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Measurements of anisotropic flow coefficients (vn) and their cross-correlations using two- and
multiparticle cumulant methods are reported in collisions of pp at

ffiffiffi
s

p ¼ 13 TeV, p-Pb at a center-of-
mass energy per nucleon pair

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, Xe-Xe at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV, and Pb-Pb at
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV recorded with the ALICE detector. The multiplicity dependence of vn is studied in a very wide
range from 20 to 3000 particles produced in the midrapidity region jηj < 0.8 for the transverse momentum
range 0.2 < pT < 3.0 GeV=c. An ordering of the coefficients v2 > v3 > v4 is found in pp and p-Pb
collisions, similar to that seen in large collision systems, while a weak v2 multiplicity dependence is
observed relative to nucleus-nucleus collisions in the same multiplicity range. Using a novel subevent
method, v2 measured with four-particle cumulants is found to be compatible with that from six-particle
cumulants in pp and p-Pb collisions. The magnitude of the correlation between v2n and v2m, evaluated with
the symmetric cumulants SCðm; nÞ is observed to be positive at all multiplicities for v2 and v4, while for v2
and v3 it is negative and changes sign for multiplicities below 100, which may indicate a different vn
fluctuation pattern in this multiplicity range. The observed long-range multiparticle azimuthal correlations
in high multiplicity pp and p-Pb collisions can neither be described by PYTHIA 8 nor by impact-parameter-
Glasma, MUSIC, and ultrarelativistic quantum molecular dynamics model calculations, and hence, provide
new insights into the understanding of collective effects in small collision systems.

DOI: 10.1103/PhysRevLett.123.142301

Experiments investigating ultrarelativistic collisions of
heavy ions intend to explore a deconfined state of quarks
and gluons, the quark-gluon plasma (QGP). Azimuthal
correlations of final state particles over a wide range in
pseudorapidity relative to the collision symmetry plane Ψn
(n ≥ 1), whose magnitudes are quantified by flow coef-
ficients vn, provide important information into the matter
created in these collisions [1–3]. Extensive measurements
of vn for inclusive [4–9] and identified hadrons [10] were
performed for Xe-Xe and Pb-Pb collisions at the Large
Hadron Collider (LHC). These studies, together with
quantitative descriptions by hydrodynamic calculations,
have enabled an extraction of the properties of the QGP
[11], revealing that it behaves as a nearly perfect fluid
with a shear viscosity over entropy density ratio η=s close
to the universal lower limit 1=ð4πÞ from AdS=CFT [12].
Recently, significant progress has also been achieved by
measuring correlations between different flow coefficients

and symmetry planes [6,7,13–18]. In particular, the corre-
lation strength between different flow coefficients v2m
and v2n, quantified by symmetric cumulants SCðm; nÞ
[19], was found to be sensitive to the temperature depend-
ence of η=s and the initial conditions [14]. The exper-
imental measurements of SCðm; nÞ, together with vn, thus,
provide tighter constraints on theoretical models than the
individual flow coefficients alone [14,17].
Striking similarities between numerous observables,

thought to indicate the emergence of a QGP, were observed
across different collision systems at both RHIC and LHC
energies, when compared at similar multiplicity of pro-
duced particles within a specific phase space [20–22]. The
“ridge” structure measured using two-particle correlations
as a function of the pseudorapidity difference Δη and
the azimuthal angle difference Δφ, which in heavy-ion
collisions results from anisotropic flow, was also observed
in high multiplicity p-A and pp collisions [23]. In
addition, measurements of azimuthal correlations using
multiparticle cumulants revealed signatures’ collective
effects in small systems, such as a negative four-particle
cumulant c2f4g [24–28].
Whether the observed similarities between small (pp

and p-A) and large (A-A) collision systems arise from
the same physics mechanism is under intense debate.
Besides hydrodynamic descriptions [29–33], calculations
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from transport models [34–36], hadronic rescattering
[37,38], a string rope and shoving mechanism [39], as
well as initial stage effects [40–42] have been investigated.
We report measurements of vn and SCðm; nÞ as a

