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Average observability of large-scale network systems

Muhammad Umar B. Niazi, Carlos Canudas-de-Wit and Alain Y. Kibangou

Abstract— This paper addresses observability and detectabil-
ity of the average state of a network system when few gateway
nodes are available. To reduce the complexity of the problem,
the system is transformed to a lower dimensional state space by
aggregation. The notions of average observability and average
detectability are then defined, and the respective necessary and
sufficient conditions are provided.

Index Terms— Large-scale systems, state aggregation, aver-
age observability, average detectability.

I. INTRODUCTION

Graph-theoretic approaches for controllability and observ-
ability of network systems have been extensively studied
in the past few decades, [1]–[6]. A resulting problem of
interest has been to identify the minimum number of gateway
nodes through which a network system is controllable or,
respectively, observable.

In large-scale network systems, however, we face the
issues of system complexity and limited sensing capability.
Complexity challenges the computational resources at hand
and a limited number of sensors may render the network
system unobservable. Moreover, knowing the complete state
of a network is often unnecessary for control and monitoring
purposes. For instance, in state feedback [7], some linear
functionals of the state are usually required.

In this paper, we study the observability of an average state
of a large-scale network system when few gateway nodes
are available. Network nodes where sensors are deployed
to obtain dedicated state measurements are called gateway
nodes (or measured nodes). The rest of the nodes are called
unmeasured nodes. The average state is meaningful in many
applications, especially for positive systems [8], where the
average provides a suitable estimate of the state norm, which
is useful in feedback stabilization [9].

We investigate whether it is possible to reconstruct an aver-
age state of a network system from the state measurements at
gateway nodes. This befalls under the problem of functional
observability, where one is interested in reconstructing a set
of linear functionals of the states. However, the necessary
and sufficient condition of functional observability in [10],
[11] requires the computation of ranks of a concatenation
of system matrices, which is not feasible when dealing with
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large-scale systems. Furthermore, we use the term average
observability to emphasize that an average is the quantity of
interest and not an arbitrary linear functional of the states.
Nevertheless, the approach can be generalized for any linear
functional of the state.

We present a different approach to examine average ob-
servability of a network system by transforming it to a lower-
dimensional state space, which is shown to be influenced by
a vector of ‘deviation’ from the average. Thus we provide
necessary and sufficient conditions for average observability
that are computationally tractable for large-scale networks.
In addition, we also provide the conditions of average de-
tectability, which is a notion that concerns with the stability
of the average state.

The paper is organized as follows. In Section II, we
formulate the problem. In Section III and IV, we define
and study the notions of average observability and average
detectability, respectively. Finally, in Section V, we present
conclusions and future prospects. The technical proofs of the
results are deferred to Appendix. We abide by the following
notations throughout the paper:

Notations: The set of real and complex numbers are
denoted as R and C, respectively. The sets C<0 and C≥0
represent open left-half and closed right-half complex planes,
respectively. We differentiate between scalars and vectors by
using boldface lowercase letters for vectors. The uppercase
letters are reserved for matrices. The identity matrix and
vector of ones are denoted as In ∈ Rn×n and 1n ∈ Rn,
respectively. The set of eigenvalues of a square matrix A is
denoted as eig(A) ⊂ C. We denote by diag[A1, . . . , Ak ]
a block diagonal matrix with matrices A1, . . . , Ak at its
diagonal.

