
HAL Id: hal-02073537
https://hal.science/hal-02073537v1

Preprint submitted on 9 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Exponential mixing under controllability conditions for
SDEs driven by a degenerate Poisson noise

Vahagn Nersesyan, Renaud Raquépas

To cite this version:
Vahagn Nersesyan, Renaud Raquépas. Exponential mixing under controllability conditions for SDEs
driven by a degenerate Poisson noise. 2023. �hal-02073537�

https://hal.science/hal-02073537v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Exponential mixing under controllability conditions for sdes
driven by a degenerate Poisson noise

Vahagn Nersesyana,b,∗, Renaud Raquépasc,d
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Abstract

We prove existence and uniqueness of the invariant measure and exponential mixing in
the total-variation norm for a class of stochastic differential equations driven by degen-
erate compound Poisson processes. In addition to mild assumptions on the distribution
of the jumps for the driving process, the hypotheses for our main result are that the
corresponding control system is dissipative, approximately controllable and solidly con-
trollable. The solid controllability assumption is weaker than the well-known parabolic
Hörmander condition and is only required from a single point to which the system is ap-
proximately controllable. Our analysis applies to Galerkin projections of stochastically
forced parabolic partial differential equations with asymptotically polynomial nonlin-
earities and to networks of quasi-harmonic oscillators connected to different Poissonian
baths.

Keywords: stochastic differential equations, Poisson noise, exponential mixing,
coupling, controllability, Hörmander condition
2010 MSC: 60H10, 37A25, 93B05

1. Introduction

Motivated by applications to thermally driven harmonic networks and to Galerkin
approximations of partial differential equations (pdes) randomly forced by degenerate
noise, we consider a stochastic differential equation (sde) of the form

dXt = f(Xt) dt+B dYt, (1)

where f : Rd → Rd is a smooth vector field, B : Rn → Rd is a linear map, and (Yt)t≥0

is an n-dimensional compound Poisson process of the form

Yt =

∞

k=1

ηk1[τk,∞)(t). (2)
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Throughout the paper, the jump displacements {ηk}k∈N are independent and identically
distributed random variables with law ℓ and the waiting times separating the jumps,
defined as t1 = τ1 and tk = τk − τk−1 for k ≥ 2, form a sequence {tk}k∈N of indepen-
dent exponentially distributed random variables with common rate parameter λ > 0.
Moreover, the sequences {ηk}k∈N and {tk}k∈N are independent from one another. We
are interested in the noise-degenerate case, that is when rank(B) < d.

The aim of this paper is to establish exponential mixing for the sde (1) under some
mild dissipativity and controllability conditions. The precise hypotheses are the following.

(C1) There are numbers α > 0 and β > 0 such that

〈f(y), y〉 ≤ −αy2 + β (3)

for all y ∈ Rd, where 〈 · , · 〉 and  ·  are a scalar product and the associated norm
in Rd.

Combined with the regularity of f and the fact that
∞

k=1 tk = +∞ with probability 1,
it ensures the global well-posedness of the sde (1). It also strongly suggests the norm
squared as a candidate Lyapunov function. The other two conditions are related to the
controllability of the system: we ask that there exists a point x̂ ∈ Rd such that the system
is both approximately controllable to x̂ and solidly controllable form x̂. To formulate these
conditions more precisely, we introduce the following (deterministic) mapping. For T > 0
a given time,

ST : Rd × C([0, T ];Rn) → Rd,

(x, ζ) → yT ,
(4)

where (yt)t∈[0,T ] is the solution of the controlled problem


ẏt = f(yt) +Bζt,

y0 = x.
(5)

Accordingly, we will refer to the first argument of ST ( · , · ) as an initial condition and to
the second one as a control.

(C2) The system is approximately controllable to x̂ ∈ Rd: for any number  > 0 and any
radius R > 0, we can find a time T > 0 such that for any initial point x ∈ Rd

with x ≤ R, there exists a control ζ ∈ C([0, T ];Rn) verifying

ST (x, ζ)− x̂ < . (6)

(C3) The system is solidly controllable from x̂: there is a number 0 > 0, a time T0 > 0,
a compact set K in C([0, T0];R

n) and a non-degenerate ball G in Rn such that,
for any continuous function Φ : K → Rd satisfying the relation

sup
ζ∈K

Φ(ζ)− ST0(x̂, ζ) ≤ 0,

we have G ⊂ Φ(K).
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Condition (C2) is a well-known controllability property, and (C3) is an accessibility
property that is weaker than the weak Hörmander condition at the point x̂ (see Section 4.1
for a discussion).

We denote by (Xt,Px) the Markov family associated with the sde (1) parametrised by
the time t ≥ 0 and the initial condition x ∈ Rd, by Pt(x, · ) the corresponding transition
function, and by Pt and P∗

t the Markov semigroups

Ptg(x) =



Rd

g(y)Pt(x, dy) and P∗
tµ(Γ) =



Rd

Pt(y,Γ)µ(dy),

where g ∈ L∞(Rd) and µ ∈ P(Rd). Recall that a measure µinv ∈ P(Rd) is said to be
invariant if P∗

tµ
inv = µinv for all t ≥ 0.

Main Theorem. Assume that Conditions (C1)–(C3) are satisfied and that the law of ηk
has finite variance and possesses a continuous positive density with respect to the Lebesgue
measure on Rn. Then, the semigroup (P∗

t )t≥0 admits a unique invariant measure µinv ∈
P(Rd). Moreover, there exist constants C > 0 and c > 0 such that

P∗
tµ− µinvvar ≤ C e−ct


1 +



Rd

xµ(dx)


(7)

for any µ ∈ P(Rd) and t ≥ 0.

In the literature, the problem of ergodicity for sdes driven by a degenerate noise
is mostly considered when the perturbation is a Brownian motion, the system admits
a Lyapunov function, and the Hörmander condition is satisfied at all the points of the
state space. Under these assumptions, the transition function of the underlying Markov
process has a smooth density with respect to Lebesgue measure which is almost surely
positive. This implies that the process is strong Feller and irreducible, so it has a unique
invariant measure by Doob’s theorem (see Theorem 4.2.1 in [9] and [23, 21] for related
results).

Even with the assumption that the noise is Gaussian, there are only few papers that
consider the problem of ergodicity for an sde without the Hörmander condition being
satisfied everywhere. In [4], the uniqueness property for invariant measures is proved
for degenerate diffusions, under the assumption that the Hörmander condition holds at
one point and that the process is irreducible. The proof relies heavily on the Gaussian
nature of the noise. In the paper [34], an approach based on controllability and a coupling
argument is given for a study of dynamical systems on compact metric spaces subject
to a more general degenerate noise: under the controllability assumptions (C2) and (C3)
and a decomposability assumption on the noise, exponential mixing in the total-variation
metric is established. This approach can be carried to problems on a non-compact space,
provided a dissipativity of the type of (C1) holds; see [30] for a study of networks of
quasi-harmonic oscillators. The class of decomposable noises includes—but is not limited
to—Gaussian measures.

The present paper falls under the continuity of the study carried out in these ref-
erences. The main difficulty in our case comes from the fact that the Poisson noise we
consider, in addition to being degenerate, does not have a decomposability structure; also
see [27], where polynomial mixing is proved for the complex Ginzburg–Landau equation
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driven by a non-degenerate compound Poisson process. Yet, the methods we use still stem
from a control and coupling approach, which we outline in the following paragraphs; also
see the beginning of Section 3. Indeed, the combination of coupling and controllability
arguments has the advantage of yielding rather simple proofs of otherwise very technical
results and also accommodates a wide variety of (non-Gaussian) noises for which other
methods fail.

We hope that treating a relatively tractable problem in an essentially self-contained
way will help interested readers in making their way to understanding technically more
difficult problems for which methods of the same flavour are used.

For a discrete-time Markov family on a compact state space X , existence of an invari-
ant measure can be obtained from a Bogolyubov–Krylov argument and it is typical to
derive uniqueness and mixing from a uniform upper bound on the total-variation distance
between the transition functions from different points. One way to prove uniqueness us-
ing such a uniform squeezing estimate is through a so-called Doeblin coupling argument,
where one constructs a Markov family on X × X whose projections to each copy of X
have the same distribution as the original Markov family, and with the property that it
hits the diagonal {(x, x) : x ∈ X} soon enough, often enough. We refer the interested
reader to the paper [14] and to Chapter 3 of the monograph [22] for an introduction to
these ideas, which go back to Doeblin, Harris, and Vaserstein.

When the state space X is not compact, existence of an invariant measure requires
additional arguments and one can rarely hope to prove squeezing estimates which hold
uniformly on the whole state space. The Bogolyubov–Krylov argument for existence can
be adapted provided that one has a suitable Lyapunov structure. As for uniqueness and
mixing, the coupling argument will go through with a squeezing estimate which only
holds for points in a small ball, provided that one can obtain good enough estimates on
the hitting time of that ball. Over the past years, it has become evident that control
theory provides a good framework for formulating conditions that are sufficient for this
endeavor when the noise is degenerate.

Acknowledgements. This research was supported by the Agence Nationale de la Recherche
through the grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-
17-CE40-0006-03). VN was supported by the CNRS PICS Fluctuation theorems in stochas-
tic systems. The research of RR was supported by the National Science and Engineering
Research Council (NSERC) of Canada. Both authors would like to thank Noé Cuneo,
Vojkan Jakšić, Claude-Alain Pillet and Armen Shirikyan for discussions and comments
on this manuscript.

Notation

For (X , d) a Polish space, we shall use the following notation throughout the paper:

• BX (x, ) for the closed ball in X of radius  centered at x (we shall simply write
B(x, ) in the special case X = Rd);

• B(X ) for its Borel σ-algebra;

• L∞(X ) for the space of all bounded Borel-measurable functions g : X → R, en-
dowed with the norm g∞ = supy∈X |g(y)|;
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• P(X ) for the set of Borel probability measures on X , endowed with the total
variation norm: for µ1, µ2 ∈ P(X ),

µ1 − µ2var :=
1

2
sup

g∞≤1

|〈g, µ1〉 − 〈g, µ2〉|

= sup
Γ∈B(X )

|µ1(Γ)− µ2(Γ)|,

where 〈g, µ〉 =

X g(y)µ(dy) for g ∈ L∞(X ) and µ ∈ P(X ).