function of produced particle multiplicity across small
and large collision systems. These measurements provide
information on the collective effects observed in all
systems, which can be studied via long-range multiparticle
correlations. A significant extension of recent studies
[28,43,44] is achieved by adding new results of v2 and
SCðm; nÞ for all available collision systems at the LHC,
together with a comprehensive comparison to the available
models ranging from nonflow dominated (PYTHIA 8) to the
state of the art hydrodynamic model calculations. They rely
on a new technique of performing multiparticle long range
correlations named the subevent method [45,46], which
further minimizes biases from few particle correlations
such as resonances and jets, usually called nonflow, which
are not associated with a collision symmetry plane.
The analyzed data are from collisions of pp at

ffiffiffi
s

p ¼
13 TeV, p-Pb at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, Xe-Xe at
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.44 TeV, and Pb-Pb at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. They were
recorded with the ALICE detector [47,48] during the years
2015, 2016, and 2017. Minimum bias events were triggered
using a coincidence signal in the two scintillator arrays of
the V0 detector, V0A and V0C, which cover the pseudor-
apidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7,
respectively [49]. A dedicated trigger was used in pp
collisions to select high-multiplicity events based on the
amplitude in both arrays of the V0 detector. The trigger
selected approximately 0.1% of events with the largest
multiplicity in the V0 acceptance. The corresponding
average multiplicity is at least 4 times larger than in
minimum bias collisions. In comparison to minimum-bias
collisions, the selection of high-multiplicity events based
on forward multiplicity suppresses the nonflow contribu-
tion to vn at midrapidity by suppressing jet correlations.
Only events with a reconstructed primary vertex Zvtx

within �10 cm from the nominal interaction point were
selected. A removal of background events from, e.g., beam
interaction with the residual gas molecules in the beam pipe
and pileup events was performed based on the information
from the silicon pixel detector and V0 detectors. A sample
of 310 × 106 high-multiplicity pp, 230 × 106 minimum
bias p-Pb, 1.3 × 106 Xe-Xe, and 55 × 106 Pb-Pb collisions
that passed the event selection criteria was used for the
analysis.
The charged tracks were reconstructed using the inner

tracking system (ITS) [50] and the time projection chamber
(TPC) [51]. Only tracks with more than 70 clusters in the
TPC (out of a maximum of 159) were selected. A selection
requiring the pseudorapidity to be within −0.8 < η < 0.8
ensured a high track reconstruction efficiency of 80%.
Tracks with a transverse momentum pT < 0.2 GeV=c and
pT > 3.0 GeV=c were rejected due to low tracking

efficiency and to reduce the contribution from jets, respec-
tively. A criterion on the maximum distance of closest
approach (DCA) of the track to the collision point of less
than 2 cm in longitudinal direction and a pT-dependent
selection in the transverse direction, ranging from 0.2 cm at
pT ¼ 0.2 GeV=c down to 0.02 cm at pT ¼ 3.0 GeV=c,
was applied leading to a residual contamination from
secondaries between 1% and 3%.
The results were calculated from two- and multiparticle

azimuthal correlations using the generic framework [19],
recently extended to include the subevent method [46]. The
ranges of the subevents were chosen to be ð−0.8; 0Þ and
(0,0.8) for the two-subevent, and ð−0.8;−0.4Þ, ð−0.4; 0.4Þ,
and (0.4,0.8) for three-subevent measurements.
A correction dependent on η and Zvtx was applied to

account for azimuthal nonuniformity. The correction for
tracking inefficiencies was obtained from Monte Carlo
simulations as a function of pT , η, and Zvtx from generated
particles and from tracks reconstructed from a GEANT3

simulation [52]. The systematic uncertainties were esti-
mated as follows. The contribution from the event selection
was examined by narrowing the selection on Zvtx to�5 cm.
The track reconstruction biases were evaluated by tight-
ening the selection criteria on the DCA in both the
longitudinal and transverse directions, by increasing the
required minimum number of TPC clusters in the track
reconstruction, and by comparing the results to those
obtained with tracks having different requirements
regarding the role of the ITS. The uncertainty from the
Monte Carlo closure test was estimated by comparing
calculations at the event generator level with the simulation
output after the full reconstruction. The individual
contributions were summed in quadrature to form the
systematic uncertainties, ranging between 1%–6% for
the two-particle cumulant, and 10%–17% for the multi-
particle cumulant results. The results are reported as a
function of the number of produced charged particles
Nchðjηj < 0.8; 0.2 < pT < 3.0 GeV=c).
Figure 1 presents the measurements of anisotropic flow

