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Abstract—This paper presents an efficient algorithm with
performance guarantee (approximation algorithm) to solve
task scheduling problem on hybrid platform. The underlying
platform architecture in this work is composed by two types
of resources CPU and GPU, often called hybrid parallel multi-
core platforms. We consider here for each type of resource
identical nodes with communications delays. We focus in
finding a generic approach to schedule applications presented
by DAG (Directed Acyclic Graph) that minimizes makespan
by considering communication delay between processors and
tasks. A 6-approximation scheduling algorithm is proposed
and evaluated in comparison to exact solutions and to another
method. We demonstrate that the proposed algorithm achieves
a close-to-optimal performance. Finally, our algorithm has
been experimented on a large number of instances. These
tests assess the good practical behavior of the algorithms with
respect to the state-of-the-art solutions whenever these exist.

Index Terms—DAG applications, makespan, hybrid CPU GPU,
approximation algorithm, scheduling.

1. Introduction

The past few years have seen an increase demand for
developing efficient large computational resources. Thus,
heterogeneous computing systems become a popular and
powerful commercial platform, containing several heteroge-
neous processing elements such as Central Processing Unit
(CPU), Graphics Processing Unit (GPU) and some Field
Programmable Array (FPGA) with different computational
characteristics. In particular, the number of platforms of
the TOP500 [1] equipped with accelerators has significantly
increased during the last years. However, using efficiently
these platforms became very complicated. Consequently,
more and more attention has been focused on scheduling
techniques for solving the problem of optimizing the exe-
cution of parallel applications on heterogeneous computing
systems [4], [18], [25].

The underlying platform architecture in this work is
composed by two types of resources CPU and GPU often

called hybrid parallel multi-core platforms. We consider here
for each type of resource identical nodes. In several appli-
cations, we always observe an acceleration of the execution
time of tasks if they are executed on a GPU compared to
their execution time on a CPU [8]. However, we consider
here the more general case where the relation between the
two resources can differ for different tasks. Thus we have
to take into account that the execution time for any task
of the application depends on the type of resource used
to execute it. This configuration is known as ”inconsistent
heterogeneity” and has been well-studied in the literature.
The consistent model problem was presented in [3] for
the particular case of applications represented by chain of
tasks, where the execution time of the task depends on the
frequency of the processor to which it is assigned.

We focus here in finding a generic approach to schedule
applications presented by DAG (Directed Acyclic Graph)
that minimizes finish time of the application by consider-
ing communication delay between processors and tasks. 6-
approximation scheduling algorithm is proposed and evalu-
ated compared to exact solution and to another method. We
demonstrate that the proposed algorithm achieves a close-to-
optimal performance. The goal here is to minimize the finish
execution time of the last task of the application (usually
called makespan).

The rest of the paper is organized as follow: Section
2 investigates previous research in scheduling strategies to
minimize makespan on hybrid platforms. Section 3 presents
the detailed problem with mathematical formulation. In Sec-
tion 4, we describe the proposed algorithm for our problem
and the approximation ratio we obtain. Section 5 shows
some preliminary numerical results. Finally, we conclude
and provide insight for future work in Section 6.

2. Related work

There is a plentiful literature about scheduling in het-
erogeneous and hybrid platforms CPU/GPUs that concerns
specific applications [9], [13]. Only few papers deal with
generic scheduling strategies in hybrid platforms, and very



few of them consider precedence constraints but usually
without communications costs as it is the case in this work.

List Scheduling algorithm [6], [16], [23] was widely
used because of their ease of implementation as well as
their low complexity. We can find comparison between some
basic List Scheduling algorithms in [23], [27] on different
environments. However, such heuristic algorithms do not
provide performance guaranties and thus, may lead to very
bad executions for some instances.

Most of these strategies as in [10], [21] work in two
main steps. The first step assigns ranks based on certain
properties of the tasks, usually the execution time and/or
communication delays. In the second step, the tasks are
assigned to the processors.

For unlimited number of processors or homogeneous
platforms, clustering algorithms [12], [19], [24] usually
provide a good solution, where multiple tasks are combined
at each step into a cluster to be assigned. Another method to
solve the problem is duplication algorithms [2], [7] which
use the concept of multiple copies of a task that can run
on multiple processors to reduce communication time be-
tween processors but generate additional data transfer costs
between tasks and may also increase energy consumption.

Among the algorithms proposed in the literature, Hetero-
geneous Earliest Finish Time (HEFT) [26] is one of the first
work that deal with scheduling problem on heterogeneous
platform. It served as a comparison method for most of
works. HEFT is a list based approach on two main phases.
The first phase uses runtime costs and communication costs
to calculate ranks. After rank calculation, the assignment
to the processors will take place in the second phase using
the earliest finish time of tasks. Each task is then assigned
to the processor that produces the minimal finishing time.
However, HEFT does not consider more than one task
during processor assignment. A different approach has been
presented in [6], proposing Predict Earliest Finish Time
(PEFT) algorithm. This algorithm has also two main phases:
a phase that calculates task priorities, and a processor se-
lection phase to choose the best processor for running the
current task. Recently, an algorithm with a new strategy
named INCSEFT (Incremental Sub-graph Earliest Finish
Time) has been proposed in [22] for the heterogeneous
platform scheduling. It incorporates the use of a sub-graph
that grows progressively by adding critical paths. Critical
paths are calculated dynamically using ranks based on the
average execution costs of the tasks. All tasks in a critical
path are assigned to the most appropriate processor if the
length of the sub-graph scheduling does not exceed the
length of the previously computed scheduling. Otherwise,
a single task is assigned to the most appropriate processor.

Inspired by research before, we tried to solve our prob-
lem on two steps : define the assignment of the tasks, then
look for a optimal scheduling. Contrarily to most existing
approaches, we propose here to address the problem of
assignment tasks on an hybrid platform by considering
communications costs between tasks and resources which
reflects better the reality.