Let (Y, d′) be another Polish space. The image of a measure µ ∈ P(X ) under a
Borel-measurable mapping F : X → Y is denoted by F∗µ ∈ P(Y).

On any space, 1Γ stands for the indicator function of the set Γ.
We use Z for the set of integers and N for the set of natural numbers (without 0).

For any m ∈ N, we set

Nm := {n ·m : n ∈ N} and N0
m := Nm ∪ {0}. (8)

We use a ∨ b [resp. a ∧ b] for the maximum [resp. minimum] of the numbers a, b ∈ R.

2. Preliminaries and existence of an invariant measure

The sde (1) has a unique càdlàg solution satisfying the initial condition X0 = x. It
is given by

Xt =


St−τk(Xτk) if t ∈ [τk, τk+1),

Stk+1
(Xτk) +Bηk+1 if t = τk+1,

(9)

where τ0 = 0 and St(x) = St(x, 0) is the solution of the undriven equation. Relation (9)
will allow us to reduce the study of the ergodicity of the full process (Xt)t≥0 to that
of the embedded process (Xτk)k∈N obtained by considering its values at jump times τk.
The strong Markov property implies that the latter is a Markov process with respect
to the filtration generated by the random variables {tj , ηj}kj=1. We denote by P̂k the

corresponding transition function: for x ∈ Rd and Γ ∈ B(Rd),

P̂k(x,Γ) := Px {Xτk ∈ Γ} . (10)

The key consequences of the dissipativity Condition (C1) are the moment estimates of the
following lemma. They imply, in particular, existence of a suitable Lyapunov structure
given by the norm squared.

Lemma 2.1. Under Condition (C1), we have the following bounds:

(i) for any  > 0, there exists a constant C > 0 such that

Xτk2 ≤ (1 + )ke−2ατkX02 + C

k

j=1

e−2α(τk−τj)(1 + )k−j(1 + ηj2) (11)

for all x ∈ Rd and k ∈ N;
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(ii) there are numbers γ ∈ (0, 1) and C > 0 such that

ExXτk2 ≤ γkx2 + C(1 + Λ), (12)

ExXt2 ≤ (1− γ)−1x2 + C(1 + Λ) (13)

for all x ∈ Rd, k ∈ N, and t ≥ 0, where Λ := Eη12 and Ex is the expectation
with respect to Px.

Proof. First note that Condition (C1) implies the following estimate for the solution to
the undriven equation:

St(x)2 ≤ e−2αtx2 + βα−1 (14)

for all x ∈ Rd and t ≥ 0. Let  > 0 be arbitrary. Combining (9) and (14), we find a
positive constant C such that

Xτk2 ≤ (1 + )e−2αtkXτk−1
2 + C(1 + ηk2).

Iterating this inequality, we get (11). Taking expectation in (11) and using the indepen-
dence of the sequences {ηk} and {τk}, we obtain

ExXτk2 ≤ (1 + )k


λ

λ+ 2α

k

x2 + C

k

j=1


λ

λ+ 2α

k−j

(1 + )k−j(1 + Λ).

Choosing  > 0 so small that γ := (1 + ) λ
λ+2α ∈ (0, 1) yields (12). To prove (13), we

introduce the random variable

Nt := max{k ≥ 0 : τk ≤ t}

and use (14):

ExXt2 ≤ ExXτNt
2 + βα−1 =

∞

k=0

Ex


1{Nt=k}Xτk2


+ βα−1. (15)

Inequality (11) and the independence of {ηk} and {τk} imply

Ex


1{Nt=k}Xτk2


≤ γkx2 + C(1 + Λ)

k

j=1

(1 + )k−jE

1{Nt=k}e

−2α(τk−τj)


(16)

and

∞

k=1

k

j=1

(1+)k−jE

1{Nt=k}e

−2α(τk−τj)

=

∞

k=0

(1+)kE

e−2ατk


=

∞

k=0

(1+)k


λ

λ+ 2α

k

,

which is finite by our choice of . Combining this with (15) and (16), we get (13) and
complete the proof of the lemma.

As mentioned in the introduction, the dissipativity Condition (C1) guarantees the
existence of an invariant measure. Indeed, the last lemma, combined with a Bogolyubov–
Krylov argument and Fatou’s lemma yields the following result. We refer the reader
to [22, §2.5.2] for more details.
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x

F4(x, s, ξ)

f

Ss1(x)

ξ4

ξ1

Figure 1: The map Fk takes as an input a point x, a sequence s of times and a sequence ξ of displacement
vectors and outputs the final position of a test particle which starts at x, follows the integral curves of f
for a time s1, is immediately displaced by ξ1, follows the integral curves of f for a time s2, is immediately
displaced by ξ2, and so on until it is finally displaced by ξk. We have sketched this for k = 4.

Lemma 2.2. Under Condition (C1), the semigroup (P∗
t )t≥0 admits at least one invari-

ant measure µinv ∈ P(Rd). Moreover, any invariant measure µ ∈ P(Rd) has a finite
second moment, that is 

Rd

y2 µ(dy) < ∞. (17)

We now turn to an important consequence of the solid controllability Condition (C3).
The main ideas in its proof are borrowed from [34, §1] (also see the earlier works [1, §2]
and [22, Ch. 3]). Such results are sometimes referred to as squeezing estimates, a concept
to which we have referred in the introduction. This lemma is used to prove a key property
of the coupling constructed in the next section.

We consider the family of maps Fk : Rd × (R+)
N × (Rn)N → Rd defined by


F0(x, s, ξ) = x,

Fk(x, s, ξ) = Ssk(Fk−1(x, s, ξ)) +Bξk
(18)

for k ∈ N, x ∈ Rd, s = (sj)j∈N ∈ (R+)
N, and ξ = (ξj)j∈N ∈ (Rn)N; see Figure 1.

Because Fk does not depend on {sj , ξj}j≥k+1, i.e. the times and displacements for kicks
that happen later than the k-th kick, we will often consider the domain of Fk to be Rd×
(R+)

m × (Rn)m for some natural number m ≥ k.

Lemma 2.3. Suppose that x̂ is as in Condition (C3). Then, there exist numbers m ∈ N,
r > 0, and p ∈ (0, 1) and a non-degenerate ball 1 Σ in [0, T0]

m such that

Fm(x, s, · )∗(ℓm)− Fm(x′, s, · )∗(ℓm)var ≤ p (19)

for all s ∈ Σ and x, x′ ∈ B(x̂, r), where Fm(x, s, · )∗(ℓm) is the image of ℓm (the m-fold
product of the law ℓ with itself) under the mapping Fm(x, s, · ) : (Rn)m → Rd.

1Here [0, T0]m is endowed with the metric inherited from Rm.
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Proof. Let us fix 0, K, and G as in Condition (C3). To simplify the presentation, we
assume that T0 = 1. For any m ∈ N and ζ ∈ C([0, 1];Rn), let ιm(ζ) : [0, 1] → Rn be the
step function

ιm(ζ) =

m−1

j=0

1[ j
m , j+1

m )

 j
m

0

ζ(s) ds,

and let Km be the set ιm(K). If ζ is a continuous function which allows the system to
be controlled from x̂ to some target in time 1, then ιm(ζ) is a discretization in time of
the antiderivative of ζ and we expect that feeding its jump discontinuities to Fm would
result in a final position which is close to the target if m is large enough. With this in
mind, we often identify the function ιm(ζ) with the m-tuple of vectors in Rn consisting
of its jumps at the times 1

m , 2
m , . . . , m

m .
We proceed in three steps. First, we show that Condition (C3) implies that the set

Fm(x̂, ŝ,Km) contains a ball in Rd. Then, combining this with Sard’s theorem and some
properties of images of measures under regular mappings, we show a uniform lower bound
on Fm(x, s, · )∗(ℓm) for (x, s) close enough to (x̂, ŝ) where ŝ := ( 1

m , . . . , 1
m ) ∈ [0, 1]m.

Finally, from this uniform lower bound we derive the desired estimate in total variation.

Step 1: Solid controllability. Let ST be the mapping defined by (4). By the compactness
of K, for any  > 0, there exists m0() ∈ N such that

sup
ζ∈K

ιmζ −
 ·

0

ζ(s) ds

L∞([0,1],Rn)

≤ 

whenever m ≥ m0(). Hence, taking m ≥ m0() for sufficiently small , we have

sup
ζ∈K

Fm(x̂, ŝ, ιmζ)− S1(x̂, ζ) ≤ 0,

where we use the aforementioned identification of functions in Km with m-tuples of
displacement vectors in Rn. Using the continuity of Fm(x̂, ŝ, ιm·) : K → Rd and Con-
dition (C3), we conclude that Fm(x̂, ŝ,Km) contains a ball in Rd. Until the end of the
proof, we fix m ≥ m0() for such a small .

Step 2: Uniform lower bound. We want to apply Lemma C.2 with X = B(x̂, 1)× [0, 1]m,
Y = Rd, and U = (Rn)m and the map Fm : X × U → Y as before. As Fm(x̂, ŝ,Km)
contains a ball in Rd, Sard’s theorem yields the existence of a point û ∈ Km ⊂ U in
which the derivative DξFm(x̂, ŝ, · ) has full rank. Hence, by Lemma C.2, there exists a
continuous function ψ : X × Y → R+ and a radius rm > 0 such that

ψ ((x̂, ŝ), Fm(x̂, ŝ, û)) > 0

and
(Fm(x, s, · )∗(ℓm)) (dy) ≥ ψ ((x, s), y) dy

(as measures, with y ranging over Rd) whenever x ∈ B(x̂, rm) and s ∈ BRm(ŝ, rm).