II. PROBLEM FORMULATION

Consider a network represented by a weighted directed
graph G = (V, E), where V = {v1, v2, . . . , vn} is the set of
nodes indexed by the set I = {1, . . . , n} and E ⊆ V × V
is the set of directed edges or arcs. The edge configuration
of the nodes is given by the adjacency matrix W ∈ Rn×n,
whose ij-th entry is given by

[W ]ij =

{
wij , if i 6= j and (vi, vj) ∈ E ;
0, otherwise;

where wij > 0 is the weight of the edge (vi, vj) ∈ E . We
follow the convention that the edge (vi, vj) is represented as
vi ← vj . Hence, if (vi, vj) ∈ E , then we say that there is an
information flow (or inflow) to vi from vj . The state xi(t)



Fig. 1: Network system

of each node vi ∈ V satisfies

ẋi(t) = −wiixi(t) +
∑
j∈N in

i

wijxj(t) +

p∑
l=1

bilul(t), (1)

where wii ≥ 0 can be considered as a local-damping weight,
ul(t) ∈ R is an l-th input applied at node vi with a scaling
factor bil ∈ R, and N in

i := {j ∈ I : (vi, vj) ∈ E} is the
set of indexes of vi’s in-neighbors. Network system (1), as
shown in Figure 1, is represented with self-loops at nodes
due to local-damping.

Remark 1. We remark that (1) is a general model for linear
time-invariant (LTI) network systems, where the value of
local damping weight wii is free. For instance, in a reaction-
diffusion system evolving over undirected networks, [12],
each node has wii = ri +

∑
j∈N in

i
wij , where ri > 0 is

the reaction rate and wij = wji is the diffusion intensity
between the nodes vi and vj . Similarly, in a multi-agent
system seeking consensus, [2], we have wii =

∑
j∈N in

i
wij ,

or in a linear multi-compartmental system, we have wii =∑
j∈Nout

i
wji, where N out

i := {j ∈ I : (vj , vi) ∈ E} is the
set of indexes of vi’s out-neighbors. 4

Let x(t) = [x1(t) . . . xn(t) ]T be the network state vector
and u(t) = [u1(t) . . . up(t) ]T be the input vector, then a
linear time-invariant (LTI) network system (1) can be written
in a state-space form:

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

,

where A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rn1×n. The
output vector y(t), for t ≥ 0, contains the dedicated state
measurements of n1 < n2 nodes, where n1 is the number
of gateway nodes and n2 the number of unmeasured nodes
with n1 + n2 = n. Note that A = W − D, where D =
diag[w11, . . . , wnn ], and [B]il = bil for i = 1, . . . , n and
l = 1, . . . , p.

A. Preliminaries of observability and detectability

Considering the LTI systems of the form Σ, we briefly
recall the notions of observability and detectability. Note that
the state trajectory is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ,

and the output

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ)dτ.

To determine the state trajectory of Σ, it is necessary and
sufficient to know the initial state x(0). Thus, observability
is a property of a system that ensures that the initial state
x(0) can be reconstructed from the knowledge of inputs u(t)
and outputs y(t) over t ∈ [0,∞). It is well-known, [7], that
a system represented as Σ is observable if and only if the
pair (C,A) is observable, that is,
(a) rankOC,A = n, which is known as observability rank

condition and the observability matrix is defined as

OC,A :=


C
CA

...
CAn−1

 ; (2)

(b) rank
[
sI −A
C

]
= n, for all s ∈ eig(A), which is

known as Popov-Belevitch-Hautus (PBH) test.
The above conditions are equivalent and commonly used

to test the observability of an LTI system. If the PBH test
fails, i.e., rank

[
(sI −A)T CT

]T
< n for s ∈ X ⊆ eig(A),

then Σ is said to be detectable if and only if Re{s} < 0 for
every s ∈ X . That is, Σ is detectable if and only if

rank
[
sI −A
C

]
= n, for all s ∈ C≥0.

If the system is not observable, then there are some
unobservable modes of the state that cannot be reconstructed.
However, if all the unobservable modes are stable, then
the system is detectable and one can obtain an asymptotic
estimate of the state by an observer [13].

B. Average state of unmeasured nodes

Due to limited number of available sensors, we assume
that Σ is not observable. Therefore, we resort to the problem
of reconstructing an average state of unmeasured nodes.