We took over the work presented in [20] where the

two-phases approach has been proposed for the problem
of scheduling a parallel application whose tasks are linked
by precedence constraints without communications delays.
The first phase consists in solving the assignment problem
to find the type of processor assigned to execute the tasks
(CPU or GPU) using a linear program. In the second phase,
a list scheduling algorithm has been proposed to generate a
feasible schedule. This algorithm (which we call GPU-CPU
Scheduling or simply GCS) achieves an approximation ratio
of 6. This ratio has been proven that it is tight in [5]. We tried
to keep the same ratio of 6 for the scheduling with commu-
nication costs by adding new constraints. We can notice that
for the problem without communication costs, a 2(K + 1)-
approximation algorithm has been developed in [15] using a
platform having processors with K different speeds. To the
best of our knowledge, we propose the first algorithm that
takes precedence constraints and communications delays
into account for scheduling a parallel application on hybrid
multi-core machines.

3. Problem definition

We consider in this work a heterogeneous platform
composed of m resources of two types: GPU and CPU. Let `
be the number of CPU and k the number of GPU, m = `+k.
An application A of n tasks is represented by a Directed
Acyclic Graph (DAG) oriented G(V,E), each vertex repre-
sents a task t

i

. Each arc e = {t
i

, t

j

} represents a precedence
constraint between two tasks t

i

and t

j

. We associate it with
the value ct

i,j

which represents the communication delay
between t

i

and t

j

if they are executed on two different
resource types. The exact formula to evaluate ct

i,j

which
takes into consideration latencies and available bandwidth
between processors is provided in [28]. We denote by ��(i)
(resp. �+(i)) the sets of the predecessors (resp. successors)
of task t

i

. Figure 1 presents an example of our application.
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t6 t7 t8 t9
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ct6,10 ct7,10 ct8,10 ct9,10

Figure 1: DAG application.



A task can be executed by a CPU or a GPU. Executing
the task t

i

on a CPU (resp. GPU) generates an execution
time equal to w

i,0 (resp. w
i,1). A task t

i

can be executed
only after the complete execution of its predecessors. We do
not allow duplication of tasks and preemption. We denote by
C

max

the completion time of the application A (makespan).
The aim is to find the minimum makespan of the application.

Our problem can be modeled by mixed integer quadratic
constrained program (P ). The decision variables are x

i,j

and start

i

for i = 1..n and j = 1..m, where x

i,j

= 1 if
t

i

is executed on the CPU j for j 2 [1, `] (resp. GPU j for
j 2 [`+1,m]), 0 otherwise. start

i

presents the starting time
of the task t

i

.
The first constraint simply expresses that each task must

be executed only once and on one processor. Constraints
(2) describes that the task t

i2 must be executed after the
completion time of the task t

i1 for each task t

i1 that precedes
task t

i2, and the communication cost ct

i1,i2 is added if
they are executed on two different processing elements.
Constraint (3) is a disjunctive constraint to prohibit over-
lapping tasks on the same processor using a large constant
B, such that if two tasks t

i1 and t

i2 are executed on the same
processor, then either t

i2 starts after the completion time of
the task t

i1 or t

i1 starts after the completion time of the
task t

i2. Constraints (4) describes that C
max

is bigger than
the completion time of the tasks without successors. Thus,
to minimize the finish execution time of the application, we
must minimize C

max

.

(P )

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

P
m

j=1 xi,j

= 1, 8i = 1..n (1)

start

i1 + x
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i1,b j1

`+1 c
+ x

i1,j1xi2,j2cti1,i2 6 start
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6 start
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i2j)
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start
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6 start
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i1j ⇥ x

i2j)

8i1, i2 = 1..n i1 6= i2, 8j = 1..m,B = Cte

start

i

+
P

m

j=1 xi,j

w

i,b j

`+1 c
6 C

max

, 8i,�+(i) = ; (4)

Z(min) = C

max

4. Approximation algorithm for scheduling
DAG applications

In this section, we propose a two-phase approximation
algorithm, aiming for a ratio of 6. We start by solving
an assignment problem to find which processor (CPU or
GPU) will execute each task. We propose two models (P1)
and (P2) for solving the assignment problem while the
precedence constraints are satisfied. The solution obtained
by the model (P1) or (P2) represents a lower bound for the
final makespan. Then we solve the relaxation (P1

0
) (resp.

(P2
0
)) of the model (P1) (resp. (P2)). And in order to

obtain a feasible assignment for the tasks, we rounded up
the fractional solution of the program (P1

0
) and (P2

0
). In

the second phase, we use the assignment of the tasks and
list scheduling algorithm to get a feasible schedule.

4.1. Phase 1: assignment of tasks

4.1.1. Mathematical model.
Let the decision variable x

i

which is equal to 1 if the task
t

i

is assigned to a CPU and 0 otherwise. Let the two
binary variables z

i,j

and y

i,j

such that z
i,j

= 1 if the tasks
t

i

and t

j

are assigned to a CPU and y

i,j

= 1 if the tasks
t

i

and t

j

are assigned to a GPU . Let C
i

be the finish time
of the task t

i

. The goal is to minimize the makespan.

(P1)

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

C

i

+ x

j

w

j,0 + (1� x

j

)w
j,1 + ⇣

i,j

6 C

j

(1)
⇣

i,j

= (1� |y
i,j

� z

i,j

|)ct
i,j

, 8(t
i

, t

j

) 2 E

z

i,j

6 x

i

, 8(t
i

, t

j

) 2 E (2)
z

i,j

6 x

j

, 8(t
i

, t

j

) 2 E (3)
y

i,j

6 1� x

i

, 8(t
i

, t

j

) 2 E (4)
y

i,j

6 1� x

j

, 8(t
i

, t

j

) 2 E (5)

x

i

w

i,0 + (1� x

i

)w
i,1 6 C

i

, 8i = 1..n,��(i) = ; (6)

0 6 C

i

6 C

max

, 8i = 1..n,�+(i) = ; (7)P
n

i=1 xi

w

i,0 6 `C

max

(8)P
n

i=1(1� x

i

)w
i,1 6 kC

max

(9)

x

i

, y

i,j

, z

i,j

2 {0, 1}, 8i = 1..n, j = 1..n (10)
Z(min) = C

max

The model is inspired by the model given in [20].
Constraints (1 to 7) describes the critical path, such as if
task t

i

precedes t

j

, and these two tasks are assigned to two
different processors, we obtain two cases: either x

i

= 1 and
x

j

= 0 or x

i

= 0 and x

j

= 1. In the two cases, we obtain
y

i,j

= 0 and z

i,j

= 0, implies that 1 � |y
i,j

� z

i,j

| = 1
because of the four constraints (2), (3), (4) and (5).