Step 3: Estimate in total variation. Shrinking rm if necessary, Step 2 yields positive
numbers m,1 and m,2 and a non-degenerate ball Σ ⊂ [0, 1]m such that

Fm(x, s, · )∗(ℓm) ∧ Fm(x′, s, · )∗(ℓm) ≥ m,1 VolRd ( · ∩B(Fm(x̂, ŝ, û), m,2))
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whenever x, x′ ∈ B(x̂, rm) and s ∈ Σ. Therefore,

Fm(x, s, · )∗(ℓm)− Fm(x′, s, · )∗(ℓm)var ≤ 1− m,1
d
m,2

π
d
2

Γ

d
2 + 1

 =: pm

whenever x, x′ ∈ B(x̂, rm) and s ∈ Σ. This proves (19) with r = rm and p = pm.

3. Coupling argument and exponential mixing

In this section, we shall always assume that Conditions (C1)–(C3) are satisfied. The
Main Theorem is established by using the coupling method, which consists in proving
uniqueness and convergence to an invariant measure for a Markov family by using the
inequality

Pt(x, · )− Pt(x
′, · )var ≤ P{T > t},

where T is a random time given by

T := inf {s ≥ 0 : Zu = Z ′
u for all u ≥ s} (20)

and (Zt, Z
′
t)t≥0 is any (Rd×Rd)-valued random process defined on a space (Ω,F ,P(x,x′))

with P(x,x′)(Zt ∈ Γ) = Pt(x,Γ) and P(x,x′)(Z
′
t ∈ Γ) = Pt(x

′,Γ) for all t ≥ 0 and all

measurable Γ ⊆ Rd. This inequality is of course most useful when the process (Zt, Z
′
t)t≥0,

called a coupling, is constructed in a such a way that P{T > t} decays as fast as possible
as t → ∞, with a reasonable dependence on x and x′. To do so, one usually uses at some
point a general result of the type of Lemma C.1 on the existence of so-called maximal
couplings (see [22, Chapter 3]).

We first proceed to construct a coupling of two embedded discrete-time processes as
introduced at the beginning of Section 2, but with different initial conditions: given x
and x′ in Rd, we define a sequence (zk, z

′
k)k∈N of (Rd×Rd)-valued random variables on

a probability space (Ω,F ,P(x,x′)) with P(x,x′)(zk ∈ Γ) = P̂k(x,Γ) and P(x,x′)(z
′
k ∈ Γ) =

P̂k(x
′,Γ) for all k ∈ N and measurable Γ ⊆ Rd. In this context, we call (zk)k∈N [resp.

(zk)k∈N] the first [resp. second] component of the coupling (zk, z
′
k)k∈N. The structure of

the waiting times and the relation (9) then allow us to recover estimates for the original
continuous-time process. The construction of this coupling is inductive and relies on the
numbers m ∈ N and r > 0 in Lemma 2.3 and correlates the two components in a different
way according to three cases: for j ∈ N0

m,

• if zj = z′j , then zk = z′k for all k ∈ N with k ≥ j;

• if zj and z′j are different but both in B(x̂, r), then the nextm jumps are synchronous
and, given the times of these jumps, zj+m and z′j+m are maximally coupled in the
sense of Lemma C.1;

• if zj and z′j are different and not both in B(x̂, r), then the next m jumps are
synchronous, but the respective jump displacements are independent.

In essence, the worst-case scenario is when the initial conditions x and x′ are different
and very far from the origin, but the number

I := min{i ∈ N0
m : (zi, z

′
i) ∈ B(0, R)×B(0, R)} (21)
9



of jumps needed for both components to enter a large2 compact set around the origin
is controlled by the Lyapunov structure inherited from (C1). Then, the approximate
controllability assumption (C2) allows us to prove an estimate for an exponential moment
of the number

J := min{j ∈ N0
m : (zj , z

′
j) ∈ B(x̂, r)×B(x̂, r)} (22)

of jumps needed for both components to simultaneously enter B(x̂, r). Finally, combining
this with the solid controllability assumption (C3), we control the probability distribution
of the number

K := min{k ∈ N0
m : zk = z′k}

= min{k ∈ N0
m : zℓ = z′ℓ for all ℓ ∈ N with ℓ ≥ k}

(23)

of jumps after which the two components coincide.
Alternatively, in a language which avoids the particularities of the coupling method,

one could rephrase the above strategy by saying that combining (C2) and the consequence
of (C3) expressed in Lemma 2.3 gives a local Doeblin condition in B(0, R) which, when
combined with the Lyapunov structured conferred by (C1), yields exponential mixing by
Meyn–Tweedie-type arguments [24].

3.1. Coupling for the embedded discrete-time process

In this section, we construct a coupling (zk, z
′
k)k∈N for the embedded discrete-time

process in such a way that the random time after which the two components coincide
has an exponential moment which can we estimate in terms of the initial conditions (see
Proposition 3.2).

Let us fix the numbers m, r, and p as in Lemma 2.3. The coupling is constructed by
blocks of m steps as follows. Let X = Rd × (R+)

m × (Rn)m, Y = Rd, and U = Rd ×
Rd × (R+)

m. Recall that the functions Fi : X → Y are defined by (18) for i = 1, . . . ,m.
We consider two random probability measures u ∈ U → µ(u, · ), µ′(u, · ) on X given by

µ(u, · ) := δz × δs × ℓm and µ′(u, · ) := δz′ × δs × ℓm

for u = (z, z′, s) ∈ U , where δz is the Dirac measure at z ∈ Rd and δs is the Dirac
measure at s ∈ (R+)

m. By Lemma C.1 applied to Fm, there exist a probability space
(Ω̃, F̃ , P̃) and measurable mappings ξ, ξ′ : U × Ω̃ → X such that

ξ(u, · )∗P̃ = δz × δs × ℓm, ξ′(u, · )∗P̃ = δz′ × δs × ℓm,

and

P̃

ω̃ : Fm(ξ(u, ω̃)) ∕= Fm(ξ′(u, ω̃))


= Fm(z, s, · )∗(ℓm)− Fm(z′, s, · )∗(ℓm)var (24)

for each u = (z, z′, s) ∈ U . Replacing Ω̃ with a bigger space (still referred to as Ω̃) if
necessary, we may find a third measurable mapping ξ′′ : U × Ω̃ → X with the same

2The radius R of this compact set will be chosen to suitably fit the Lyapunov structure; cf. Corol-
lary A.2.
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distribution as ξ′, but independent from ξ.3 We set

Ri(z, z
′, s, ω̃) := Fi(ξ(z, z

′, s, ω̃))

and

R′
i(z, z

′, s, ω̃) :=






Fi(ξ(z, z
′, s, ω̃)) if z = z′,

Fi(ξ
′(z, z′, s, ω̃)) if z ∕= z′ both in B(x̂, r),

Fi(ξ
′′(z, z′, s, ω̃)) if z ∕= z′ not both in B(x̂, r)

for each (z, z′, s, ω̃) ∈ Rd×Rd× (R+)
m× Ω̃ and i = 1, . . . ,m. Now, let Em

λ be the m-fold
direct product of exponential laws with rate parameter λ. We denote by (Ω,F ,P(x,x′))

the direct product of the probability space (Rd × Rd,B(Rd) × B(Rd), δx × δx′) with
countably many copies of the probability space

((R+)
m × Ω̃,B((R+)

m)× F̃ , Em
λ × P̃),

and define the process (zk(ω), z
′
k(ω))k∈N inductively. First, set (z0(ω), z

′
0(ω)) = (y, y′)

where ω = (y, y′,ω0,ω1, . . . ) ∈ Ω with ωj = (sj , ω̃j) ∈ (R+)
m × Ω̃, j = 0, 1, 2, . . . , and

i = 1, . . . ,m. Then,

zjm+i(ω) := Ri(zjm(ω), z′jm(ω), sj , ω̃j),

z′jm+i(ω) := R′
i(zjm(ω), z′jm(ω), sj , ω̃j).

By construction, the pair (zk, z
′
k), k ∈ N is a coupling for the embedded process:

P(x,x′){ω ∈ Ω : zk ∈ Γ} = P̂ (x,Γ) and P(x,x′){ω ∈ Ω : z′k ∈ Γ} = P̂ (x′,Γ) (25)

for all measurable Γ ⊆ Rd.
We now state and prove two important properties of the constructed coupling. The

first one relies on (C3) and elucidates the choice of a construction by blocks of m steps
with m as in Lemma 2.3. The second combines this first property and some technical
consequences of Conditions (C1) and (C2) proved in Appendix A to establish an estimate
on the time K needed for the coupling to hit the diagaonal, i.e. for the two coupled
components to coincide; see (23). This will be crucial in the proof of the Main Theorem.

Proposition 3.1. There is a number p̂ ∈ (0, 1) such that

P(x,x′) {zm ∕= z′m} < p̂ (26)

for all x, x′ ∈ B(x̂, r).

Proof. With Σ as in and Lemma 2.3, the equality (24) gives

(Em
λ × P̃) {(s, ω̃) : Fm(ξ(x, x′, s, ω̃)) ∕= Fm(ξ′(x, x′, s, ω̃))}

≤ Em
λ (Σ) sup

s∈Σ
P̃ {ω̃ : Fm(ξ(x, x′, s, ω̃)) ∕= Fm(ξ′(x, x′, s, ω̃))}+ (1− Em

λ (Σ))

= Em
λ (Σ) sup

s∈Σ
Fm(x, s, · )∗(ℓm)− Fm(x′, s, · )∗(ℓm)var + (1− Em

λ (Σ))

3For example, one can take as a new (Ω̃, F̃ , P̃) the product of the old (Ω̃, F̃ , P̃) with itself and set
ξnew(u, ω̃1, ω̃2) = ξold(u, ω̃1), ξ′new(u, ω̃1, ω̃2) = ξ′old(u, ω̃1) and ξ′′new(u, ω̃1, ω̃2) = ξ′old(u, ω̃2) where
(ω̃1, ω̃2) is a generic element of the product of the old space with itself.
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whenever x and x′ are in the ball B(x̂, r). Therefore,

P(x,x′) {zm ∕= z′m} ≤ 1− Em
λ (Σ)(1− p) =: p̂

by Lemma 2.3.