coefficients vnfkg of order n, obtained from k-particle
correlations, in pp, p-Pb, Xe-Xe, and Pb-Pb collisions. The
collision energies are similar except for pp collisions,
where no collision energy dependence of the integrated vn
is expected [27].
Figures 1(a)–1(c) show v2, v3, and v4 measured using

two-particle (k ¼ 2) cumulants with a pseudorapidity
separation jΔηj > 1.4, 1.0, and 1.0, respectively, chosen
to suppress nonflow contributions. Because of the limited
statistics of the pp data sample, the jΔηj separation in the
cases of v3 and v4 was reduced to 1.0, consistently across
all collision systems. A pronounced multiplicity depend-
ence of v2 is observed in the flow dominated collision
systems (Pb-Pb and Xe-Xe) as a result of the medium
response to the eccentricity of the initial overlap region of
the colliding nuclei. The Pb-Pb data exhibit larger v2 values
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than the Xe-Xe data, but they are compatible for
Nch < 200. An ordering of v2 > v3 > v4 is observed in
large systems except for the very high multiplicities, where
v2 ≈ v3. At low multiplicity, the magnitudes of vn are
similar to those measured in pp and p-Pb collisions. The
measurements from large systems are compared with
calculations using impact-parameter Glasma (IP-Glasma)
initial conditions, MUSIC hydrodynamic model, and the
ultrarelativistic quantum molecular dynamics (UrQMD)
model for hadronic rescatterings [31,54]. The calculations
qualitatively describe all the vn measurements except for
Nch < 200 where they overestimate the v2.

In small collision systems, all the vn coefficients exhibit
a weak dependence on multiplicity. The trend and magni-
tudes, particularly for v2, cannot be explained solely by
model calculations without collective effects. This can be
demonstrated by the comparison with predictions from
PYTHIA 8 [53], computed with a similar multiplicity
definition as the experimental results from pp collisions.
The ordering of vn in pp collisions for all multiplicities is
the same as in large collision systems (v2 > v3 > v4)
and is not described by PYTHIA 8 where v2 > v4 > v3
for Nch > 30. These observations suggest the presence of
effects other than just nonflow correlations at multiplicities
larger than about 2–3 times the minimum bias value of
hNchi ≈ 10 in pp and hNchi ≈ 24 in p-Pb collisions. In
p-Pb collisions, these conclusions are further supported by
the qualitative agreement with the IP-Glasma+MUSIC

+UrQMD calculations. Nevertheless, the hydrodynamic
model reveals a strong decrease of v2 with multiplicity
in pp collisions, which is in stark contrast with the data. A
further nonflow suppression with a larger jΔηj separation in
the experimental results of p-Pb collisions, or improve-
ments in the phenomenological description, might help to
reach a quantitative agreement.
Figure 1(d) shows measurements of v2fkg using cumu-

lants with a number k ¼ 4, 6 and 8 particles. Measurements
of v2f4g with the three-subevent method, and of v2f6g and
v2f8g in Pb-Pb collisions with the two-subevent method,
are also presented. Compared to v2f2g, multiparticle
cumulants are less influenced by nonflow effects, since
the latter usually involve only a few particles. No further
nonflow suppression was observed by increasing the jΔηj
separation between the subevents in the multiparticle
cumulant measurements. In Xe-Xe and Pb-Pb collisions,
characteristic patterns of long-range multiparticle correla-
tions, such as consistent results from the standard and
subevent methods (v2f4g≈v2f4g3−sub, v2f6g≈v2f6g2−sub,
and v2f8g ≈ v2f8g2−sub), and compatible measurements of
v2 with multiparticle cumulants (v2f4g ≈ v2f6g ≈ v2f8g)
are found, signaling a negligible contribution from nonflow
correlations and the dominance of collective effects.
Moreover, a good agreement of v2f4g between data and
calculations from the IP-Glasma+MUSIC+UrQMD [31,54]
model is found for Pb-Pb collisions down to Nch ≈ 200.
The same model prediction, which does not include
any tuning of its parameters to other collision systems,
underestimates the v2f4g from Xe-Xe collisions by about
15%–20%.
In p-Pb collisions, a further nonflow suppression with

the three-subevent method leads to a decrease of the
cumulant c2f4g > c2f4g3−sub, which, due to the relation
v2f4g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2f4g4
p

, corresponds up to a 2σ increase
v2f4g < v2f4g3−sub. The three-subevent method allows
for a measurement of a real-valued v2f4g3−sub at a lower
Nch than the standard v2f4g measurement, making it
possible to study collectivity at even lower multiplicities.