Without loss of generality, we suppose the state parti-
tion as x(t) = [ xT1 (t) xT2 (t) ]T , where x1(t) ∈ Rn1 and
x2(t) ∈ Rn2 are the states of gateway nodes and unmeasured
nodes, respectively. To obtain this partition, one can simply
reorder the network nodes by transforming the network state
vector x(t) with an appropriate permutation matrix. Then,
V = V1 ∪ V2, where the subsets V1 = {v1, . . . , vn1} and
V2 = V \ V1 contain the gateway nodes and unmeasured
nodes, respectively, and we obtain the following block struc-
ture of system matrices in Σ:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C =
[
In1

0
]
. (3)

Let the average state x̄(t) := pTx2(t) be a linear
combination of the states of unmeasured nodes, where
p =

1
√
n2

1n2
∈ Rn2 such that pTp = 1. Note that x̄(t) is



an average mean scaled by
√
n2. This scaling is merely for

the sake of convenience. Let

σ(t) := x2(t)− p x̄(t) (4)

be a deviation vector and note that pTσ(t) = 0.

C. Problem statement

Given a network system Σ, under what conditions is it
possible to reconstruct the average state x̄(t) = pTx2(t) if
the knowledge of dedicated state measurements at gateway
nodes y(t) and input u(t) is available over t ∈ [0,∞)?
The problem is concerned with the observability of the
average state of unmeasured nodes, which is called average
observability. On the other hand, under what conditions the
dynamics of the average state is stable? That is, if x1(t) = 0
and u(t) = 0, then do we have x̄(t) → 0 as t → ∞? This
is called average detectability.

III. AVERAGE OBSERVABILITY OF NETWORK SYSTEMS

In this section, we state necessary and sufficient conditions
for average observability of network systems by projecting
the state of Σ to a lower-dimensional state space. Thus, we
obtain a projected network system, which is shown to be
influenced by a deviation vector σ(t).

To derive a model of projected network system, we
consider a lower-dimensional projection of the network state,

z(t) = Px(t),

where z(t) = [ xT1 (t) x̄(t) ]T ∈ Rn1+1 and

P =

[
In1

0
0 pT

]
, PT =

[
In1

0
0 p

]
such that PPT = I . Note that x(t) = PT z(t) +h(t), where
h(t) = [ 0T σT (t) ]T . Thus, we obtain the following system

ΣP :

{
ż(t) = Ez(t) + Fσ(t) +Gu(t)
y(t) = Hz(t),

where E = PAPT , Fσ(t) = PAh(t), G = PB, and
H = CPT ;

E =

[
A11 A12p

pTA21 pTA22p

]
, F =

[
A12

pTA22

]
,

G =

[
B1

pTB2

]
, H =

[
In1

0
]
. (5)

Notice that the deviation vector σ(t) enters the system
ΣP as an ‘unknown’ input, because σ(t) = x2(t) − px̄(t)
and x2(t) is not measured. However, since σ is not an
arbitrary disturbance and ΣP is the projection of Σ on lower-
dimensional state space, we consider the observability (resp.,
detectability) of ΣP equivalent to the average observability
(resp., average detectability) of Σ.

Lemma 1. The pair (H,E) in ΣP is an observable pair if
and only if there exists an edge (i, j) ∈ E , where i ∈ V1 is
a gateway node and j ∈ V2 is an unmeasured node. �

The observability of the pair (H,E) is a necessary condi-
tion for the observability of ΣP — it is, however, necessary

and sufficient only when Fσ(t) = 0 for all t ≥ 0. Since it
requires just one edge (inflow) to the gateway nodes from
unmeasured nodes, it is appropriate to make the following
assumption:

Assumption 1. There exists at least one edge (i, j) ∈ E such
that i ∈ V1 is a gateway node and j ∈ V2 is an unmeasured
node. ♦

We introduce the notion of average observability as the
property of Σ which ensures the reconstruction of the
average state x̄(t) from ΣP by assuming the knowledge of
state measurements x1(t) at the gateway nodes and the input
u(t) for all t ≥ 0. Note that the output y(t) of the systems
Σ and ΣP is same and is given by

yσ(t, z(0)) = HeEtz(0) +

∫ t

0

HeE(t−τ)[Fσ(τ) +Gu(τ)]dτ.