If tasks t

i

and t

j

are assigned to the same processor, we
obtain also two cases:

case 1: x

i

= 0 and x

j

= 0: in this case, z
i,j

= 0
and y

i,j

takes the value 1 (minimization problem),
then 1� |y

i,j

� z

i,j

| = 0.
case 2: x

i

= 1 and x

j

= 1 : in this case, y
i,j

= 0
and z

i,j

takes the value 1 (minimization problem),
then 1� |y

i,j

� z

i,j

| = 0.
Tasks without predecessors (respectively successors) are
considered in the constraint (6) (resp. (7)). Constraint (8)
(resp, (9)) simply expresses that the makespan cannot be
smaller than the average load of work putted in CPUs
(resp. GPUs). Note that the problem of finding the optimal
mapping that minimizes makespan is np-hard even for the
problem without communications delays [14], [25].

The first constraint contains an absolute value that can
be processed in the CPLEX APIs [17]. In the C + + API,
Cplex.abs can be used. To see the efficiency of CPLEX
in managing the absolute value, we have proposed another
model (P2) without absolute value. By adding two binary
variables a

i,j

and b

i,j

and two constraints (5.1) and (5.2),
we can get rid of the absolute value, we obtain a second
model (P2).

The models (P1) and (P2) are equivalent. Indeed, the
value of variable b

i,j

replace |y
i,j

� z

i,j

| 2 {0.1} in (P2),
we obtain two cases:



1) |y
i,j

�z

i,j

| = 0: 2a
i,j

> b

i,j

and 2(1�a

i,j

) > b

i,j

,
then b

i,j

= 0 for a
i,j

2 {0, 1}.
2) |y

i,j

�z

i,j

| = 1: if (y
i,j

�z

i,j

) = 1, 1+2a
i,j

> b

i,j

and �1+2(1�a

i,j

) > b

i,j

, and since b

i,j

2 {0.1},
b

i,j

= 1 for a

i,j

= 0. If (z
i,j

� y

i,j

) = 1, �1 +
2a

i,j

> b

i,j

and 1 + 2(1 � a

i,j

) > b

i,j

, and since
b

i,j

2 {0.1}, b
i,j

= 1 for a
i,j

= 1.

(P2)

8
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j
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j
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)ct
i,j

, 8(t
i

, t

j

) 2 E

z

i,j

6 x

i

, 8(t
i

, t

j

) 2 E (2)
z

i,j

6 x

j

, 8(t
i

, t

j

) 2 E (3)
y

i,j

6 1� x

i

, 8(t
i

, t

j

) 2 E (4)
y

i,j

6 1� x

j

, 8(t
i

, t

j

) 2 E (5)
(z

i,j

� y

i,j

) + 2(1� a

i,j

) > b

i,j

, 8(t
i

, t

j

) 2 E (5.1)
(y

i,j

� z

i,j

) + 2a
i,j

> b

i,j

, 8(t
i

, t

j

) 2 E (5.2)

x

i

w

i,0 + (1� x

i

)w
i,1 6 C

i

, 8i = 1..n,��(i) = ; (6)

0 6 C

i

6 C

max

, 8i = 1..n,�+(i) = ; (7)P
n

i=1 xi

w

i,0 6 `C

max

(8)P
n

i=1(1� x

i

)w
i,1 6 kC

max

(9)

x

i

, y

i,j

, z

i,j

, a

i,j

, b

i,j

2 {0, 1}, 8i = 1..n, j = 1..n (10)
Z(min) = C

max

In the following, we focus on the model (P1), the results
found for (P1) remain valid for (P2).

4.1.2. Relaxed problem. We obtain the model (P1
0
) by

relaxing the integrity variables x

i

, y

i,j

and z

i,j

. We also
obtain the model (P2

0
) by relaxing the integrity variables

x

i

, y

i,j

, z

i,j

and b

i,j

. However, a

i,j

must remain integer.
We denote by y

0

i,j

, z
0

i,j

, b
0

i,j

all in [0, 1], the fractional value
of y

i,j

, z
i,j

, b
i,j

in the optimal solution of the model (P1
0
)

or (P2
0
), with i = 1..n and j = 1..n. We denote by x

0

i

the fractional value of the assignment variable of task t

i

in the optimal solution of the model (P1
0
) or (P2

0
). If

x

0

i

is integer for i 2 1..n, the solution obtained is feasible
and optimal for (P1) and (P2), otherwise the fractional
values are rounded. We denote by x

r

i

the rounded value of
the fractional value of the assignment variable of task t

i

in
the optimal solution of (P1

0
) or (P2

0
). We set xr

i

= 0 if
x

0

i

<

1
2 , xr

i

= 1 otherwise.
Let ✓1 be the mapping obtained by this rounding.
Each task t

i

is mapped in either CPU or GPU. Thus,
✓1(ti) �! {CPU,GPU}.

Proposition 1. The rounding previously defined satisfies the
following two inequalities:

x

r

i

6 2x
0

i

(1� x

r

i

) 6 2(1� x

0

i

).

Proof: If 0 6 x

0

i

<

1
2 , then x

r

i

= 0 6 2x
0

i

. Further-
more, 2x

0

i

6 1, then 0 6 1�2x0

i

, follows �xr

i

= 0 6 1�2x0

i

,
then 1 � x

r

i

6 2(1 � x

0

i

). If 1
2 6 x

0

i

then 1 6 2x
0

i

, follows
x

r

i

= 1 6 2x
0

i

. Furthermore, x

0

i

6 1 then �2x0

i

> �2,
follows 1 � 2x

0

i

> �1, then �xr

i

= �1 6 1 � 2x
0

i

, then
1� x

r

i

6 2(1� x

0

i

).

Lemma 1. Let C

0

max

be the optimal solution obtained by
solving the programs (P1

0
) or (P2

0
). We can get another

solution C

00

max

= C

0

max

, such that for each two tasks t

i

precedes t

j

:

1) if min{1� x

0

i

, 1� x

0

j

} > min{x0

i

, x

0

j

}, then y

0

i,j

=

min{1� x

0

i

, 1� x

0

j

} and z

0

i,j

= 0.
2) if min{1�x

0

i

, 1�x

0

j

} < min{x0

i

, x

0

j

}, then y

0

i,j

= 0

and z

0

i,j

= min{x0

i

, x

0

j

}.