(a)

(a)

FIG. 1. Multiplicity dependence of vnfkg for pp, p-Pb, Xe-Xe,
and Pb-Pb collisions. Statistical uncertainties are shown as
vertical lines and systematic uncertainties as filled boxes. Data
are compared with PYTHIA 8.210 Monash 2013 [53] simulations
(solid lines) of pp collisions at

ffiffiffi
s

p ¼ 13 TeV and impact-
parameter-Glasma, MUSIC, and ultrarelativistic quantum molecu-
lar dynamics (IP-Glasma+MUSIC+UrQMD) [31,54] calculations
of pp, p-Pb, Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, and Xe-Xe
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV (filled bands). The width of the
band represents the statistical uncertainty of the model. (a), (b),
and (c): v2, v3, and v4 measured using two-particle cumulants
with a pseudorapidity separation jΔηj > 1.4, 1.0 and 1.0,
respectively. (d) v2 measured using multiparticle cumulants, with
the three-subevent method for the four-particle cumulant, and
two-subevent method for higher order cumulants in Pb-Pb
collisions.
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Genuine multiparticle correlations in p-Pb collisions are
indicated by consistent results of v2f4g and v2f6g. In pp
collisions, significant nonflow contributions to the four-
particle cumulant (c2f4g > 0) prevent the extraction
of a real-valued v2f4g. However, a measurement of the
real-valued v2f4g3−sub is possible with the three-subevent
method. Similarly, as for v2f2; jΔηj > 1.4g, the v2f4g3−sub
exhibits only a weak dependence on multiplicity. These
results confirm the existence of long-range multiparticle
correlations in pp and p-Pb collisions at multiplicities
Nch ≥ 30. PYTHIA 8 calculations, which do not contain
genuine long-range multiparticle correlations, do not give a
real valued v2f4g even with the subevent method [45]. The
superSONIC [32] and iEBE-VISHNU [33] hydrodynamic
models, which can quantitatively describe all available two-
particle correlation measurements in pp, p-Pb, and Pb-Pb
collisions, cannot reproduce the four-particle cumulants
with the currently used initial state model, not even on a
qualitative level. Another model with initial-state calcu-
lations predicts the multiparticle cumulants with correct
signs and a weak dependence on the saturation scale Q2

s ,
but the predictions are 10 times larger than what is observed
in the data, and there is no direct connection of theQ2

s to the
experimentally measured number of produced charged
particles [41]. Therefore, with vn measurements alone, it
is not completely clear whether the origin of the apparent
collectivity observed in small collision systems is the same
as in large collision systems.
Further information about the origin of the observed

collectivity can be obtained from symmetric cumulants
SCðm; nÞ, which quantify the correlation between v2m and
v2n. Figures 2(a) and 2(c) present the multiplicity depend-
ence of SCðm; nÞ measured with the three-subevent
method. In Fig. 2(a), a positive SCð4; 2Þ3−sub is observed
in large systems over the entire multiplicity range, similar
to what was measured previously in Pb-Pb collisions at
2.76 TeV [14,17] without the subevent method. The trend is
reproduced by the IP-Glasma+MUSIC+UrQMD [31,54]
calculations. A similar positive SCð4; 2Þ3−sub is observed
both in pp and p-Pb collisions, as was also found in [44].
The measurements in pp collisions are compared with
PYTHIA 8 [53], which shows a decrease of SCð4; 2Þ3−sub
with decreasing multiplicity, different from what is seen in
data. Calculations [41,55] with initial state correlations or
parton-escape mechanism can qualitatively or even semi-
quantitatively describe the p-Pb data. We note that the
results from the initial state model [41] were calculated as a
function of variables that cannot be directly computed from
experimental data.
An anticorrelation between v22 and v23 is implied by the

negative SCð3; 2Þ3−sub observed in Xe-Xe and Pb-Pb
collisions for Nch > 100 in Fig. 2(c), similar to that in
[14,17]. There is a hint of a change to a positive sign of
SCð3; 2Þ3−sub in Pb-Pb collisions below multiplicities of
Nch ≈ 100. This tendency is observed at even lower