(6)
Precisely, average observability is defined as:

Definition 1. Suppose u(t) = 0 in Σ. Let x̄(t) = pTx2(t)

with p = n
− 1

2
2 1n2

. Then, Σ is said to be average observable
if for all initial conditions z(0) = [xT1 (0) x̄(0)]T ∈ Rn1+1

and the deviation vector σ(t) ∈ Rn2 is such that pTσ(t) = 0
for all t ≥ 0, it holds that the output yσ(t, z(0)) = x1(t) = 0
for all t ≥ 0 implies x̄(0) = 0, where yσ(t, z(0)) is given
in (6). ♦

If the initial average x̄(0) 6= 0 but yσ(t, z(0)) = 0 for all
t ≥ 0, then it means that the effect of x̄(0) is not appearing
in the output measurements. Hence, in that case, Σ is not
average observable. In the following, we provide a necessary
condition for average observability. For the proof, please
refer to Appendix.

Theorem 1. Let Assumption 1 hold. Then, Σ is average
observable only if

rank
[
F
pT

]
= rankF, (7)

where F ∈ Rn1×n2 is given in (5) and x̄(t) = pTx2(t) is
the average state with x2(t) the state vector of unmeasured
nodes and p = n

− 1
2

2 1n2
. �

Notice that the matrix F contains two sets of information
about Σ: (i) The inflow configurations from unmeasured
nodes V2 to gateway nodes V1 described by the matrix A12

and (ii) the aggregated internal structure of subsystem formed
by unmeasured nodes which is described by pTA22. Here,
the vector p can be considered as an aggregation vector.
Hence, (7) requires that p lies in the rowspace of F . In the
following, we provide a necessary and sufficient condition
for average observability which is contingent on (7) — see
Appendix for the proof.

Proposition 1. If (7) holds, then there exists a matrix
N = [ n1 . . . n` ] ∈ R`×` such that NF = f pT , where
f ∈ R` and ` = n1 + 1. Then, Σ is average observable if
and only if sn` − f 6= 0 for all s ∈ R. �



The proposition that (7) implies the existence of N ∈ R`×`
such that NF = f pT is straightforward. It is because (7)
implies that pT lies in the rowspace of F , therefore one can
find a matrix N that performs suitable ` row operations on F
to obtain f pT . Then, the necessary and sufficient condition
for average observability is that the last column of the matrix
N is linearly independent from the vector f ∈ R`.

Theorem 2. The following statements hold:
(i) Σ is average observable if

rank
[
A12

pT

]
= rankA12; (8)

(ii) Σ is average observable if

rankF = rankA12 = n1; (9)

where A12 is given in (3), F in (5), n1 is the number of
gateway nodes, and p = n

− 1
2

2 1n2 with n2 the number of
unmeasured nodes. �

The sufficient condition (8) requires pT to be in the
rowspace of A12, which is a matrix that contains the inflow
configurations of gateway nodes from unmeasured nodes.
To satisfy such a condition, it is necessary that every un-
measured node is connected to at least one gateway node.
Precisely, for every j ∈ V2 there must exist (i, j) ∈ E with
i ∈ V1.

On the other hand, the sufficient condition (9) requires
pTA22 to be in the rowspace of A12. However sufficient
for average observability, these conditions are difficult to
satisfy for general networks. Nevertheless, they are easily
computable for large-scale networks. The strictness of these
conditions is a price to pay for reduced complexity.