Proof: By constraints (2) and (3) from (P1
0
) or

(P2
0
) , z

0

i,j

6 min{x0

i

, x

0

j

}. By constraints (4) and (5)

from (P1
0
) or (P2

0
), y

0

i,j

6 min{1 � x

0

i

, 1 � x

0

j

}. Let
� = |y0

i,j

� z

0

i,j

|. To minimize the communication cost
(⇣

i,j

= (1 � |y0

i,j

� z

0

i,j

|)ct
i,j

) between t

i

and t

j

, we have
to maximize �. � = |y0

i,j

� z

0

i,j

| 6 max{y0

i,j

, z

0

i,j

} 6
max{min{1� x

0

i

, 1� x

0

j

},min{x0

i

, x

0

j

}}. Then, if min{1�
x

0

i

, 1�x

0

j

} > min{x0

i

, x

0

j

}, then we can put y
0

i,j

= min{1�
x

0

i

, 1� x

0

j

} and z

0

i,j

= 0 to maximize �. Otherwise, we can
put z

0

i,j

= min{x0

i

, x

0

j

} and y

0

i,j

= 0.

In the following, we suppose that the solution obtained by
solving the programs (P1

0
) or (P2

0
) follows the properties

given by the Lemma 1.

Let two tasks t

i

and t

j

, such that t

i

precedes t

j

. Let
↵

i,j

the value given by ↵

i,j

= 1� |y0

i,j

�z0

i,j

| with replacing
y

0

i,j

and z

0

i,j

by their values obtained by model (P1
0
) or

(P2
0
). In the following, we look for the relation between

the value of ↵
i,j

and the assignment of the tasks t

i

and t

j

.

Remark 1. ↵

i,j

> 0. Indeed, if y
0

i,j

= min{1�x0

i

, 1�x0

j

} 6
1 and z

0

i,j

= 0, then ↵

i,j

= 1 � y

0

i,j

> 0. Furthermore,
if z

0

i,j

= min{x0

i

, x

0

j

} 6 1 and y

0

i,j

= 0, then ↵

i,j

=

1� z

0

i,j

> 0.
Lemma 2. If t

i

and t

j

are executed by two different pro-
cessing elements, then ↵

i,j

> 1
2 .

Proof: Let two tasks t

i

and t

j

executed on two
different processing elements, we obtain two cases:

a. x

0

i

<

1
2 and x

0

j

> 1
2 : from constraints (2) and (3),

z

0

i,j

<

1
2 . Furthermore, 1� x

0

i

>

1
2 and 1� x

0

j

6 1
2 ,

then, from constraints (4) and (5), y
0

i,j

6 1
2 . Finally,

↵

i,j

= 1� |y0

i,j

� z

0

i,j

| > 1�max{y
i,j

, z

i,j

} > 1
2 .

b. x

0

i

> 1
2 and x

0

j

<

1
2 : from constraints (2) and (3),

z

0

i,j

<

1
2 . Furthermore, 1� x

0

i

6 1
2 and 1� x

0

j

>

1
2 ,

then, from constraints (4) and (5), y
0

i,j

6 1
2 . Finally,

↵

i,j

= 1� |y0

i,j

� z

0

i,j

| > 1�max{y
i,j

, z

i,j

} > 1
2 .

Let two tasks t

i

and t

j

, such that t

i

precedes t

j

. We
denote by Cost

r

i,j

the value given by Cost

r

i,j

= 0 if
x

r

i

= x

r

j

, Cost

r

i,j

= ct

i,j

otherwise.



Proposition 2. Cost

r

i,j

6 2↵
i,j

ct

i,j

.

Proof: If t
j

and t

j

are executed by the same process-
ing element, Cost

r

i,j

= 0 6 2↵
i,j

ct

i,j

, because ↵

i,j

> 0. If
t

j

and t

j

are executed by two different processing elements,
then Cost

r

i,j

= ct

i,j

. Then, from the lemma 2, ↵
i,j

> 1
2 ,

then 2↵
i,j

> 1, follows Cost

r

i,j

= ct

i,j

6 2↵
i,j

ct

i,j

.

4.2. Phase 2: scheduling algorithm

We note by EST

i

the Earliest Start Time of the task
t

i

according to the mapping ✓1. The following algorithm
builds a feasible schedule. The mapping ✓1 is used to define
on which processing element to execute which task (CPU or
GPU). The algorithm determines for a task order given by
a list L, the corresponding scheduling by executing the first
task ready of the list as long as there are free processing
elements.

Algorithm 1: List Scheduling (LS) algorithm.
Data: T = {t1, t2, ..., tn}, mapping ✓1, list L.
Result: feasible scheduling.
begin

S  � ;
while S 6= T do

RD = {t
i

2 T,�

�(t
i

) ✓ S};
EST = min{EST

j

, t

j

2 RD};
Let t

k

2 RD the first task following the
order of list L such that EST

k

= EST ;
Execute t

k

at EST according to ✓1;
S  � S [ {t

k

};

The list L can be defined by different way, n! lists are
possible. In the following, we propose some lists that will
be used for the experimentations.

4.2.1. List by using the model (P1
0
) or (P2

0
). Two

interesting lists extracted from the resolution of model
(P1

0
) or (P2

0
) can be used for algorithm 2, LST (List by

Start Time) and LFT (List by Finish Time). The LST (resp.
LFT ) list can be obtained by sorting the tasks in ascend-
ing order of their processing start time (resp. processing
finish time) obtained by solving the model (P1

0
) or (P2

0
).

Let Start

0

i

(resp. C

0

i

) be the processing start time (resp.
processing finish time) of the task t

i

obtained by solv-
ing the model (P1

0
) or (P2

0
), i = 1..n. Thus, LST =

{t1, t2, ..., tn}, with Start

0

1 6 Start

0

2 6 ... 6 Start

0

n

.
LFT = {t1, t2, ..., tn}, with C

0

1 6 C

0

2 6 ... 6 C

0

n

.