multiplicities in small collision systems, suggesting a
common positive correlation between v22 and v23 among
collision systems of different sizes. Such a behavior is not
observed for small collision systems with a larger η
acceptance [44], where SCð3; 2Þ3−sub remains negative in
the whole multiplicity range. One possible explanation is
the different contributions from nonflow effects. The IP-
Glasma+MUSIC+UrQMD [31,54] calculations for Xe-Xe
and Pb-Pb collisions reproduce the negative correlation at
large multiplicities. This negative sign persists in simu-
lations down to the lowest multiplicities. PYTHIA 8 [53] fails
to quantitatively describe the results from pp collisions,
but it does qualitatively reproduce the trend of the data.
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FIG. 2. Multiplicity dependence of the (a) and (c) symmetric
cumulant SCðm; nÞ3−sub and (b) and (d) normalized ratio
SCðm; nÞ3−sub=hv2mihv2ni for pp, p-Pb, Xe-Xe and Pb-Pb colli-
sions. Observables in the denominator are obtained from the
v2f2; jΔηj > 1.4g and vnf2; jΔηj > 1.0g for higher harmonics.
Statistical uncertainties are shown as vertical lines and systematic
uncertainties as filled boxes. The measurements in large collision
systems are compared with the IP-Glasma+MUSIC+UrQMD
[31,54] calculations and results in pp collisions are compared
with the PYTHIA 8 model [53].
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No hydrodynamic calculations of SCðm; nÞ in small
systems are currently available. Nevertheless, calculations
based on initial state correlations in [40,41] reflect the
crossing from negative to positive SC(3,2) in p-Pb colli-
sions, whereas a positive correlation is predicted in pp
collisions [40].
While SCðm; nÞ encodes information on both the mag-

nitude of and correlation between the flow coefficients, in
the absence of nonflow, the latter can be accessed directly
by dividing SCðm; nÞ3−sub by the corresponding flow
coefficients hv2mihv2ni. The normalized ratios, shown in
Figs. 2(b) and 2(d), indicate that the correlation between
flow coefficients is possibly the same between different
collision systems at the same Nch, and reveals a large
increase in magnitude in the correlation strength for
collisions with Nch < 100 compared to higher multiplici-
ties. While this may be indicative of a different fluctuation
pattern at low multiplicity, nonflow effects likely persist in
this region based on the observed finite values of PYTHIA 8

calculations. Such effects make the interpretation of an
increase of the normalized ratio significantly less straight-
forward and requires further study.
In summary, we have presented the measurements

of flow coefficients vnfkg and symmetric cumulants
SCðm; nÞ as a function of the produced particle multiplicity
in small (pp, p-Pb) and large (Xe-Xe, Pb-Pb) collision
systems. In pp and p-Pb collisions, an ordering v2>v3>v4
and a weak dependence of vn on the multiplicity, is
observed. The values of vn from pp and p-Pb collisions
are compatible with heavy-ion collisions at low multiplic-
ities. These first ALICE measurements of v2 using
multiparticle cumulants in small collision systems are found
to be compatible with each other after a suppression of
nonflow contributions with the subevent method. Positive
values of SCð4; 2Þ3−sub are seen in all four collision systems
(pp, p-Pb, Xe-Xe, and Pb-Pb). The observed anticorrelation
between v22 and v23 measured with SCð3; 2Þ3−sub in large
collision systems seems to evolve into a positive correlation
at low multiplicity. A similar sign change is also indicated in
pp and p-Pb collisions. Thus, the different systems exhibit a
similar SCðm; nÞ at the same Nch, and below Nch < 100,
reveal a large variation of the correlation strength and/or
an increasing contribution of nonflow. The measurements in
pp collisions can not be reproduced by the PYTHIA 8 model.
The hydrodynamic description with the IP-Glasma+MUSIC