Example 1. In Figure 2, where V1 are shown as black and
V2 as green, we illustrate the sufficient condition (8). The
edge weights are assumed to be 1. Notice that the network
depicted in Figure 2 is not observable since rankOC,A =
8 < 12, where C = [I2 0]. We have

A12 =

[
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

]
,

therefore (8) is satisfied and the network system is average
observable. 4

Remark 2. The notion of average observability is a special
case of functional observability, where the vector p ∈ Rn2

represents any arbitrary linear combination of states. The
necessary and sufficient condition of functional observability
[10], [11] is given by

rank
[
OC,A
OqT ,A

]
= rankOC,A,

where OC,A is given in (2) and OqT ,A can be obtained
by replacing C with qT in (2) with q = [ 0T pT ]T ∈ Rn.
However, to verify this rank condition for large-scale network
systems is computationally difficult. Therefore, to obtain
tractable network topological conditions for functional ob-
servability, the approach presented in this paper can be easily
generalized. 4

Fig. 2: An average observable network system

IV. AVERAGE DETECTABILITY OF NETWORK SYSTEMS

If the network system is not average observable, then we
cannot reconstruct the average state. However, the average
state may be estimated by an observer if the network system
is average detectable. The design of such an observer is
spared for future research. We define the notion of average
detectability as:

Definition 2. Suppose u(t) = 0 in Σ. Let x̄(t) = pTx2(t)

with p = n
− 1

2
2 1n2

. Then, Σ is said to be average detectable
if for all initial conditions z(0) = [xT1 (0) x̄(0)]T ∈ Rn1+1

and the deviation vector σ(t) ∈ Rn2 is such that pTσ(t) = 0
for all t ≥ 0, it holds that the output yσ(t, z(0)) = x1(t) = 0
for all t ≥ 0 implies x̄(t)→ 0 as t→∞, where yσ(t, z(0))
is given by (6). ♦

The above definition requires the unforced dynamics of
x̄(t) to be stable for average detectability of Σ. In the
following, we present relatively mild sufficient conditions
for average detectability, see Appendix for a proof.

Proposition 2. Σ is average detectable if and only if

(i) rankF ≤ n1,
(ii) pTA22p < 0 ,

where F is given in (5), A22 in (3), and p = n
− 1

2
2 1n2

. �

The intuitive explanation of rank deficiency of F is that
it allows us to cancel the effect of σ on the dynamics of the
system ΣP . The matrix F , from (5), is such that it can be
row-rank deficient in one of the following cases:

(C1) rankA12 < n1,
(C2) rankF = rankA12.

Since A12 contains the configuration of the inflows from V2
(unmeasured nodes) to V1 (gateway nodes), (C1) is satisfied
if there exists a gateway node whose inflow configurations
with respect to unmeasured nodes are linearly dependent on
the inflow configurations of the other gateway nodes. This
linear dependence is illustrated in Figure 3, where V1 are
shown as black, V2 as green, and the inflows from V2 to V1
are shown as blue edges. Note that inflow to both gateway
nodes v1, v2 ∈ V1 from the unmeasured node v6 ∈ V2 creates
rank deficiency in A12.



Fig. 3: An average detectable network system

Example 2. Consider a linear multi-compartmental system
where the nodes represent the compartments. Each compart-
ment or node vi contains a quantity xi(t) which satisfies

ẋi(t) =
∑
j∈N in

i

wijxj(t)−
∑

k∈Nout
i

wkixi(t),

where the first term in the right hand side is flow in to
node vi and the second term is flow out from node vi. The
compartments share their quantities with their out-neighbors
and the edge weights wij act as amplification parameters.
Let the input u(t) = 0, then the system matrices A and C
of the network system shown in Figure 3 are:

A =



−4 0 0 0 0 3 0

0 0 0 0 0 5 0

0 0 −5 0 4 0 0

4 0 0 −3 2 0 0

0 0 0 0 −6 4 0

0 0 0 3 0 −12 1

0 0 5 0 0 0 −1



C =

 1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

 ,

where the matrix partitions depict the partitions in (3) and
the black nodes v1, v2, and v3 are the gateway nodes. The
network system is not observable since the observability
rank condition is not satisfied, i.e., rankOC,A = 6. Also,
it is not average observable since it doesn’t satisfy (7).
In the following, we check for the conditions of average
detectability.