Proposition 3.2. There are positive constants θ1 and A1 such that

E(x,x′)e
θ1K ≤ A1 (1 + x+ x′) (27)

for all x, x′ ∈ Rd.

Proof. Under Condition (C1), (x, x′) → 1 + x2 + x′2 is a Lyapunov function for
the coupling (zk, z

′
k)k∈N. As a consequence of this, we control an exponential moment

of the number I of jumps needed to enter a ball of large radius R around the origin
(see Corollary A.2). On the other hand, Condition (C2) guarantees the existence of a
number M ∈ Nm of jumps in which transition probabilities from points in B(0, R) to
the ball B(x̂, r) are uniformly bounded from below (see Lemma A.5).

Combining these results, we get the following bound on an exponential moment of
the first simultaneous hitting time of the ball B(x̂, r): there exist positive constants θ2
and A2 such that

E(x,x′)e
θ2J ≤ A2


1 + x2 + x′2


. (28)

This is stated and proved as Proposition A.6 in the first appendix. Then, we introduce
a sequence of random times defined inductively by J0 := 0 and

Ji := min

j ∈ Nm : zj , z

′
j ∈ B(x̂, r) and j > Ji−1



for i ≥ 1. Using the strong Markov property and applying the inequality (28) repeatedly
gives

E(x,x′)e
θ2Ji ≤ E


eθ2Ji−1E(zJi−1

,z′
Ji−1

)e
θ2J1


≤ Ĉi


1 + x2 + x′2


(29)

for some positive constant Ĉ.
Note that Proposition 3.1 implies that K is almost surely finite for all x, x′ ∈ Rd.

Indeed,

P(x,x′){K > Ji} ≤ P(x,x′)


zJi+m ∕= z′Ji+m



= P(x,x′)


zJi+m ∕= z′Ji+m

  zJi
∕= z′Ji


P(x,x′)


zJi

∕= z′Ji



≤ p̂P(x,x′)


zJi ∕= z′Ji



≤ p̂P(x,x′)


zJi−1+m ∕= z′Ji−1+m



≤ p̂i (30)

and almost-sure finiteness follows from the Borel–Cantelli lemma. Now, by Hölder’s in-
equality,

E(x,x′)e
θ1K ≤ 1 +

∞

i=0

E(x,x′)


1{Ji<K≤Ji+1}e

θ1Ji+1


≤ 1 +

∞

i=0


P(x,x′){K > Ji}

1− 1
q

E(x,x′)e

qθ1Ji+1
 1

q
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for any q ≥ 1. In each summand, the first term is controlled by the inequality (30) and
the second one by (29), provided that θ1 ≤ θ2/q:

E(x,x′)e
θ1K ≤ 1 + Ĉ

1
q p̂

1
q−1


1 + x2 + x′2

 1
q

∞

i=0


Ĉ

1
q p̂1−

1
q

i

.

The proposition follows by taking q ≥ 2 large enough that Ĉ
1
q p̂1−

1
q < 1.

3.2. Coupling for the original continuous-time process

Let the probability space (Ω,F ,P(x,x′)) and the process (zk, z
′
k) be as in the previous

subsection. Recall that an element ω of Ω consists in an initial condition in Rd×Rd and
a sequence (sj , ω̃j)j∈N of elements in (R+)

m × Ω̃ for some other probability space Ω̃ we
have constructed. Let τjm+i(ω) be the positive real obtained by summing all the entries
of s1, s2, . . . , sj and the first i entries of sj+1. Then, it follows from the construction
of P(x,x′) that the sequence (τk)k∈N of random variables on (Ω,F ,P(x,x′)) has independent
increments distributed according to an exponential distribution with rate parameter λ.

We define

Zt(ω) :=


zk(ω) if t = τk(ω),

St−τk(ω)(zk(ω)) if t ∈ (τk(ω), τk+1(ω))

and

Z ′
t(ω) :=


z′k(ω) if t = τk(ω),

St−τk(ω)(z
′
k(ω)) if t ∈ (τk(ω), τk+1(ω)).

Then, (9), (10) and (25) imply that (Zt, Z
′
t) is a coupling of Xt and X ′

t.

Proposition 3.3. Under Conditions (C1)–(C3), there exist positive constants C and c
such that

P(x,x′){T > t} ≤ C(1 + x+ x′)e−ct (31)

for any x, x′ ∈ Rd and t ≥ 0.

Proof. Let K be defined by (23). As τk is a sum of k independent exponentially dis-
tributed random variables with parameter λ, the expectation of e2cτk can be computed
explicitly for c in the interval (0, 1

2λ), and τK is also almost-surely finite. For such a
number c, the Cauchy–Schwarz inequality yields

E(x,x′)e
cτK =

∞

k=0

E(x,x′)


ecτk1{K=k}


≤

∞

k=0


E(x,x′)e

2cτk
 1

2

P(x,x′){K = k}

 1
2 .

On the other hand, we control P(x,x′){K ≥ k} by Proposition 3.2 and Chebyshev’s in-
equality. Therefore,

E(x,x′)e
cτK ≤

∞

k=0


λ

λ− 2c

 k
2 

e−θ1kA1(1 + x+ x′)
 1

2

≤ A
1
2
1 (1 + x+ x′)

∞

k=0


λe−θ1

λ− 2c

 k
2

,
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where θ1 and A1 are as in Proposition 3.2. The series will converge for c > 0 small
enough; fix such a value of c. By Chebyshev’s inequality, we find C > 0 such that

P(x,x′){τK > t} ≤ C(1 + x+ x′)e−ct

for all x, x′ ∈ Rd. By construction, we have T ≤ τK almost surely and therefore

P(x,x′){T > t} ≤ C(1 + x+ x′)e−ct.

This completes the proof of the proposition.

3.3. Concluding the proof of the Main Theorem

In view of Lemma 2.2, if we can find constants C > 0 and c > 0 such that

P∗
t δx −P∗

t δx′var ≤ C(1 + x+ x′)e−ct

for all x, x′ ∈ Rd and all t ≥ 0, then integrating in x against µ and in x′ against µinv

gives the desired bound (7) with a different constant C. By construction of the coupling
(Zt, Z

′
t)t≥0, we have

(Ptg)(x)− (Ptg)(x
′) = E(x,x′) (g(Zt)− g(Z ′

t))

for all g ∈ L∞(Rd). Therefore,

P∗
t δx −P∗

t δx′var =
1

2
sup

g∞≤1

|(Ptg)(x)− (Ptg)(x
′)|

≤ 1

2
sup

g∞≤1

E(x,x′)|g(Zt)− g(Z ′
t)|

=
1

2
sup

g∞≤1

E(x,x′)


1{Zt ∕=Z′

t}|g(Zt)− g(Z ′
t)|



≤ P(x,x′){Zt ∕= Z ′
t} ≤ P(x,x′){T > t}

for all x, x′ ∈ Rd and t ≥ 0, and the result follows from Proposition 3.3.

4. Applications

In this section, we apply the Main Theorem to the Galerkin approximations of pdes
and to stochastically driven quasi-harmonic networks. For the Galerkin approximations
we give a detailed derivation of the controllability conditions and in the case of the
networks we appeal to the results obtained in [30]. Before we do so, we briefly discuss
the solid controllability assumption (C3).
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4.1. Criteria for solid controllability

The notion of solid controllability was introduced by Agrachev and Sarychev in [2]
(see also the survey [3]) in the context of the controllability of the 2D Navier–Stokes
and Euler systems. It has been used in [1] to prove the existence of density for finite-
dimensional projections of the laws of the solutions of randomly forced pdes. In [34],
solid controllability is used to establish exponential mixing for some random dynamical
systems in a compact space, and in [30], for some classes of quasi-harmonic networks of
oscillators driven by a degenerate Brownian motion. It is the degeneracy allowed by this
condition which sets our work apart from previous works on sdes driven by compound
Poisson processes (that are too numerous to be cited here).

We compare it to two related well-known properties, which might be more straight-
forward to check in some applications.

(C3′) Continuous exact controllability from x̂: there exists a nondegenerate closed ball
D ⊂ Rd, a time T0 > 0, and a continuous function Ψ : D → C([0, T0];R

n) such
that ST0

(x̂,Ψ(x)) = x for all x ∈ D.

(C3′′) Weak Hörmander condition at x̂: the vector space spanned by the family of vector
fields

{V0, [V1, V2], [V1, [V2, V3]], . . . : V0 ∈ B, V1, V2, . . . ∈ B ∪ {f}} (32)

at the point x̂ coincides with Rd, where B is the set of constant vector fields formed
by the columns of the matrix B and [U, V ](x) is the Lie bracket of the vector fields U
and V in the point x:

[U, V ](x) = DV (x)U(x)−DU(x)V (x).

Here, DU(x) is the Jacobian matrix of U at x.

It is shown in [34, §2.2] that (C3′′) implies (C3′) with arbitrary T0, and that (C3′) in
turn implies (C3) with the same T0; see also [30, §3.2]. The first implication appeals to
some ideas from geometric control theory. The second implication can be seen from a
degree theory argument (or alternatively from an application of Brouwer’s fixed point
theorem).

The weak Hörmander condition, also known as the parabolic Hörmander condition,
has many important applications both in control theory (e.g., see [19, Ch. 5]) and stochas-
tic analysis (e.g., see [29, §2.3 in Ch. 2] and [15]). It is often assumed to hold in all points
of the state space. For finite-dimensional control systems, it ensures the global exact con-
trollability; for Itô diffusions, it guarantees existence and smoothness of the density of
solutions with respect to the Lebesgue measure—a major step towards proving impor-
tant ergodic properties. We emphasize that we bypass the study of smoothing properties
of the transition function of our Markov process and that the conditions stated need only
hold in one point of the state space (where Condition (C2) is also satisfied).