4.2.2. List by longest path (LLP ). In the first, we start
by defining graph G

0(V,E), with V = {t1, t2, ..., tn} and E

represent the set of graph edges. The vertices are labelled
by the execution time of each task according to their assign-
ments. The edges are labelled by the communication costs
if t

i

precedes t

j

and x

i

6= x

j

, 0 otherwise. Then, we can
calculate the longest path PL

i

from each task t

i

to its last
successor. The list LLP is given by LLP = {t1, t2, ..., tn},
such that PL1 > PL2 > ... > PL

n

.

4.3. Algorithm analysis

4.3.1. Lower bound. We note by C

0

max

the optimal solution
obtained by (P1

0
) or (P2

0
), this solution is a lower bound

for the optimal solution of our problem C

?

max

. C

0

max

is
bounded by:

1) L(P
f

): length of the fractional critical path
P

f

in the optimal solution of the program
(P1

0
) or (P2

0
).

2) W

f

CPU

`

: The fractional weight of the tasks allocated
to the CPU in the optimal solution of the pro-
gram (P1

0
) or (P2

0
) divided by `, with W

f

CPU

=P
n

i=1 x
0

i

w

i,0.
3) W

f

GPU

k

: The fractional weight of the tasks allocated
to the GPU in the solution of the optimal
program (P1

0
) or (P2

0
) divided by k, with

W

f

GPU

=
P

n

i=1(1� x

0

i

)w
i,1.

Furthermore, the solution b
C

max

obtained by Algorithm
1 is bounded by L(P

r

), W

r

CPU

`

, W

r

GPU

k

, length of the critical
path P

r

and the works on CPUs divided by ` and the works
on GPUs divided by k in the final scheduling.

4.3.2. Worst case approximation ratio. We note by A

(resp. I) the cumulative sum of periods of activity (resp.
inactivity) where the processors are busy (resp. idle) . Let
A1 =

P
n

i=1 x
r

i

w

i,0 (resp. A2 =
P

n

i=1(1 � x

r

i

)w
i,1) be the

cumulative sum of periods of activity of all CPUs (resp,
GPUs), A = A1 + A2. Let I1 (resp. I2) be the cumulative
sum of periods of inactivity where all CPUs (resp. GPUs)
are busy and all GPUs (resp. CPUs) are idle. The maximum
duration where all CPUs (resp. GPUs) are busy is A1

`

(resp.
A2
k

), then I1 6 k

A1
`

(resp. I2 6 `

A2
k

). Let I3 the cumulative
sum of periods of inactivity where at least one CPU and
one GPU are idle, I = I1 + I2 + I3. Figure 2 represents the
occupation of processing elements. during the scheduling of
an application.

Figure 2: Occupation of processing elements.

By multiplying b
C

max

by the number of processors,
we find the cumulative sum of the periods of activity and
inactivity, (`+ k) bC

max

= A+ I

We look now for the ratio between b
C

max

and C

?

max

.
For this purpose, we try to limit A and I with formulas in
functions of C?

max

.



Proposition 3.

A1 6 2`C?

max

A2 6 2kC?

max

.

Proof: By definition, A1 =
P

n

i=1 x
r

i

w

i,0. From
Proposition 1, x

r

i

6 2x
0

i

. Then, A1 =
P

n

i=1 x
r

i

w

i,0 6P
n

i=1 2x
0

i

w

i,0 = 2W f

CPU

6 2`C
0

max

6 2`C?

max

. Fur-
thermore, by definition, A2 =

P
n

i=1(1 � x

r

i

)w
i,1. From

Proposition 1, (1�x

r

i

) 6 2(1�x

0

i

). Then, A2 =
P

n

i=1(1�
x

r

i

)w
i,1 6 P

n

i=1 2(1 � x

0

i

)w
i,1 = 2W f

GPU

6 2kC
0

max

6
2kC?

max

.

Corollary 1. If for each task t

i

, x

r

i

is integer, such that
x

r

i

= x

0

i

and (1� x

r

i

) = (1� x

0

i

) for i = 1..n, then the
mapping ✓1 is optimal. Follow, A1 =

P
n

i=1 x
r

i

w

i,0 =P
n

i=1 x
0

i

w

i,0 6 `C

?

max

and A2 =
P

n

i=1(1 � x

r

i

)w
i,1 =P

n

i=1(1� x

0

i

)w
i,1 6 kC

?

max

.

Corollary 2.

I1 6 2kC?

max

I2 6 2`C?

max

.

Proof:
I1 6 k

A1
`

6 k

2`C?

max

`

= 2kC?

max

. Furthermore, I2 6
`A2
k

6 2k`C?

max

k

= 2`C?

max

.

Proposition 4. I3 6 2(`+ k)C?

max

.

Proof: There exists a critical path � in the final
scheduling such that the sum of the instants where at least
one CPU and one GPU are idle is less than 2L(P

f

). Indeed,
we assume that the tasks are stalled on the left. Let t0 be
the last task, such as during the execution of t0, there is an
idle CPU and an idle GPU. Let Start0 be the processing
start time of the task t0. If there is an idle CPU and idle
GPU before Start0, then t0 has a predecessor t1 that ends
before Start0, the idle slots between Start1 and Start0

are covered either by the execution time of the task t1

and eventually the communication cost between t1 and his
successor t

0

0 which can be t0 or a task on the path from t1

to t0. If there is an idle CPU and idle GPU before Start1,
then t1 has a predecessor t2 that ends before Start1 which
can be obtained in the same precedent way. Let t0, t

0

0,
t1, t

0

1,..., t

`

be the maximum sequence of tasks obtained.
There is no more slots before Start

`

where at least one
CPU and one GPU are idle. Let � the path containing
all these tasks which covers all periods when at least one
CPU and one GPU are idle, let L(�) its length. From
Proposition 1, for any task t

i

in P

r

, the processing time
of t

i

in the final scheduling will be at most twice the
fractional solution obtained by the program (P1

0
) or (P2

0
).