First, (C1) is satisfied with rankA12 = 2 < n1 = 3.
Second, p = 1

2 [ 1 1 1 1 ]T and pTA22 = [ 0 − 2 − 4 0 ],
which lies in the span of the rows of A12. Hence, the condi-
tion rankF ≤ n1 is satisfied. Moreover, Proposition 2(ii) is
satisfied since pTA22p = −3 < 0. Therefore, the network
system in Figure 3(b) is average detectable. 4

Theorem 3. Σ is average detectable if

pTA22 = −γpT , (10)

where γ > 0, A22 is given in (3), and p = n
− 1

2
2 1n2

.

Proof. Suppose (10) holds, then pTA22p = −γ < 0.
Moreover, it also holds that Fσ(t) = F̂σ(t), where

F̂ =

[
A12

0

]
and F is given in (5). It is because

pTA22σ(t) = −γpTσ(t) = 0. Therefore, both conditions of
Proposition 2 are satisfied. �

V. CONCLUDING REMARKS

Large-scale network systems are often unobservable with
dedicated state measurements at few gateway nodes. There-
fore, we resorted to the problem of reconstructing the average
state of the unmeasured nodes, and defined the notions of av-
erage observability and average detectability. The complexity
of the problem is reduced by obtaining the projected system
with dynamics in lower dimensional state space. Referring
to average observability as AO and average detectability as
AD, the results in this paper are summarized as:

(i) AO =⇒ Theorem 1.
(ii) AO ⇐⇒ Proposition 1.

(iii) Theorem 2 =⇒ AO.
(iv) AD ⇐⇒ Proposition 2.
(v) Theorem 3 =⇒ AD.
The future prospects include (a) the design of average state

observer; (b) the extension of current framework to nonlinear
network systems with multiple clusters of unmeasured nodes;
and (c) reconstruction of a nonlinear functional of the state.
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APPENDIX

A. Proof of Lemma 1
For the pair (H,E) to be observable, the following PBH

test is equivalent:

rank

 sI −A11 −A12p
−pTA21 s− pTA22p

I 0

 = n1 + 1, ∀ s ∈ C.

Thus, it is clear that A12p 6= 0 is necessary and sufficient
for the observability of the pair (H,E). The matrix A12 is
nonnegative with ij-entry positive if there exists an edge
(i, j) ∈ E , where i ∈ V1 and j ∈ V2. Therefore, if there
exists such an edge, we have A12p 6= 0.

B. Proof of Theorem 1
To reconstruct the average state x̄(t) from ΣP , it is

necessary that the effect of σ(t) is canceled. Consider left
multiplying the state equation of ΣP by N ∈ R`×`, where
` = n1 + 1, which gives a descriptor system

N ż(t) = NEz(t) +NFσ(t) +NGu(t)
y(t) = Hz(t).

(11)

Therefore, for observability of (11), it is necessary that
NFσ(t) = 0. To prove that it is indeed equivalent to (7),
note that σ(t) = (I−ppT )x2(t), where the rank of I−ppT

is equal to n2 − 1 and its nullspace is spanned by p. Since
x2(t) ∈ Rn2 is arbitrary, we have NFσ(t) = 0 if and only
if NF = f pT , where f ∈ R`, which is equivalent to (7).



C. Proof of Proposition 1

Consider again a descriptor system (11) with NFσ(t) = 0
and the output y(t) = Hz(t). This system is observable, see
[14], [15], if and only if

rank
[
sN −NE

H

]
= `, ∀ s ∈ C, (12)

where ` = n1 + 1. Since (7) holds, we have NF = f pT ,
where f ∈ R`. Let N = [ n1 . . . n` ], where ni ∈ R` for
i = 1, . . . , `. From (5), notice that E = [ ∗ Fp ], where ∗
denotes the terms which are trivial in the following proof.
Hence, NE = [ ∗ f ] and (12) is given as

rank
[
∗ sn` − f
In1

0

]
= `, ∀ s ∈ C,

which is equivalent to sn` − f 6= 0 for all s ∈ R since
n`, f ∈ R`. In other words, if n` 6= 0, then n` and f must
be linearly independent.