Recall that a pair of matrices, A : Rd → Rd and B : Rn → Rd, is said to satisfy the
Kalman condition if any x ∈ Rd can be written as x = By0 +ABy1 + · · ·+Ad−1Byd−1

for some y0, . . . , yd−1 ∈ Rn. For a linear control system of the form Ẋ = AX + Bζ, the
Kalman condition implies (C3′′) in all points through a straightforward computation of
the Lie brackets; see [7, §1.2–1.3] for other well-known implications. When f is a linear
vector field x → Ax plus a perturbation, Condition (C3′′) can be deduced at a point x̂
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far from the origin by perturbing the Kalman condition on the pair (A,B), provided that
one has good control on the decay of derivatives of the perturbation along a sequence of
points [30, §5].

4.2. Galerkin approximations of randomly forced PDEs

In this section, we apply the Main Theorem to the Galerkin approximations of the
following parabolic pde on the torus TD := RD/2πZD:

∂tu(t, x)− ν∆xu(t, x) + F (u(t, x)) = h(x) + ζ(t, x), x ∈ TD, (33)

where ν > 0 is a constant, h : TD → R is a given smooth function, and F : R → R is a
function of the form

F (u) = aup + g(u). (34)

We assume that a > 0 is an arbitrary constant, p ≥ 3 is an odd integer, and g : R → R
is a smooth function satisfying the following two conditions4:

(i) there is a constant C > 0 such that

|g(u)| ≤ C(1 + |u|)p−1

for all u ∈ R.

(ii) with g(p) the p-th derivative of g, the following limit holds

lim
u→±∞

g(p)(u) = 0.

For any N ∈ N, consider the following finite-dimensional subspace of L2(TD):

HN := span{sk, ck : k ∈ ZD, |k| ≤ N},

where sk(x) := sin〈x, k〉, ck(x) := cos〈x, k〉, 〈x, k〉 := x1k1 + . . . + xDkD and |k| :=
|k1| + . . . + |kD| for any multi-index k = (k1, . . . , kD) ∈ ZD and any vector x ∈ TD.
In particular, c0 is the constant function 1. This subspace is endowed with the scalar
product 〈·, ·〉L2 and the norm  · L2 inherited from L2(TD). Let PN be the orthogonal
projection onto HN in L2(TD). The Galerkin approximations of (33) are given by

u̇(t)− ν∆u(t) + PNF (u(t)) = h+ ζ(t), (35)

where u is an unknown HN -valued function, h is an arbitrary vector in HN and ζ is a
continuous H1-valued function.

Let us emphasize that the space H1 for the driving ζ is the same for any level N ≥ 1
of approximation, any value of the constant ν and any function g satisfying (i) and (ii).

The main interest of the example considered in this section is that the perturbation
term g in (34) is quite general. In particular, we may have F (u) = 0 in a large ball, so
that the weak Hörmander condition is not necessarily satisfied at all the points of the
state space.

4The results of this subsection remain true under weaker assumptions on the function g. This setting
is chosen for the simplicity of presentation.
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Theorem 4.1. Suppose that (i) and (ii) hold. Let (Yt)t≥0 be an H1-valued compound
Poisson with jump distribution ℓ of finite variance and possessing a positive continuous
density with respect to the Lebesgue measure on H1. Then, the semigroup (P∗

t )t≥0 for
the sde

du− ν∆u dt+ PNF (u) dt = h dt+ dY

in HN admits a unique invariant measure µinv ∈ P(HN ). Moreover, it is exponentially
mixing in the sense that (7) holds for some constants C > 0 and c > 0, any measure
µ ∈ P(HN ), and any time t ≥ 0.

Proof. The sde under consideration is of the form (1) with d = dimHN , n = dimH1 =
2D + 1, a smooth function fN : HN → HN given by

fN (u) = ν∆u− PNF (u) + h, (36)

and B : H1 → HN the natural embedding operator. Let us show that Conditions (C1)–
(C3) are verified. Using the assumption (i), the fact that sk and ck are eigenfunctions of
the Laplacian, and the Cauchy–Schwarz inequality, we get

〈f(u), u〉L2 = 〈ν∆u− PNF (u) + h, u〉L2

≤ −ν



TD

|u(x)|2 dx− C1



TD

|u(x)|p+1 dx+ C2

≤ −νu2L2 + C2,

where C1 > 0 and C2 > 0 are some constants and u ∈ HN is arbitrary. This implies
Condition (C1).

Condition (C2) (to all points) is a consequence of the global approximate controlla-
bility property of Proposition 4.2 below, whose proof is given in Appendix B. Since it
is proved in [34, §2.2] that the weak Hörmander condition implies solid controllability,
Proposition 4.3 below yields Condition (C3).

Thus, Conditions (C1)–(C3) are satisfied and the proof of Theorem 4.1 is completed
by applying our Main Theorem.

Proposition 4.2. Equation (35) is approximately controllable: for any number  > 0,
any time T > 0, any initial condition u0 ∈ HN , and any target û ∈ HN , there exists a
control ζ ∈ C([0, T ];H1) such that the solution u of (35) with u(0) = u0 satisfies

u(T )− ûL2 < .

Proposition 4.3. There is a number R > 0 such that the weak Hörmander Condi-
tion (C3′′) is satisfied for equation (35) at any point û ∈ HN with ûL2 ≥ R.

Proof of Proposition 4.3. In view of the weak Hörmander condition, we are interested in
the nested subspaces {Vi}i≥0 of HN defined by V0 = H1 and

Vi+1(û) := span(Vi ∪ {[V, fN ](û) : V ∈ Vi(û)}),

where we at times identify the vector V ∈ Vi(û) with the corresponding constant vector
field on HN . Clearly, showing that Vi(û) = HN for some i large enough shows that
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the weak Hörmander condition (C3′′) holds in û. We show in two steps that, indeed,
V(N−1)p(û) = HN if ûL2 is sufficiently large.

Step 1: Polynomial nonlinearity. In this step, we assume that g ≡ 0, so that

fN (u) = ν∆u− aPN (up) + h. (37)

In this case, Lie brackets with constant vector fields are especially straightforward to
compute because ∆ is a linear operator and h is a constant vector. In particular, for any
constant vector fields V1, . . . , Vp−2, Vp−1 and Vp,

[V1, . . . [Vp−2, [Vp−1, [Vp, fN ]]] . . . ](û) = −a p!PN (V1 · · ·Vp−2Vp−1Vp), (38)

where the product V1 · · ·Vp−2Vp−1Vp is understood as a pointwise multiplication of func-
tions.

We claim that, for each multi-index m with 0 < |m| ≤ N , the vectors cm and sm are
in V(|m|−1)p(û) for all û ∈ HN . To start, note thatif |l| ≤ 1, then cl and sl are in H1 and
thus in Vi(û) for each i.

Suppose now that cm and sm are in V(|m|−1)p(û). As noted above, for all multi-
indices l with |l| ≤ 1, the vectors cl and sl are also in V(|m|−1)p(û). Therefore, combining
the computation (38) with trigonometric identities yields that

PNcm±l = PN (1 · · · 1 clcm)∓ PN (1 · · · 1 slsm) (39)

= −1
a p! [c0, . . . [c0, [cl, [cm, fN ]]] . . . ](û)± 1

a p! [c0, . . . [c0, [sl, [sm, fN ]]] . . . ](û)

and

PNsm±l = PN (1 · · · 1 slcm)± PN (1 · · · 1 clsm) (40)

= −1
a p! [c0, . . . [c0, [sl, [cm, fN ]]] . . . ](û)± −1

a p! [c0, . . . [c0, [cl, [sm, fN ]]] . . . ](û)

are in V(|m|−1)p+p(û). The result thus holds by induction on |m|.
Step 2: The General case. Let f̃N be the vector field given by (37). If we consider the
same Lie brackets as in Step 1, but now for the sum f̃N + PNg, the contribution of PNg
will vanish as û → ∞, thanks to assumption (ii). Therefore, V(|N |−1)p(û) = HN , provided
that ûL2 is sufficiently large.

4.3. Stochastically driven networks of quasi-harmonic oscillators

Stochastically driven networks of oscillators play an important role in the investigation
of various aspects of nonequilibrium statistical mechanics. In its simplest form, the setup
can be described as follows. Consider L unit masses, each labelled by an index i ∈
{1, . . . , L} restricted to move in one dimension. Each of them is pinned by a spring of
unit spring constant and, for i ∕= L, the ith mass is connected to the (i+1)th mass by a
spring of unit spring constant. The equations of motion for the positions and momenta,
(qi, pi)

L
i=1, are the Hamilton equations






dqi = pi dt, dpi = −(3qi − qi−1 − qi+1) dt, 1 < i < L,

dq1 = p1 dt, dp1 = −(2q1 − q2) dt,

dqL = pL dt, dpL = −(2qL − qL−1) dt.
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Coupling the 1st [resp. the Lth] oscillator to a fluctuating bath with dissipation con-
stant γ1 [resp. γL] leads to the sde






dqi = pi dt, dpi = −(3qi − qi−1 − qi+1) dt, 1 < i < L,

dq1 = p1 dt, dp1 = −(2q1 − q2) dt− γ1p dt+ dZ1,t,

dqL = pL dt, dpL = −(2qL − qL−1) dt− γLp dt+ dZL,t,

(41)

or variants thereof, where Z1 and Z2 are independent one-dimensional stochastic pro-
cesses describing the fluctuations in the baths.