For any two tasks t

i

, t

j

in P

r

, from the Proposition 2,
the communication cost Cost

r

i,j

between t

i

and t

j

in the
final scheduling will increase by at most twice the frac-
tional communication cost ↵

i,j

ct

i,j

obtained by the program
(P1

0
) or (P2

0
). Then, L(�) 6 L(P

r

) =
P

t

i

2P

r

(xr

i

w

i,0 +

(1 � x

r

i

)w
i,1) +

P
(t

i

,t

j

)2P

r

Cost

r

i,j

6 P
t

i

2P

r

(2x
0

i

w

i,0 +

2(1 � x

0

i

)w
i,1) +

P
(t

i

,t

j

)2P

r

2↵
i,j

ct

i,j

6 2L(P
f

). Finally,
I3 6 (`+ k)L(P

r

) 6 2(`+ k)L(P
f

) 6 2(`+ k)C?

max

.

Theorem 1. The ratio between the solution b
C

max

obtained
by Algorithm 1 (LS) and the optimal scheduling solution
C

?

max

is given by b
C

max

C

?

max

6 6.

Proof: b
C

max

= A+I

`+k

= A1+A2+I1+I2+I3
`+k

. Then,
from Proposition 3, 4 and Corollary 2, b

C

max

6
(2`+2k+2k+2`+2(`+k))C?

max

`+k

= 6C?

max

. Finally, b
C

max

C

?

max

6 6.

Corollary 3. If the mapping ✓1 is optimal, then b
C

max

C

?

max

6 5.

Proof:
From Corollary 1, we know that A1 6 `C

?

max

and
A2 6 kC

?

max

. Then, b
C

max

= A1+A2+I1+I2+I3
`+k

6
(`+k+2k+2`+2(`+k))C?

max

`+k

. Finally, b
C

max

C

?

max

6 5.

4.4. Iterative mapping

In order to find a more efficient rounding than ✓1 de-
scribed previously, we try to assign the tasks progressively.
Let ✓2 be the rounding obtained by the following algorithm
2.

Algorithm 2: Rounding algorithm.

Data: model (P ) ((P1
0
) or (P2

0
)), � > 2.

Result: mapping ✓2.
begin

for i = 1 to b�2 c do
Solve P ;
for j = 1 to n do

if x0

j

< ( i

�

) then
Set in P : x

0

j

= 0

if x0

j

> 1� ( i

�

) then
Set in P : x

0

j

= 1

for l = 1 to n do
if x0

l

<

1
2 then

x

r

l

= 0

else
x

r

l

= 1

For a given integer v > 2, we solve the model (P1
0
)

or (P2
0
) b�2 c times adding new assignment constraint at

each resolution. Contrary to ✓1, we try to assign the tasks
progressively, starting by setting x

0

j

to 0 if x

0

j

< ( 1
�

) and
x

0

j

to 1 if x

0

j

> 1� ( 1
�

) for the first resolution of (P1
0
) or

(P2
0
), and finishing by setting x

0

j

to 0 if x

0

j

< (
b �

2 c
�

) and
x

0

j

to 1 if x

0

j

> 1 � (
b �

2 c
�

), where b �

2 c
�

6 1
2 according to

the Lemma 3.



Remark 2. For � = 2, we obtain the rounding ✓1.

Lemma 3. For an integer v > 2, b v

2 c
v

6 1
2 .

Proof:
1) v is even, v = 2� :

b v

2 c
v

= �

2� = 1
2

2) v is odd, v = 2�+ 1 :
b v

2 c
v

= �

2�+1 <

1
2 .

Remark 3.

The specialized accelerator problem can be solved with
the same method, where a set of tasks T

0 2 T can be
executed by either a CPU or a GPU only. We denote
by w

i

the execution time of each task t

i

2 T

0
. In fact,

assuming that a task t

i

2 T

0
is executable only by a

CPU (resp. GPU), we can put w
i,0 = w

i

and w

i,1 = Cte

(resp. w
i,0 = Cte and w

i,1 = w

i

) where Cte is a big
value (we can put Cte =

P
t

i

2T\T 0
max{w

i,0, wi,1}+P
t

i

2T

0
w

i

+
P

(t
j

,t

k

)2E

ct

j,k

). With this transformation,
the rounding ✓1 or ✓2 will automatically assign the task
t

i

to the CPU (resp. GPU).

5. Numerical results

In this section, we compare the performance of LS (List
Scheduling) algorithm to HEFT using benchmarks generated
by Turbine [11]. In what follows, we describe the generation
of benchmarks, then we discuss the efficiency of models
(P1

0
) and (P2

0
), the behavior of the algorithm 2 starting

from mapping ✓1 and ✓2 using the different lists given in
section 4.

5.1. Benchmark

TABLE 1: Description of applications and platforms.

Instances Number of Platform 1 Platform 2

tasks ` k ` k

test 1 10 3 3 1 1
test 2 30 4 4 1 1
test 3 60 4 4 1 1
test 4 100 6 6 1 1
test 5 200 6 6 1 1
test 6 400 6 6 1 1
test 7 500 8 8 1 1
test 8 600 8 8 1 1
test 9 800 8 8 1 1
test 10 1000 12 12 1 1

The benchmark is composed of ten parallel DAG appli-
cations. We denote by test i instance number i, we generate
10 different applications for each test i with i = 1..10. The
execution times of the tasks are generated randomly over an
interval [w

min

, w

max

], w
min

has been fixed at 5 and w

max

at 30. The degree of the tasks are generated randomly over

an interval [d
min

, d

max

], d
min

has been fixed at 1 and d

max

at 10.
Furthermore, communication rate for each arc was gen-

erated on an interval [ct
min

, ct

max

], we set ct

min

to 35
and ct

max

to 50. Table 1 presents the size of each instance
generated as well as the number of CPUs and GPUs used to
execute each instance. For Platform1, we add more CPU and
GPU by increasing the size of applications. For Platform2,
we only use one CPU and one GPU.

5.2. Environment and algorithms

To study the performance of our method, we compared
the ratio between each makespan value obtained by LS algo-
rithm with HEFT algorithm, the optimal solution obtained
by CPLEX and the lower bound C

0

max

obtained by (P1
0
)

or (P2
0
).