+UrQMD calculations shows rather good agreement with
data in Pb-Pb, Xe-Xe, and p-Pb collisions, but fails to
describe the measurements in pp collisions, where appli-
cable. The presented data provide new information about the
origin of the observed collectivity and provides key con-
straints to the various approaches for modeling collectivity in
small systems.
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Physique Nucléaire et de Physique des Particules
(IN2P3) and Centre National de la Recherche
Scientifique (CNRS) and Rlégion des Pays de la Loire,
France; Bundesministerium für Bildung, Wissenschaft,
Forschung und Technologie (BMBF) and GSI
Helmholtzzentrum für Schwerionenforschung GmbH,
Germany; General Secretariat for Research and
Technology, Ministry of Education, Research and
Religions, Greece; National Research, Development and
Innovation Office, Hungary; Department of Atomic Energy
Government of India (DAE), Department of Science and
Technology, Government of India (DST), University
Grants Commission, Government of India (UGC) and
Council of Scientific and Industrial Research (CSIR),
India; Indonesian Institute of Science, Indonesia; Centro
Fermi—Museo Storico della Fisica e Centro Studi e
Ricerche Enrico Fermi and Istituto Nazionale di Fisica
Nucleare (INFN), Italy; Institute for Innovative Science and
Technology, Nagasaki Institute of Applied Science (IIST),
Japan Society for the Promotion of Science (JSPS)
KAKENHI and Japanese Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan; Consejo
Nacional de Ciencia (CONACYT) y Tecnología, through

PHYSICAL REVIEW LETTERS 123, 142301 (2019)

142301-5



Fondo de Cooperación Internacional en Ciencia y
Tecnología (FONCICYT) and Dirección General
de Asuntos del Personal Academico (DGAPA), Mexico;
Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO), Netherlands; The Research Council
of Norway, Norway; Commission on Science and
Technology for Sustainable Development in the South
(COMSATS), Pakistan; Pontificia Universidad Católica
del Perú, Peru; Ministry of Science and Higher
Education and National Science Centre, Poland; Korea
Institute of Science and Technology Information and
National Research Foundation of Korea (NRF), Republic
of Korea; Ministry of Education and Scientific Research,
Institute of Atomic Physics and Ministry of Research and
Innovation and Institute of Atomic Physics, Romania;
Joint Institute for Nuclear Research (JINR), Ministry of
Education and Science of the Russian Federation, National
Research Centre Kurchatov Institute, Russian Science
Foundation and Russian Foundation for Basic Research,
Russia; Ministry of Education, Science, Research and Sport
of the Slovak Republic, Slovakia; National Research
Foundation of South Africa, South Africa; Swedish
Research Council (VR) and Knut and Alice Wallenberg
Foundation (KAW), Sweden; European Organization for
Nuclear Research, Switzerland; National Science and
Technology Development Agency (NSDTA), Suranaree
University of Technology (SUT) and Office of the
Higher Education Commission under NRU project of
Thailand, Thailand; Turkish Atomic Energy Agency
(TAEK), Turkey; National Academy of Sciences of
Ukraine, Ukraine; Science and Technology Facilities
Council (STFC), United Kingdom; National Science
Foundation of the United States of America (NSF) and
United States Department of Energy, Office of Nuclear
Physics (DOE NP), United States of America.

[1] J.-Y. Ollitrault, Anisotropy as a signature of transverse
collective flow, Phys. Rev. D 46, 229 (1992).

[2] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collec-
tive phenomena in non-central nuclear collisions, Landolt-
Bornstein 23, 293 (2010).

[3] U. Heinz and R. Snellings, Collective flow and viscosity in
relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci.
63, 123 (2013).

[4] J. Adam et al. (ALICE Collaboration), Pseudorapidity
dependence of the anisotropic flow of charged particles
in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Lett. B 762,
376 (2016).

[5] J. Adam et al. (ALICE Collaboration), Anisotropic Flow of
Charged Particles in Pb-Pb Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
Phys. Rev. Lett. 116, 132302 (2016).

[6] A. M. Sirunyan et al. (CMS Collaboration), Non-Gaussian
elliptic-flow fluctuations in PbPb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV, Phys. Lett. B 789, 643 (2019).

[7] S. Acharya et al. (ALICE Collaboration), Energy depend-
ence and fluctuations of anisotropic flow in Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 and 2.76 TeV, J. High Energy Phys. 07
(2018) 103.

[8] S. Acharya et al. (ALICE Collaboration), Anisotropic flow
in Xe-Xe collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.44 TeV, Phys. Lett. B 784,
82 (2018).

[9] M. Aaboud et al. (ATLAS Collaboration), Measurement of
the azimuthal anisotropy of charged particles produced inffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV Pbþ Pb collisions with the ATLAS
detector, Eur. Phys. J. C 78, 997 (2018).