D. Proof of Theorem 2

(i) Let N = [N1 0], i.e. n` = 0. Then, if (8) hold,
then NF = N1A12 = f pT , where f 6= 0. Therefore, the
necessary and sufficient condition of average observability
in Proposition 1 is satisfied.

(ii) Suppose rankA12 = n1, then in the following we
prove that n` and f are linearly independent if and only if
rankN ≥ 2:

For the necessity, suppose rankN = 1 and n`, f are lin-
early independent. Then, N = [α1m1 α2m1 . . . α`m1 ]

T
,

where αjmT
1 = αj [m

1
1 . . . m`

1 ] is the j-th row of N and
αj ,m

j
1 are scalars, for j = 1, . . . `. Then, we know that

the last column of N is given by n` = m`
1[α1 . . . α` ]T .

Let mT
1 F = f1 pT , where f1 ∈ R, since (7) holds, then

NF = f pT and f = f1[α1 . . . α` ]T . Hence, we arrive at
a contradiction because n`, f are linearly dependent.

For the sufficiency, suppose rankN = 2 and let N =
[m1 m2 . . . ]T , where mT

1 and mT
2 are linearly in-

dependent rows and . . . represent the rows which are in
span{m1,m2}. Let s = [ s1 s2 0 . . . 0 ]T be such
that atleast one of s1, s2 is nonzero and sTn` = 0. Let
N̂ = [ n1 . . . n`−1 ], then N̂A12 + n`p

TA22 = f pT .
Multiplying sT from left gives sT N̂A12 = sT f pT . For n`
and f to be linearly dependent, it must hold that sT f = 0.
This implies sT N̂ = 0 since rankA12 = n1, i.e., full row
rank. But sTN = sT [ N̂ n` ] 6= 0, because the first two rows
of N are linearly independent. This proves the sufficiency
that if rankN ≥ 2, then n`, f are linearly independent.

Finally, we prove that rankN ≥ 2 implies rankF ≤ n1.
From (7), rankNF = 1. If rankF = `, then rankNF =
rankN 6= 1. Therefore, rankF < `, where ` = n1 + 1. But
rankA12 = n1, hence rankF = n1 from (5).

E. Proof of Proposition 2

First, consider (11) with NF = 0. Such an N ∈ R`×`,
` = n1 + 1, exists if and only if Proposition 2(i) holds.
Second, we know that σ(t) = (I − ppT )x2(t). But, (I −
ppT ) is an idempotent matrix, i.e., (I−ppT )2 = (I−ppT ).

Therefore, we can write Fσ(t) = F (I − ppT )σ(t). Using
these identities, the term Fσ(t) in ΣP can be replaced by
F̂σ(t), where

F̂ =

[
A12

pT∆22

]
with ∆22 = ppTA22 − A22ppT . Now, there exists N̂ ∈
R`×` such that N̂ F̂ = 0 if and only if rank F̂ < `.
Let N̂ = [ N̂1 N̂2 ], then N̂1A12 + N̂2p

T∆22 = 0. Since
pT∆22p = 0, we have N̂1A12p = 0. Then, from (12)

rank
[
sN̂ − N̂E

H

]
= rank

[
∗ N̂2(s− pTA22p)
In1

0

]
,

where ‘∗’ is an irrelevant term in the rank of the matrix. It
can be easily seen that (12) doesn’t hold at s = pTA22p.
But if pTA22p < 0, then the above rank condition holds for
all s ∈ C≥0 and, hence, Σ is average detectable.
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