Table 2 (resp. 3) shows the results of tests of LS al-
gorithm on 10 instances for each application size given in
column Inst using three lists (LST , LFP , LLP ) with the
rounding ✓1 (resp. ✓2) in platform 1. For the rounding ✓2,
we set v = 10. The next three columns concern the result
of LS algorithm using LST , where the column GAP gives
the average ratio between makespan obtained by LS algo-
rithm and C

0

max

, GAP = LS makespan�C

0
max

C

0
max

⇥ 100. Column
Best presents the number of instances where LS algorithm
provides better or the same solution obtained by using list
LST instead of LFT or LLP . Column Opt presents the
number of instances where LS provides optimal solution
using LST . We take the number of solutions equal to the
optimal solution provided by CPLEX or to the value of the
lower bound C

0

max

obtained by (P1
0
) or (P2

0
) if we have

not optimal solution. Thus, we do the same thing for the
lists LFT and LLP . Column Best LS with ✓1 (resp. Best
LS with ✓2) presents the number of instances where LS
algorithm provides better or the same solution obtained by
using the rounding ✓1 (resp. ✓2) and the best list of three
lists (LST ,LFT ,LLP ) compared to the solution obtained
by HEFT and LS algorithm using ✓2 (resp. ✓1) and all
lists (LST ,LFT ,LLP ). Finally, column Time (P1

0
) (resp.

Time (P1
0
)) gives the average time that was needed for LS

algorithm to provide a solution using the model (P1
0
) (resp.

(P2
0
)) for the first phase.

Table 4 shows the results of tests of HEFT algorithm
and running time of CPLEX in the same platform. Column
Time CPLEX presents average time that was needed to
CPLEX to provide the optimal solution using (P ). We only
have the result for the first two instances due to the large
running time (> 14h). The next four columns concern the
HEFT algorithm, where the column GAP gives the average
ratio between makespan obtained by HEFT algorithm and
C

0

max

, GAP = HEFT makespan�C

0
max

C

0
max

⇥ 100. Column Opt
presents the number of instances where HEFT provides
optimal solution. We take the number of solutions equal
to the optimal solution provided by CPLEX or to the value
of the lower bound C

0

max

obtained by (P1
0
) or (P2

0
).



Column Best HEFT presents the number of instances
where HEFT algorithm provides better or the same solution
obtained by using LS algorithm using the rounding ✓1 or ✓2
for the three lists (LST , LFT , LLP ). Finally, column Time
HEFT presents the average time that was needed for HEFT
to provide a solution. A line Average is added at the end of
each table which represents the average of the values each
column. Table 5, 6 and 7 present the same results obtained
for platform 2.

5.3. Results analysis

5.3.1. Platform 1. Obtaining the optimal solution using
CPLEX is very expensive in term of running time. For
example, instance test 3 with 60 tasks and 4 GPU and
4 CPU, CPLEX cannot provide the optimal solution after
14h. Thus, we compare our method to the optimal solution
for only the first two instances. From Table 2 and 3, we
can notice that list LLP is better than LFT and LST .
Comparing to table 4 results, LS algorithm provides better
solution than HEFT using rounding ✓1 or ✓2 with list LFT

or LLP . Furthermore, LS algorithm using rounding ✓2 and
list LLP is the most efficient method, with 78% of best
solutions and a ratio of 7.33% comparing to the lower
bound.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with ✓1 P1

0
P2

0

test 1 0% 10 10 0% 10 10 0% 10 10 10 0.04s 0.06s
test 2 4.51% 3 3 3.31% 4 4 2.35% 8 5 6 0.01s 0.11s
test 3 17.61% 0 / 17.98% 0 / 11.25% 8 / 5 0.10s 0.16s
test 4 13.39% 1 / 13.43% 1 / 7.38% 7 / 4 0.29s 0.35s
test 5 27.69% 2 / 26.06% 2 / 15.93% 7 / 6 0.76s 0.67s
test 6 25.93% 3 / 25.36% 3 / 12.82% 4 / 1 4.52s 2.64s
test 7 28.23% 1 / 26.6% 2 / 14.32% 6 / 2 6.11s 3.75s
test 8 22.79% 0 / 22.39% 1 / 11.51% 9 / 0 8.28s 4.85s
test 9 14.87% 0 / 14.07% 0 / 2.204% 10 / 3 10.82s 5.47s
test 10 20.55% 0 / 18.90% 1 / 5.32% 9 / 0 13.55s 6.65s
Average 17.55% 20% / 16.81% 22% / 8.30% 78% / 37% 4.44s 2.47s

TABLE 2: LS algorithm results using three lists (LST , LFP , LLP ) with rounding ✓1 in platform 1.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with ✓2 P1

0
P2

0

test 1 0% 10 10 0% 10 10 0% 10 10 10 0.07s 0.09s
test 2 2.92% 5 5 1.24% 5 5 0.09% 9 6 9 0.018s 0.16s
test 3 17.77% 0 / 14.16% 0 / 10.31% 8 / 5 0.17s 0.17s
test 4 15.64% 2 / 11.32% 2 / 7.76% 5 / 6 0.31s 0.34s
test 5 36.33% 2 / 25.29% 4 / 21.08% 5 / 4 0.85s 0.83s
test 6 38.07% 0 / 20.59% 0 / 9.28% 10 / 9 5.01s 2.95s
test 7 33.61% 0 / 21.66% 1 / 11.10% 8 / 8 6.71s 4.59s
test 8 36.51% 0 / 18.19% 0 / 6.96% 10 / 10 8.63s 5.28s
test 9 40.07% 0 / 13.71% 0 / 2.01% 10 / 7 11.55s 7.06s
test 10 39.33% 0 / 18.63% 0 / 4.77% 10 / 10 15.10s 8.13s
Average 26.02% 19% / 14.47% 22% / 7.33% 85% / 78% 4.84s 2.96s

TABLE 3: LS algorithm results using three lists (LST , LFP , LLP ) with rounding ✓2 in platform 1.

TABLE 4: HEFT algorithm results and CPLEX running time
for platform 1.