[10] S. Acharya et al. (ALICE Collaboration), Anisotropic flow
of identified particles in Pb-Pb collisions at

ffiffiffi
s

p
NN ¼

5.02 TeV, J. High Energy Phys. 09 (2018) 006.
[11] H. Song, Y. Zhou, and K. Gajdosova, Collective flow and

hydrodynamics in large and small systems at the LHC,
Nucl. Sci. Technol. 28, 99 (2017).

[12] P. K. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in
Strongly Interacting Quantum Field Theories from Black
Hole Physics, Phys. Rev. Lett. 94, 111601 (2005).

[13] J. Adam et al. (ALICE Collaboration), Event shape engi-
neering for inclusive spectra and elliptic flow in Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. C 93, 034916
(2016).

[14] J. Adam et al. (ALICE Collaboration), Correlated Event-
by-Event Fluctuations of Flow Harmonics in Pb-Pb Colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. Lett. 117, 182301
(2016).

[15] S. Acharya et al. (ALICE Collaboration), Linear and non-
linear flow modes in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV,
Phys. Lett. B 773, 68 (2017).

[16] S. Acharya et al. (ALICE Collaboration), Searches for
transverse momentum dependent flow vector fluctuations
in Pb-Pb and p-Pb collisions at the LHC, J. High Energy
Phys. 09 (2017) 032.

[17] S. Acharya et al. (ALICE Collaboration), Systematic studies
of correlations between different order flow harmonics in
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. C 97,
024906 (2018).

[18] M. Aaboud et al. (ATLAS Collaboration), Measurement
of longitudinal flow decorrelations in Pbþ Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 and 5.02 TeV with the ATLAS detector,
Eur. Phys. J. C 78, 142 (2018).

[19] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A.
Hansen, and Y. Zhou, Generic framework for anisotropic
flow analyses with multiparticle azimuthal correlations,
Phys. Rev. C 89, 064904 (2014).

[20] C. Loizides, Experimental overview on small collision
systems at the LHC, Nucl. Phys. A956, 200 (2016).

[21] C. Aidala et al. (PHENIX Collaboration), Creation of
quark–gluon plasma droplets with three distinct geometries,
Nat. Phys. 15, 214 (2019).

[22] J. Adam et al. (STAR Collaboration), Azimuthal Harmonics
in Small and Large Collision Systems at RHIC Top
Energies, Phys. Rev. Lett. 122, 172301 (2019).

[23] M. Aaboud et al. (ATLAS Collaboration), Measurements of
long-range azimuthal anisotropies and associated Fourier
coefficients for pp collisions at

ffiffiffi
s

p ¼ 5.02 and 13 TeV and
p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV with the ATLAS
detector, Phys. Rev. C 96, 024908 (2017).

PHYSICAL REVIEW LETTERS 123, 142301 (2019)

142301-6

https://doi.org/10.1103/PhysRevD.46.229
https://doi.org/10.1007/978-3-642-01539-7_10
https://doi.org/10.1007/978-3-642-01539-7_10
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1016/j.physletb.2016.07.017
https://doi.org/10.1103/PhysRevLett.116.132302
https://doi.org/10.1016/j.physletb.2018.11.063
https://doi.org/10.1007/JHEP07(2018)103
https://doi.org/10.1007/JHEP07(2018)103
https://doi.org/10.1016/j.physletb.2018.06.059
https://doi.org/10.1016/j.physletb.2018.06.059
https://doi.org/10.1140/epjc/s10052-018-6468-7
https://doi.org/10.1007/JHEP09(2018)006
https://doi.org/10.1007/s41365-017-0245-4
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevC.93.034916
https://doi.org/10.1103/PhysRevC.93.034916
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1016/j.physletb.2017.07.060
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1007/JHEP09(2017)032
https://doi.org/10.1103/PhysRevC.97.024906
https://doi.org/10.1103/PhysRevC.97.024906
https://doi.org/10.1140/epjc/s10052-018-5605-7
https://doi.org/10.1103/PhysRevC.89.064904
https://doi.org/10.1016/j.nuclphysa.2016.04.022
https://doi.org/10.1038/s41567-018-0360-0
https://doi.org/10.1103/PhysRevLett.122.172301
https://doi.org/10.1103/PhysRevC.96.024908


[24] B. Abelev et al. (ALICE Collaboration), Multiparticle
azimuthal correlations in p-Pb and Pb-Pb collisions at
the CERN Large Hadron Collider, Phys. Rev. C 90,
054901 (2014).