In the mathematical physics literature, many authors have considered nonlinear vari-
ants of this model where the thermal fluctuations—either acting on the momenta (the
Langevin regime, as above) or on auxiliary degrees of freedom—are described by Gaus-
sian white noise i.e. Zj,t =


2γjθjWj,t, with Wj,t a standard Wiener process. We refer

the interested reader to [13, 38] for introductions to these models and discussions of
their ergodic properties at thermal equilibrium; also see [16, 17] for a generalization to
non-Markovian models. The existence and uniqueness of the invariant measure is much
more problematic out of equilibrium; see [36, 12, 11, 10, 31, 8]. However, interesting
phenomena pointed out in the physics literature for a single particle in a non-Gaussian
bath [5, 37, 26, 25] motivate a rigorous study of the mixing properties of corresponding
networks. While the methods used for most of the previously cited existence and unique-
ness results are not suitable to deal with compound Poisson processes, most of the ideas
of [34, 30] are. We develop the strategy to be followed in the present section.

Allowing for different spring constants and different ways of connecting the masses
while staying in the Langevin regime leads us to considering the following generalization
of (41). Let I be a finite set and distinguish a nonempty subset J ⊂ I, where masses
will be coupled to fluctuating baths. We use {δi}i∈I [resp. {δj}j∈J ] as the standard basis
for RI [resp. RJ ]. Let ω : RI → RI be a nonsingular linear map and let ιj : RJ → RI

be the rank-one map δj 〈δj , · 〉 for each j ∈ J ⊂ I. The sde

d


p
ωq


=


−


j∈J γjιjι
∗
j −ω∗

ω 0


p
ωq


dt+



j∈J


ιj
0


dZj

in R2|I| then describes the positions q and momenta p of |I| masses connected to each
other and pinned according to the matrix ω, with the jth oscillator being coupled to
a Langevin bath with dissipation controlled by the constant γj > 0 and fluctuations
described by the process Zj .

In Proposition 4.4 and Corollary 4.5, we consider a nonlinear version of this sde
where the quadratic potential resulting form the springs is now perturbed by a poten-
tial U : Rd → R. Their proofs are omitted since they are essentially the same as those
of Proposition 4.6 and Corollary 4.7 respectively. We start with dissipativity and con-
trollability properties of the control system.

Proposition 4.4. Let I, J,ω and (γj)j∈J be as above. Then, the conditions

(K) the pair (ω∗ω,


j∈J ιjι
∗
j ) satisfies the Kalman condition;

(G) the gradient of U is a smooth globally Lipschitz vector field growing strictly slower

than q → 1 + |q|
1

4|I| ;
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(pH) there exists a sequence {q(n)}n∈N of points in RI , bounded away from 0, such that

lim
n→∞

|q(n)|kDk+1U(q(n)) = 0

for each k = 0, 1, . . . , d− 1;

imply that the control system


ṗ
ωq̇


=


−


j∈J γjιjι
∗
j −ω∗

ω 0


p
ωq


−

∇U(q)

0


+


j∈J


ιj
0


ζ

satisfies the conditions (C1), (C2) and (C3).

The exponent in the formulation of the growth condition is typically not optimal;
see [30] for a formulation in terms of a power related to the Kalman condition. The
following mixing result for the corresponding sde with Poissonian noise essentially follows
from our Main Theorem (see the proof of Corollary 4.7).

Corollary 4.5. Under the same assumptions, if (Nj)j∈J is a collection of |J | inde-
pendent one-dimensional compound Poisson processes with jump distributions with finite
variance and continuous positive densities with respect to the Lebesgue measure on R,
then the sde

d


p
ωq


=


−


j∈J γjιjι
∗
j −ω∗

ω 0


p
ωq


dt−


∇U(q)

0


dt+



j∈J


ιj
0


δj dNj

admits a unique stationary measure µinv ∈ P(RI ⊕ RI). Moreover, it is exponentially
mixing in the sense that (7) holds for some constants C > 0 and c > 0, any measure
µ ∈ P(RI ⊕RI), and any time t ≥ 0.

In addition to the notation used so far, let (λj)j∈J be small positive numbers and
let us use the shorthand γιι∗ for


j γjιjι

∗
j , the shorthand λι∗ι for


j λjι

∗
j ιj , and so on.

The sde

d




r
p
ω̃q



 =




−γιι∗ λιι∗ 0
−λι∗ι 0 −ω̃∗

0 ω̃ 0








r
p
ω̃q



 dt+





√
2γθι∗ι
0
0



 dW

can be derived as the effective equation for the positions q and momenta p of a network
of |I| masses connected to each other and pinned according to the matrix ω, with the
jth oscillator being coupled to a classical Gaussian field at temperature θj under some
particular conditions on the coupling; see [12]. The |J | auxiliary degrees of freedom r ∈
RJ are introduced to make the process Markovian. The parameters λj and γj describe
the coupling and dissipation for the jth bath. Here, the matrix ω̃ encodes an effective
quadratic potential and is such that ω̃∗ω̃ = ω∗ω − λ2ιι∗ (λ is small), where ω encodes
the original quadratic potential.

Proposition 4.6. Let I, J,ω and (γj)j∈J be as above. Then, for (λj)j∈J small enough,
the conditions (K), (G) and (pH) as in the previous proposition imply that the the control
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system




ṙ
ṗ
ω̃q̇



 =




−γιι∗ λιι∗ 0
−λι∗ι 0 −ω̃∗

0 ω̃ 0








r
p
ω̃q



−




0

∇U(q)
0



+




1
0
0



 ζ

satisfies the conditions (C1), (C2) and (C3).

Proof. The Kalman condition on the pair (ω∗ω, ιι∗) implies the Kalman condition on the
pair (ω̃∗ω̃, ιι∗) if λ is small enough. This in turn implies that the pair

(A,B) :=








−γιι∗ λιι∗ 0
−λι∗ι 0 −ω̃∗

0 ω̃ 0



 ,




1
0
0









also satisfies the Kalman condition; see Proposition 4.1 in [30]. It follows by Lemma 5.1(2)
in [18] that the eigenvalues of A then have strictly negative real part. Combined with
the growth assumption (G), the negativity of the eigenvalues implies (C1) for a suitable
inner product; see Lemma 3.1 in [30]. Proposition 3.3 in [30] says that the Kalman
condition on (A,B) and the growth condition (G) on ∇U give (C2) everywhere. The fact
that the Kalman condition on (A,B) and assumption (pH) give the weak Hörmander
condition (C3”) in one point is the content of Proposition 5.1 in [30]. But, as previously
mentioned, the weak Hörmander condition implies solid controllability.

Concerning the corresponding sde with Poissonian noise, we have the following mixing
result—which again parallels that of [30]—as a corollary of the controllability properties.

Corollary 4.7. Under the same assumptions, if (Nj)j∈J is a collection of |J | inde-
pendent one-dimensional compound Poisson processes with jump distributions with finite
variances and continuous positive densities with respect to the Lebesgue measure on R,
then the sde

d




r
p
ω̃q



 =




−γιι∗ λιι∗ 0
−λι∗ι 0 −ω̃∗

0 ω̃ 0








r
p
ω̃q



 dt−




0

∇U(q)
0



 dt+




1
0
0






j∈J

δj dNj .

admits a unique stationary measure µinv ∈ P(RJ⊕RI⊕RI). Moreover, it is exponentially
mixing in the sense that (7) holds for some constants C > 0 and c > 0, any µ ∈
P(RJ ⊕RI ⊕RI), and any time t ≥ 0.

Proof sketch. If the noise


j∈J δjNj were replaced by a single compound Poisson process
whose jump distribution possesses a finite second moment and a positive continuous
density with respect to the Lebesgue measure on RJ , then our Main Theorem would
apply.

Although the probability that jumps in the different baths occur simultaneously is
zero by independence, there is a positive probability that they occur arbitrarily close to
simultaneity. Since an independent sum of a jump from each distribution gives a random
variable with a finite variance and a positive continuous density with respect to the
Lebesgue measure on RJ , our control arguments can be adapted by continuity.
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Appendix A. Exponential estimates on hitting times

In this appendix, we present results on hitting times for the coupling (zk, z
′
k) con-

structed in Subsection 3.1. Loosely speaking, estimates on the hitting times of a small ball
near x̂ are obtained by combining a lower bound on the hitting time of a (large) compact
around the origin and a lower bound on the probability of making a transition from the
aforementioned compact to the small ball. We shall assume that Conditions (C1)–(C3)
are satisfied and fix the parameters m, r, and p as in Lemma 2.3.

We provide an estimate for the first simultaneous hitting time I of a ball of large
radius R around the origin. To do this, we use the preliminary estimates of Lemma 2.1
to exhibit the existence of a suitable Lyapunov structure and conclude with a standard
argument.

Lemma A.1. The function V defined by V (y, y′) := 1 + y2 + y′2 is a Lyapunov
function in the sense that there exist positive constants R and C∗ and a constant 0 <
a < 1 such that

E(x,x′)V (zm, z′m) ≤ a V (x, x′) for x ∨ x′ ≥ R, (A.1)

E(x,x′)V (zk, z
′
k) ≤ C∗ for x ∨ x′ < R, k ≥ 0. (A.2)

Proof. By Lemma 2.1, there is γ ∈ (0, 1) such that

E(x,x′)(1 + zk2 + z′k2) = 1 + ExXτk2 + Ex′Xτk2

≤ 1 + γk(x2 + x′2) + 2C(1 + Λ) (A.3)

for all k ∈ N and x, x′ ∈ Rd. Taking k = m, any a ∈ (0, γm), and any x, x′ ∈ Rd such
that

x ∨ x′ ≥ (a− γm)−1/2(1− a+ 2C(1 + Λ))1/2 =: R,

we get

E(x,x′)


1 + zm2 + z′m2


≤ a


1 + x2 + x′2


.

Thus, (A.1) holds. In the case x ∨ x′ ≤ R, by (A.3), we have

E(x,x′)(1 + zk2 + z′k2) ≤ 1 + 2R2 + 2C(1 + Λ) =: C∗.

This gives (A.2) and completes the proof of the lemma.

