigenprojection of the operator A which corresponds to the eigenvalue µpk, Aq. Similarly, let q k , k ě 0, be a rank one eigenprojection of the operator B which corresponds to the eigenvalue µpk, Bq. We have

A " 8 ÿ k"0 µpk, Aqp k , B " 8 ÿ k"0 µpk, Bqq k .
Without loss of generality, µp0, Aq " 1. It follows that p1 ´p1 ´εq p qTrpA p q ě p1 ´p1 ´εq p qµp0, Aq p " 1 ´p1 ´εq p ě ε p .

The latter readily implies

TrpA p q ´εp ě p1 ´εq p TrpA p q, p ě 1, ε P p0, 1q. Now, fix ε P p0, 1q and select n such that

8 ÿ k"n µpk, Aq ă ε, 8 ÿ k"n µpk, Bq ă ε. Set A n " n´1 ÿ k"0 µpk, Aqp k , B n " n´1 ÿ k"0 µpk, Bqq k .

It is clear that

TrpA p n q " TrpA p q ´8 ÿ k"n µpk, Aq p ě TrpA p q ´p 8 ÿ

k"n µpk, Aqq p ą TrpA p q ´εp ě p1 ´εq p TrpA p q, p ě 1.

Therefore, p1 ´εq p TrpB p n q ď p1 ´εq p TrpB p q ď p1 ´εq p TrpA p q ă TrpA p n q, p ě 1. Since both A n and B n are finite rank operators, it follows from Lemma 6 and the first footnote that there exists a finite rank operator C n such that

p1 ´εqB n b C n ăă A n b C n ăă A b C n .
In particular, we have that p1´εqB n P CatalpA, L 1 q. Observing that }B ´Bn } 1 ď 1, we further obtain

}B ´p1 ´εqB n } 1 ď ε}B} 1 `p1 ´εq}B ´Bn } 1 ď εp}B} 1 `1q.
Since ε is arbitrarily small, it follows that B P CatalpA, L 1 q.

Dixmier traces

The crucial ingredient in the proof is the notion of a Dixmier trace on L 1,8 . Let ℓ 8 stand for the Banach space of all bounded sequences x " px n q ně0 equipped with the usual norm }x} 8 :" sup ně0 |x n |. A generalized limit is any positive linear functional on ℓ 8 which equals the ordinary limit on the subspace c of all convergent sequences.

Remark 7. Given a sequence px n q ně0 P ℓ 8 , there is a generalized limit ω such that ωppx n qq " lim sup nÑ8 x n .

Proof. Fix x " px n q P ℓ 8 and let the sequence pn k q kě0 be such that lim kÑ8 x n k " lim sup nÑ8 x n . Consider the set of functionals pϕ n k q kě0 on ℓ 8 defined by ϕ n k py n q :" y n k , y " py n q P ℓ 8 , k ě 0. The set pϕ n k q kě0 belongs to the unit ball B of the Banach dual ℓ 8. The set B is compact in the weak ˚topology σpℓ 8, ℓ 8 q and therefore the set pϕ n k q kě0 possesses a cluster point ω P ℓ 8 in that topology. The fact that ω is a generalized limit on ℓ 8 such that ωppx n qq " lim sup nÑ8 x n follows immediately from the definition of the weak ˚topology.

The Dixmier traces are defined as follows.

Theorem 8. Let ω be a generalized limit. The mapping Tr ω : L 1,8 Ñ R `defined for 0 ď A P L 1,8 by setting

Tr ω pAq :" ω ˜# 1 logpN `2q N ÿ k"0 µpk, Aq + 8
N "0 is additive and, therefore, extends to a positive unitarily invariant linear functional on L 1,8 called a Dixmier trace.

Note that the positivity of generalized limits implies that [START_REF] Aubrun | Nechita I. Catalytic majorization and lp norms[END_REF] |Tr ω pAq| ď }A} 1,8

for every Dixmier trace Tr ω and A P L 1,8 .

Let us comment on how additivity is proved in Theorem 8. This is usually achieved under the extra assumption that ω is scale invariant (see Theorem 1.3.1 in [START_REF] Lord | Singular traces. Theory and applications[END_REF]), i.e. that ω ˝σk " ω for all positive integer k, where σ k : ℓ 8 Ñ ℓ 8 is defined as σ k px 1 , x 2 , . . . , x n , . . . q " px 1 , . Under this extra assumption the map Tr ω is actually additive on the larger ideal M 1,8 (we refer to [START_REF] Lord | Singular traces. Theory and applications[END_REF]Example 1.2.9] for the definition of the latter ideal and to [START_REF] Lord | Singular traces. Theory and applications[END_REF]Section 6.8 ] for historical background). In the form presented here, Theorem 8 follows from Theorem 17 in [START_REF] Sedaev | Dixmier measurability in Marcinkiewicz spaces and applications[END_REF]. For the reader's convenience we reproduce the argument here.