Instances Time HEFT Best Time
CPLEX Gap Opt HEFT HEFT

test 1 5m 11.08% 5 5 0.01s
test 2 8h 13.48% 4 4 0.01s
test 3 / 22.16% / 2 0.02s
test 4 / 16.33% / 3 0.02s
test 5 / 19.31% / 4 0.04s
test 6 / 16.72% / 0 0.09s
test 7 / 15.05% / 1 0.15s
test 8 / 15.05% / 0 0.20s
test 9 / 11.79% / 0 0.33s
test 10 / 15.26% / 0 0.64s
Average >4h 15.62% / 19% 0.15s

For the running time, HEFT algorithm needs less time
than LS algorithm to provide a solution, where the first
iteration of rounding algorithm (✓2) takes the same time
than ✓1 (remark 2). Finally, we notice that the model (P2

0
)

is more efficient than (P1
0
) in running time using rounding

✓1 or ✓2, where LS algorithm gives a solution in less than
3 seconds for instances of 1000 tasks using model (P2

0
),

while it need more than 4 seconds using model (P1
0
). Thus

it may provides better results for much bigger instances.



5.3.2. Platform 2. For this platform, we use only one CPU
and one GPU. CPLEX is more efficient than on the platform
1, but running time is still large. For instance test 3 with
60 tasks, CPLEX cannot provide the optimal solution after
6h. Thus, we compare our method to the optimal solution
for only the first two instances. From Table 5 and 6, we
can notice that list LLP is better than LFT and LST .
Comparing to table 7 results, LS algorithm provides better
solution than HEFT using rounding ✓1 or ✓2 with list LFT

or LLP . Furthermore, LS algorithm using rounding ✓2 and
list LLP is the most efficient method, with 76% of best
solutions and a ratio of 9.86% comparing to the lower
bound. For the running time, HEFT algorithm also needs
less time than LS algorithm to provide a solution. Finally,
unlike the platform 1, we notice that the model (P1

0
) is

more efficient than (P2
0
) in running time using rounding

✓1 or ✓2, where the LS algorithm gives a solution in less
than 1 second for instances of 1000 tasks for the two models.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with ✓1 P1

0
P2

0

test 1 18.57% 7 5 18.57% 7 5 17.61% 8 5 8 0.04s 0.08s
test 2 52.72% 1 1 49.55% 1 1 41.05% 6 3 5 0.30s 0.31s
test 3 44.14% 0 / 41.18% 0 / 30.69% 6 / 5 0.35s 0.35s
test 4 25.00% 0 / 24.02% 0 / 9.80% 7 / 6 0.05s 0.06s
test 5 5.94% 2 / 5.93% 3 / 0.33% 10 / 10 0.07s 0.08s
test 6 0.31% 8 / 0.31% 8 / 0.31% 10 / 4 0.40s 0.59s
test 7 1.59% 8 / 1.54% 8 / 0.34% 10 / 4 0.27s 0.37s
test 8 0.19% 10 / 0.19% 10 / 0.19% 10 / 8 0.38s 0.47s
test 9 0.61% 9 / 0.39% 9 / 0.05% 10 / 5 0.64s 0.72s
test 10 0.16% 9 / 0.16% 10 / 0.16% 10 / 5 0.88s 0.90s
Average 14.92% 54% / 14.18% 56% / 10.05% 87% / 60% 0.33s 0.39s

TABLE 5: LS algorithm results using three lists (LST , LFP , LLP ) with rounding ✓1 in platform 2.

Inst LST LFT LLP Best LS Time
Gap Best Opt Gap Best Opt Gap Best Opt with ✓2 P1

0
P2

0

test 1 17.26% 8 6 17.26% 8 6 16.30% 9 6 9 0.07s 0.09s
test 2 55.68% 1 1 49.07% 1 1 43.03% 6 3 3 0.33s 0.35s
test 3 60.16% 0 / 39.38% 0 / 29.21% 6 / 5 0.40s 0.40s
test 4 41.96% 0 / 23.31% 0 / 9.11% 9 / 9 0.11s 0.14s
test 5 20.52% 0 / 6.22% 2 / 0.43% 10 / 7 0.17s 0.23s
test 6 11.41% 0 / 0.15% 8 / 0.15% 10 / 10 0.62s 0.82s
test 7 8.73% 0 / 1.68% 8 / 0.19% 10 / 8 0.52s 0.82s
test 8 8.08% 2 / 0.11% 10 / 0.11% 10 / 9 0.77s 1.13s
test 9 10.90% 0 / 0.44% 9 / 0.03% 10 / 8 1.25s 1.89s
test 10 8.67% 0 / 0.08% 10 / 0.08% 10 / 8 1.32s 1.91s
Average 24.33% 11% / 9.96% 56% / 9.86% 90% / 76% 0.55s 0.77s

TABLE 6: LS algorithm results using three lists (LST , LFP , LLP ) with rounding ✓2 in platform 2.

TABLE 7: HEFT algorithm results and CPLEX running time
for platform 2.

Instances Time HEFT Best Time
CPLEX Gap Opt HEFT HEFT

test 1 0.39s 20.58% 4 6 0.01s
test 2 1h40 44.31% 3 4 0.01s
test 3 / 29.99% / 3 0.01s
test 4 / 17.26% / 1 0.02s
test 5 / 12.17% / 0 0.03s
test 6 / 11.26% / 0 0.05s
test 7 / 12.15% / 0 0.09s
test 8 / 11.86% / 2 0.11s
test 9 / 11.21% / 0 0.14s
test 10 / 11.90% / 0 0.22s
Average >50m 18.26% / 16% 0.06s



6. Conclusion

This paper presents an efficient approximation algorithm
to solve the task scheduling problem on hybrid platform
with communication delays. We have studied the case
of scheduling applications presented by DAG (Directed
Acyclic Graph), the objective is to minimize the total execu-
tion time (makespan). The main contribution of this work is
a 6-approximation algorithm (LS) with two phases: mapping
then assignment. Two models and two rounding strategies
have been proposed for the mapping. In the second phase,
a list scheduling algorithm has been proposed to generate
a feasible schedule using several lists. LS algorithm guar-
antees a ratio of 6 compared to the optimal solution using
the first strategy of rounding ✓1. Tests on large instances
close to reality demonstrated the efficiency of our method
and shows the limits of solving the problem with a solver
such as CPLEX.

As part of the future, we will try to study the tight of
LS algorithm using rounding ✓2 which provide interesting
solutions. Then, we will focus on solving the problem with
energy constraint due to the significant consumption of these
platforms. An extension to more general heterogeneous
platforms with more than two types of processor is also
planned.
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