It is well known that the Lyapunov structure of the previous lemma implies a bound
on an exponential moment for the time needed to reach a large enough level set of the
Lyapunov function V . While arguments for this implication can be found in [24], we give
a brief proof sketch and refer the reader to Proposition 3.1 in [33] for a statement and
complete proof which more precisely reflects our approach.

Corollary A.2. There exist positive constants R, c1, and C1 such that

E(x,x′)e
c1I ≤ C1(1 + x2 + x′2)

for all x, x′ ∈ Rd, where

I := min{j ∈ N0
m : zj , z

′
j ∈ B(0, R)}
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Proof sketch. One can show using the Markov property and (A.1) repeatedly that

E(x,x′)[1{I>nm}V (znm, z′nm)] ≤ anV (x, x′)

and deduce using V ≥ 1 that

P(x,x′)[I > nm] ≤ anV (x, x′). (A.4)

By (A.4) and the Borel–Cantelli lemma, I is almost surely finite. Therefore, one can use

E(x,x′)e
c1I ≤ 1 +

∞

n=1

E(x,x′)[1{I=nm}e
c1I ]

and, for c1 small enough, the right-hand side can be bounded using (A.4) in terms of
V (x, x′) and a convergent geometric series.

In what follows R, c1 and C1 will be as in Corollary A.2. We continue with another
estimate on an exponential moment.

Lemma A.3. For any M ∈ N, there is a constant C2 > 0 such that

E(x,x′)e
c1Ii ≤ Ci

2(1 + x2 + x′2) (A.5)

for all x, x′ ∈ Rd and i ∈ N, where I0 := 0 and

Ii := min

j ∈ Nm : j ≥ Ii−1 +M and zj , z

′
j ∈ B(0, R)


.

Remark A.4. The stopping time Ii depends on both M and R. The value of R was
already fixed in Corollary A.2 and, in our application, M will be as in Lemma A.5. It is
important that the constant C2 does not depend on x and x′.

Proof. By our last corollary, the Markov property, and (12) in Lemma 2.1, we have

E(x,x′)e
c1I1 = ec1ME(x,x′)


E(zM ,z′

M )e
c1I



≤ C1e
c1ME(x,x′)(1 + zM2 + z′M2)

≤ C1e
c1M (1 + γMx2 + γMx′2 + 2C(1 + Λ))

≤ C̃1(1 + x2 + x′2) (A.6)

for C̃1 a combination of C, C1 and Λ. In particular, for any x, x′ ∈ B(0, R),

E(x,x′)e
c1I1 ≤ C̃1(1 +R2 +R2) =: C2.

Then zIi−1 , z
′
Ii−1

∈ B(0, R) for any i > 1, and therefore

E(x,x′)e
c1Ii = E(x,x′)


ec1Ii−1E(zIi−1

,z′
Ii−1

)e
c1I1


≤ C2E(x,x′)e

c1Ii−1 ≤ Ci−1
2 E(x,x′)e

c1I1 .

Finally, using (A.6), we obtain (A.5).
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Lemma A.5. Consider the random variable

J := min

j ∈ N0

m : zj , z
′
j ∈ B(x̂, r)


,

where x̂ is as in Condition (C2). There exists M ∈ Nm such that

0 < q := inf
x,x′∈B(0,R)

P(x,x′) {J ≤ M} . (A.7)

Proof. Let T be the time in Condition (C2) for  = r
2 and radius R. To simplify the

presentation, we assume that T = 1.

Step 1: controlling a single trajectory of the sde (1). First, let us show an inequality
like (A.7) for a single trajectory of the sde (1). Take an initial condition x ∈ B(0, R).
By Condition (C2), there exists a control ζx ∈ C([0, 1];Rn) such that

S(x, ζx)− x̂ <
r

2
. (A.8)

By a standard continuity and compactness argument, we can find a finite set

Z := {ζi : i ∈ I} ⊂ C([0, 1];Rn)

such that the control ζx in (A.8) can be chosen from Z for any x ∈ B(0, R). For any
integer M ≥ 1, let the mapping FM : Rd × (R+)

M × (Rn)M → Rd be defined by (18),
let ιM be as in Lemma 2.3, and consider the sets

∆ :=


s = (sj)

M
j=1 ∈ (R+)

M : sj ∈

1− δ

M
,
1

M


, j = 1, . . . ,M


,

Ξx :=

ξ = (ξj)

M
j=1 ∈ (Rn)M : ιM (ζx)− ξ(Rn)M < δ, j = 1, . . . ,M



for any δ > 0. Again by a continuity and compactness argument, it is not hard to see
that

∆× Ξx ⊂

s ∈ (R+)

M , ξ ∈ (Rn)M : FM (x, s, ξ)− x̂ < r


for sufficiently large M ∈ Nm, small δ > 0, and any x ∈ B(0, R). Note that FM (x, s, ξ) =
XτM when s = (tj)

M
j=1 and ξ = (ηj)

M
j=1. By our assumptions on the laws of tj and ηj , it

is clear that5

EM
λ (∆) =

M

j=1


e−λ 1−δ

M − e−λ 1
M


> 0,

inf
x∈B(0,R)

ℓM (Ξx) > 0,

since there is only a finite number of sets Ξx for x in B(0, R). We conclude that

0 < inf
x∈B(0,R)

Px {XτM − x̂ < r} . (A.9)

5Recall that EM
λ and ℓM sand for the M -fold products of the exponential distribution and ℓ, respec-

tively.
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Step 2: case of coupling trajectories. We consider three cases.
• If x = x′, then the trajectories zj and z′j coincide for all j and the result follows

immediately from (A.9).
• If x ∕= x′ with x, x′ ∈ B(x̂, r), then

P(x,x′) {J = 0} = 1.

• If x ∕= x′ not both in B(x̂, r), consider s ∈ ∆, ξ ∈ Ξx, and ξ′ ∈ Ξx′ . By construction,
both FM (x, s, ξ) and FM (x′, s, ξ) lie in B(x̂, r). Then, there exists a minimal k ∈ Nm

such that both Fk(x, s, ξ) and Fk(x
′, s, ξ) lie in B(x̂, r). Necessarily, k satisfies k ≤ M .

Therefore, the construction of the coupling 6 implies that zk, z
′
k are guaranteed to be

in B(x̂, r) for some k ≤ M for all ω = (x, x′, (sj , ω̃j)j∈N) such that (sj)
M/m
j=1 lies in ∆ and

such that (ξ(x, x′, sj , ω̃j))
M/m
j=1 and (ξ′′(x, x′, sj , ω̃j))

M/m
j=1 lie respectively in Ξx and Ξx′ .

By construction,

P̃ {ω̃j : ξ(x, x
′, sj , ω̃j) ∈ Ξx} = ℓM (Ξx),

P̃ {ω̃j : ξ
′′(x, x′, sj , ω̃j) ∈ Ξx′} = ℓM (Ξx′),

and

EM
λ (∆) =

M

j=1


e−λ 1−δ

M − e−λ 1
M


.

Then, independence gives

P(x,x′) {J ≤ M} ≥ ℓM (Ξx) ℓ
M (Ξx′)

M

j=1


e−λ 1−δ

M − e−λ 1
M


> 0.

The uniformity in x and x′ follows from the fact that there is only a finite number of
sets Ξx and Ξx′ to consider as x and x′ range over the set B(0, R).

The main result of this appendix is the following exponential-moment bound on the
random variable J . The argument used to deduce the proposition from the previous
lemmas is well known and sis for example discussed in depth in Section 3.3.2 in [22].

Proposition A.6. There are constants θ2 > 0 and A2 > 0 such that

E(x,x′)e
θ2J ≤ A2


1 + x2 + x′2


(A.10)

for all x, x′ ∈ Rd.

Proof. Let Ii be defined as in Lemma A.3 with constant M ∈ Nm as in Lemma A.5.
Then

P(x,x′) {J > k} ≤ P(x,x′){Ii < J}+ P(x,x′){Ii ≥ k}

6When the coupling starts with x ∕= x′ not both in B(x̂, r), the first m jumps are independent. The
probability of zm = z′m is zero by our assumptions on ℓ. Thus going by blocks of m steps, we see that the
jumps are independent until both trajectories simultaneously hit B(x̂, r) at a time which is a multiple
of m.
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for any choice of integers i, k ≥ 1. To control the first term, note that the Markov property
and Lemma A.5 imply

P(x,x′) {Ii < J} ≤ (1− q)P(x,x′) {Ii−1 < J} ≤ (1− q)i−1.

For the second term, we have the bound

P(x,x′){Ii ≥ k} ≤ Ci
2e

−c1k(1 + x2 + x′2)

by Chebyshev’s inequality and Lemma A.3. In particular, taking i scaling like k for 
small enough, we find

P(x,x′) {J > k} ≤ (1− q)k−1 + Ck
2 e−c1k(1 + x2 + x′2)

≤ ak(1 + x2 + x′2)

for some a ∈ (0, 1). This exponential decay of the probability yields the proposition for θ2
small enough and A2 large enough.

Appendix B. Controllability of ODEs with polynomially growing nonlinear-
ities

When the perturbation term g in (34) is a polynomial, Proposition 4.2 follows from [20,
Thm. 3] or [19, Thm. 11 in Ch. 5] and the system is even exactly controllable. In the
general case, when g is an arbitrary smooth function satisfying (i) and (ii), these results
cannot be applied since the Hörmander condition is not necessarily satisfied at all the
points. We adapt an argument used in [28, Thm. 2.5] which is particularly simple in the
case of ordinary differential equations. Let us consider the equation

u̇(t)− ν∆(u(t) + ξ(t)) + PNF (u(t) + ξ(t)) = h+ ζ(t), (B.1)

with two controls ξ and ζ in C([0, T ];HN ).7 We denote by St(u0, ξ, ζ) the solution of (B.1)
satisfying the initial condition u(0) = u0. To simplify the presentation, we shall assume
that a = 1 in (34). Let us define a sequence {Hi}i≥1 of subspaces of HN as follows:
H1 = H1 and

Hi = span {PN (ϕ1 · . . . · ϕp) : ϕj ∈ Hi−1, j = 0, . . . , p}

for i ≥ 2. The trigonometric identities (39) and (40) give that sl±m, cl±m ∈ Hi, provided
that sl, sm, cl, cm ∈ Hi−1. Recalling the definition of H1, it is easy to infer that

Hi = HN for sufficiently large i ≥ 1. (B.2)

We will also use another form of these subspaces:

Hi = span {ϕ0, PNϕp : ϕ0,ϕ ∈ Hi−1} (B.3)

for i ≥ 2, which can be verified as in Lemma 4.2 in [28].
The following lemma will play an important role in the proof of Proposition 4.2. It is

established at the end of this subsection.