Proof of Theorem 8. Given A P L 1,8 , consider the sequence px N pAqq 8 N "0 defined by

x N pAq " 1 logpN `2q N ÿ j"0 µpj, Aq.
It is not hard to check that for all all positive integer k, [START_REF] Chilin | Characterisations of Kadec-Klee properties in symmetric spaces of measurable functions[END_REF] lim

N Ñ8
x N pAq ´xkN pAq " 0.

Let E Ă ℓ 8 be the subspace E " span tσ k ptx N pAquq : k ě 1, A P L 1,8 u .

It follows from (2) that the equation ω ˝σk pxq " ωpxq is satisfied for x P E. By a version of the Hahn-Banach theorem (see [START_REF] Edwards | Functional Analysis. Theory and applications[END_REF], Theorem 3.3.1), the linear functional ω |E can be extended to a generalized limit ω 1 : ℓ 8 Ñ R which is scale-invariant. The usual argument ( [START_REF] Lord | Singular traces. Theory and applications[END_REF], Theorem 1.3.1) implies that Tr ω 1 (which coincides with Tr ω on L 1,8 ) is additive on L 1,8 .

We also need a version of Fubini's theorem for Dixmier traces.

Theorem 9. For every A P L 1,8 and for every C P L 1 , we have A b C P L 1,8 and

(3)

}A b C} 1,8 ď }A} 1,8 }C} 1 .
Moreover, for every Dixmier trace Tr ω on L 1,8 , we have Proof. We may assume }A} 1,8 " 1. Recall that A 0 " diagpt1, 1 2 , 1 3 , ¨¨¨uq. We have for all k ě 0,

µpk, A b Cq ď µpk, A 0 b Cq ď 1 k `1 k ÿ j"0 µpj, Cq ď }C} 1 k `1 .
where the second inequality follows from Proposition 3.14 in [START_REF] Dykema | Commutator structure of operator ideals[END_REF]. This proves (3).

Observe that both sides of (4) depend linearly on A and C (thanks to Theorem 8). Thus, we can assume without loss of generality that A, C ě 0. When C is a rank one projection, (4) follows from Theorem 8 since in that case µpk, A b Cq " µpk, Aq for all k ě 0. Again appealing to linearity of Dixmier traces, we infer the result for the finite rank operator C and when A P L 1,8 is arbitrary. Consider now a general C P L 1 and let pC n q be a sequence of finite rank operators such that }C ´Cn } 1 Ñ 0. We have Tr ω pAqTrpC n q " Tr ω pAqTrpCq.

As a corollary, we obtain that Dixmier traces give necessary conditions for catalysis.

Corollary 10. Let 0 ď A P L 1,8 and 0 ď B P CatalpA, L 1,8 q. Then for every Dixmier trace Tr ω , one has [START_REF] Dykema | Commutator structure of operator ideals[END_REF] Tr ω pBq ď Tr ω pAq.

Proof. We know from (1) that Dixmier traces are continuous on L 1,8 , and therefore we may assume that B P CatalpA, L 1,8 q. By definition of the latter set (see Question Here is the main technical result used in the proof of Theorem 5. In the lemma below, we tacitly identify a sequence in the space ℓ 8 with the corresponding diagonal operator. For I Ă N, we note by χ I the sequence defined by χ I pnq " 1 if n P I and χ I pnq " 0 otherwise. Lemma 11. Let I be the subset of N defined as I " ď ně0 r2 2n , 2 2n`1 q.

Consider the operator2 B " à mPI 2 ´mχ r0,2 m q .

Then B P L 1,8 . Moreover, TrppαA 0 q 1`s q " lim sÑ0`s ζpsqα 1`s " α, it follows from (6) that there exists δ ą 0 such that the inequality [START_REF] Plenio | Entanglement-assisted local manipulation of pure quantum states[END_REF] TrpB 1`s q ď TrppαA 0 q 1`s q

( 4 )

 4 Tr ω pA b Cq " Tr ω pAqTrpCq.

  |Tr ω pA b C n q ´Tr ω pA b Cq| ď }A b pC ´Cn q} 1,8 ď }A} 1,8 }C ´Cn } 1 and this quantity tends to 0 as n goes to infinity. Consequently, Tr ω pA b Cq " lim nÑ8 Tr ω pA b C n q " lim nÑ8

4 .

 4 3), there exists a nonzero positive C in L 1 with the property that B b C ăă A b C. Combining the definition of Hardy-Littlewood submajorization ăă and the definition of a Dixmier trace Tr ω (see Theorem 8) we infer that the inequality Tr ω pB b Cq ď Tr ω pA b Cq holds for every Dixmier trace Tr ω . Inequality (5) now follows from (4) and from the fact that TrpCq ą 0. The case of L 1,8 : the main argument

5 9 log 2 ă α ă 2 3 log 2 ., 1 3 ,

 523 Let us postpone the proof of Lemma 11 and show how it implies the result stated in Theorem 5. Consider B as in Lemma 11 and fix a number α such that Recall that A 0 " diagpt1,1 2 ¨¨¨uq. Since lim sÑ0`s

  . . , x 1 loooomoooon

		, x 2 , . . . , x 2 loooomoooon , . . . , x n , . . . , x n loooomoooon , . . . q.
	k times	k times	k times

In the subsequent formulas, the symbol ' stands for the direct sum of operators.

holds whenever 0 ă s ď δ. Define the operator A " αA 0 ' }B} 1`δ p where p is a rank one projection. We claim that B P PMpA, L 1,8 q: indeed, for s ą δ we may write TrpB 1`s q " Tr ´pB 1`δ q 1`s 1`δ ¯ď `TrpB 1`δ q ˘1`s 1`δ " }B} 1`s 1`δ ď TrpA 1`s q while for 0 ă s ď δ the inequality TrpB 1`s q ď TrpA 1`s q follows immediately from [START_REF] Plenio | Entanglement-assisted local manipulation of pure quantum states[END_REF].

We now assume by contradiction that B belongs to the set CatalpA, L 1,8 q. We know from Corollary 10 that Tr ω pBq ď Tr ω pAq for every Dixmier trace Tr ω . Observing that any such trace vanishes on finite rank operators, we see that the value Tr ω pAq coincides with Tr ω pαA 0 q and hence is equal to α for for every Dixmier trace Tr ω (see the definition given in Theorem 8). On the other hand, we may choose a generalized limit ω such that Tr ω pBq " lim sup

and obtain from (6) that 2 3 log 2 ď α, a contradiction. We note that the Dixmier trace considered in the proof does not behave in a monotone way with respect to trace of powers: we have TrpB p q ď TrpA p q for every p ą 1, but Tr ω pBq ą Tr ω pAq.

Proof of Lemma 11

Let I and B be as defined in Lemma 11,and denote by E B the spectral measure of B. First, note that for every integer m,

Hence, for every positive integer n, writing 2 m ď n ă 2 m`1 , we infer

Recall also (see e.g. [11, Chapter 2, Section 2.3]) that µpk, Bq, k ě 0 can be computed via the formula µpk, Bq " infts ě 0 : TrpE |B| pps, 8qq ď ku Hence, it follows from (9) that µpk, Bq ď 2 k`1 for every k ě 0 and, in particular, B P L 1,8 . We now prove the right inequality in [START_REF] Edwards | Functional Analysis. Theory and applications[END_REF]. For a given n, let N " TrpE B p2

´22n`1 , 8qq. We know from (8) that N ď 2 2 2n`1 . Therefore,

Hence, for N as above, we have

as needed.

We now focus on the left inequality in [START_REF] Edwards | Functional Analysis. Theory and applications[END_REF] and use the following summation formula, whose proof we postpone. For a given sequence px n q P ℓ 8 and for a given s ą 0, we have that (10)

x l 2 ´ls .

Note that TrpB 1`s q " ř mPI 2 ´ms " ř mě0 χ I pmq2 ´ms (here, χ I p0q " 0). Applying [START_REF] Lindenstrauss | Classical Banach Spaces I[END_REF] It remains to show that C ď 5{18 (we actually show C " 5{18). To that end, we think of χ I as an element of L 8 p0, 8q and define z P L 8 p0, 8q by setting z " χ Ť nPZ r2 2n ,2 2n`1 q . Observe that χ I ď z. Therefore,

Since zp4tq " zptq for every t ą 0, applying Fubini's theorem we have

However,

3t ´8 5t 2 , 2 ď t ď 4 Hence, the latter supremum is, in fact, a maximum which is attained at t " 12 5 and equal to 5 18 .

Proof of [START_REF] Lindenstrauss | Classical Banach Spaces I[END_REF]. Write x l q2 ´ks " p1 ´2´s q ´1 ÿ kělě0

x l 2 ´ks " p1 ´2´s q x l 2 ´ls .