7The idea of introducing the second control ξ comes from [2] and is nowadays extensively used in the
control theory of PDEs with finite-dimensional controls (see the surveys [3, 35]).
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Lemma B.1. Under the conditions of Theorem 4.1, for any vectors u0,ϕ,ψ ∈ HN , we
have

Sδ(u0, δ
−1/pϕ, δ−1ψ) → u0 + ψ − PNϕp in HN as δ → 0. (B.4)

Proof of Proposition 4.2. By a general argument (see for example Step 4 in the proof of
Theorem 2.3 in [28]) approximate controllability in any fixed time T > 0 can be obtained
from controllability in arbitrarily small time.

Lemma B.1 gives that for all u0 ∈ HN , ψ ∈ H1 = H1,  > 0, and T > 0, there
exists ζ ∈ C([0, δ];H1) with 0 < δ < T such that

Sδ(u0, ζ)− (u0 + ψ)L2 < . (B.5)

Because HN = Hi for some i, we may proceed by induction on i: let us suppose
that for all u0 ∈ HN , ψ ∈ Hi−1,  > 0, and T > 0, there exists ζ ∈ C([0, δ];H1) with
0 < δ < T such that (B.5) holds; we will show that this property then also holds for i,
and the proof of the proposition will be complete.

Fix u0 ∈ HN . By (B.3), any ψ ∈ Hi can be written as a linear combination of elements
of the form PNϕp with ϕ ∈ Hi−1, plus a vector in Hi−1. Hence, by an iteration argument,
it suffices to consider vectors ψ of the form −PNϕp for some ϕ ∈ Hi−1. Let  > 0 and
T > 0 be arbitrary. By Lemma B.1, there exists δ2 ∈ (0, 1

3T ) such that

Sδ2(u0, δ
−1/p
2 ϕ, 0)− (u0 − PNϕp)L2 < 1

4.

On the other hand, a change of vairiable shows

Sδ2(u0, δ
−1/p
2 ϕ, 0) = Sδ2(u0 + δ

−1/p
2 ϕ, 0)− δ

−1/p
2 ϕ

so that
Sδ2(u0 + δ

−1/p
2 ϕ, 0)− (u0 − PNϕp + δ

−1/p
2 ϕ)L2 < 1

4.

By continuity, there exists a radius ρ > 0 such that

Sδ2(u, 0)− (u0 − PNϕp + δ
−1/p
2 ϕ)L2 < 1

2

for all u with
u− (u0 + δ

−1/p
2 ϕ)L2 < ρ.

By the induction hypothesis, there exists ζ̃1 ∈ C([0, δ1];H1) with 0 < δ1 < 1
3T such that

Sδ1(u0, ζ̃1)− (u0 + δ
−1/p
2 ϕ)L2 < ρ, and therefore such that

Sδ2(Sδ1(u0, ζ̃1), 0)− (u0 − PNϕp + δ
−1/p
2 ϕ)L2 < 1

2.

Yet again by the induction hypothesis, there exists ζ̃3 ∈ C([0, δ3];H1) with 0 < δ3 < 1
3T

such that

Sδ3(Sδ2(Sδ1(u0, ζ̃1), 0), ζ̃3)− (Sδ2(Sδ1(u0, ζ̃1), 0)− δ
−1/p
2 ϕ)L2 < 1

4.

Therefore, by the triangle inequality,

Sδ3(Sδ2(Sδ1(u0, ζ̃1), 0), ζ̃3)− (u0 − PNϕp)L2 < 3
4.

We conclude that (B.5) holds with ζ ∈ C([0, δ1 + δ2 + δ3];H1) a good enough continuous
approximation of the function 1[0,δ1)ζ̃1 + 1[δ1+δ2,δ1+δ2+δ3]ζ̃3( · − (δ1 + δ2)). Note that
0 < δ1 + δ2 + δ3 < T by construction.
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Proof of Lemma B.1. Fix ϕ,ψ ∈ HN and let u(t) = St(u0, ξ, ζ) with the constant con-
trols ξ(t) ≡ ϕ and ζ(t) ≡ ψ. Also let

w(t) := u0 + t(ψ − PNϕp) and v(t) := u(δt)− w(t).

Clearly, the fact that u solves (B.1) with u(0) = u0 implies that v sloves

v̇(t)− νδ∆(v(t) + w(t) + δ−1/pϕ) + δPNF (v(t) + w(t) + δ−1/pϕ)− PNϕp = δh

with v(0) = 0. Taking the scalar product in L2 of this equation with v(t), applying the
Cauchy–Schwarz inequality, and dropping the arguments (t) for notational simplicity, we
get

1

2

d

dt
v2L2 ≤


νδ∆wL2 + νδ1−1/p∆ϕL2 + δhL2 (B.6)

+ δPNF (v + w + δ−1/pϕ)− PNϕpL2


vL2

≤ C1


δ1−1/p + δPNF (v + w + δ−1/pϕ)− PNϕpL2


vL2 (B.7)

for any t ≤ 1 and δ ≤ 1. Using the assumption (i) and the Young inequality, we obtain

δPNF (v + w + δ−1/pϕ)− PNϕpL2 ≤ C2δ

vpL2 + wpL2 + δ−(p−1)/pϕp−1

L2 + 1


≤ C3δ

vpL2 + δ−(p−1)/p + 1


. (B.8)

Combining (B.7) and (B.8), we see that

d

dt
v(t)2L2 ≤ C4δ

1/p

v(t)p+1

L2 + 1

. (B.9)

Let us set Aδ := C4δ
1/p and

Φ(t) := Aδ +Aδ

 t

0

v(s)p+1
L2 ds. (B.10)

Then, (B.9) is equivalent to

(Φ̇)2/(p+1) ≤ A
2/(p+1)
δ Φ,

and
Φ̇

Φ(p+1)/2
≤ Aδ.

Integrating this inequality, we derive

Φ(t) ≤ Aδ


1− p− 1

2
A

(p+1)/2
δ t

−2/(p−1)

for all 0 ≤ t < 1 ∧ T∗(δ), where

T∗(δ) :=


p− 1

2
A

(p+1)/2
δ

−1

.
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Because T∗(δ) ↑ ∞ monotonically as δ ↓ 0, there exists δ0 > 0 small enough that

Φ(t) ≤ 2Aδ (B.11)

for all 0 ≤ t ≤ 1, whenever 0 < δ ≤ δ0. Then, combining (B.9)–(B.11), we obtain

v(1)2L2 ≤ C5δ
1/p

for some constant C5 independent of δ. Thus v(1) → 0 as δ → 0, which implies (B.4).

Appendix C. Some results from measure theory

Appendix C.1. Maximal couplings

Let X ,Y, and U be Polish spaces endowed with their Borel σ-algebras, u ∈ U →
µ(u, · ), µ′(u, · ) be two random probability measures on X , and F : X → Y be a mea-
surable mapping. We denote by F∗µ(u, · ) the image of µ(u, · ) under F (similarly for
µ′). The following lemma on the existence of maximal couplings is a particular case of
Exercise 1.2.30.ii in [22] (see the last section of the book for a proof).

Lemma C.1. There is a probability space (Ω,F ,P) and measurable mappings ξ, ξ′ :
U × Ω → X such that the following two properties are satisfied:

• for all u ∈ U , (ξ(u, · ), ξ′(u, · )) is a coupling of µ(u, · ) and µ′(u, · ) in the sense that

ξ(u, · )∗P = µ(u, · ) and ξ′(u, · )∗P = µ′(u, · ); (C.1)

• for all u ∈ U , (F (ξ(u, · )), F (ξ′(u, · ))) is a maximal coupling of F∗µ(u, · ) and F∗µ
′(u, · )

in the sense that

P ({ω ∈ Ω : F (ξ(u,ω)) ∕= F (ξ′(u,ω))}) = F∗µ(u, · )− F∗µ
′(u, · )var (C.2)

and the random variables F (ξ(u, · )) and F (ξ′(u, · )) conditioned on the event

{ω ∈ Ω : F (ξ(u,ω)) ∕= F (ξ′(u,ω))}
are independent.

Appendix C.2. Images of measures under regular mappings

Let X be a compact metric space, Y and U be finite-dimensional spaces, and F :
X × U → Y be a continuous mapping. The following is a consequence of a more general
result proved in Theorem 2.4 in [32] (see also Chapter 9 of [6]). In this simplified context
in finite dimension, it can be proven directly from the implicit function theorem and a
change of variable.

Lemma C.2. Assume that the mapping F (x, · ) : U → Y is differentiable for any x ∈ X ,
the derivative DuF is continuous on X ×U , the image of the linear operator (DuF )(x̂, û)
has full rank for some (x̂, û) ∈ X × U , and  ∈ P(U) is a measure possessing a positive
continuous density with respect to the Lebesgue measure on U . Then there is a continuous
function ψ : X × Y → R+ and a number r > 0 such that

ψ(x̂, F (x̂, û)) > 0,

and
(F∗(x, · ))(dy) ≥ ψ(x, y) dy

(as measures on Y) for all x ∈ BX (x̂, r).
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[17] V. Jakšić and C.-A. Pillet. Ergodic properties of classical dissipative systems I. Acta Math.,

181(2):245–282, 1998.
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