[25] V. Khachatryan et al. (CMS Collaboration), Evidence for
Collective Multiparticle Correlations in p-Pb Collisions,
Phys. Rev. Lett. 115, 012301 (2015).

[26] V. Khachatryan et al. (CMS Collaboration), Evidence for
collectivity in pp collisions at the LHC, Phys. Lett. B 765,
193 (2017).

[27] M. Aaboud et al. (ATLAS Collaboration), Measurement of
multi-particle azimuthal correlations in pp, p-Pb and low-
multiplicity Pb-Pb collisions with the ATLAS detector, Eur.
Phys. J. C 77, 428 (2017).

[28] M. Aaboud et al. (ATLAS Collaboration), Measurement of
long-range multiparticle azimuthal correlations with the
subevent cumulant method in pp and pþ Pb collisions
with the ATLAS detector at the CERN Large Hadron
Collider, Phys. Rev. C 97, 024904 (2018).

[29] P. Bozek, Collective flow in p-Pb and d-Pb collisions at TeV
energies, Phys. Rev. C 85, 014911 (2012).

[30] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan,
Initial state geometry and the role of hydrodynamics in
proton-proton, proton-nucleus and deuteron-nucleus colli-
sions, Phys. Rev. C 87, 064906 (2013).

[31] H. Mäntysaari, B. Schenke, C. Shen, and P. Tribedy,
Imprints of fluctuating proton shapes on flow in proton-
lead collisions at the LHC, Phys. Lett. B 772, 681 (2017);
The results from pp collisions are private communications
based on this work.

[32] R. D. Weller and P. Romatschke, One fluid to rule them all:
viscous hydrodynamic description of event-by-event central
pp, p-Pb and Pb-Pb collisions at

ffiffiffi
s

p ¼ 5.02 TeV, Phys.
Lett. B 774, 351 (2017).

[33] W. Zhao, Y. Zhou, H. Xu, W. Deng, and H. Song, Hydro-
dynamic collectivity in proton-proton collisions at 13 TeV,
Phys. Lett. B 780, 495 (2018).

[34] A. Bzdak and G.-L. Ma, Elliptic and Triangular Flow in
p-Pb and Peripheral Pb-Pb Collisions from Parton Scatter-
ings, Phys. Rev. Lett. 113, 252301 (2014).

[35] A. Kurkela, U. A. Wiedemann, and B. Wu, Nearly isen-
tropic flow at sizeable η=s, Phys. Lett. B 783, 274 (2018).

[36] M.-W. Nie, P. Huo, J. Jia, and G.-L. Ma, Multiparticle
azimuthal cumulants in pþ Pb collisions from a multiphase
transport model, Phys. Rev. C 98, 034903 (2018).

[37] Y. Zhou, X. Zhu, P. Li, and H. Song, Investigation of
possible hadronic flow in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV p-Pb colli-
sions, Phys. Rev. C 91, 064908 (2015).

[38] P. Romatschke, Collective flow without hydrodynamics:
Simulation results for relativistic ion collisions, Eur. Phys.
J. C 75, 429 (2015).

[39] C. Bierlich, G. Gustafson, and L. Lönnblad, Collectivity
without plasma in hadronic collisions, Phys. Lett. B 779, 58
(2018).

[40] K. Welsh, J. Singer, and U.W. Heinz, Initial state fluctua-
tions in collisions between light and heavy ions, Phys. Rev.
C 94, 024919 (2016).

[41] K. Dusling, M. Mace, and R. Venugopalan, Multiparticle
Collectivity from Initial State Correlations in High Energy
Proton-Nucleus Collisions, Phys. Rev. Lett. 120, 042002
(2018).

[42] B. Blok and U. A. Wiedemann, Collectivity in pp from
resummed interference effects? Phys. Lett. B 795, 259
(2019).

[43] A. M. Sirunyan et al. (CMS Collaboration), Observation of
Correlated Azimuthal Anisotropy Fourier Harmonics in pp
and p-Pb Collisions at the LHC, Phys. Rev. Lett. 120,
092301 (2018).

[44] M. Aaboud et al. (ATLAS Collaboration), Correlated long-
range mixed-harmonic fluctuations measured in pp, pþ Pb
and low-multiplicity Pbþ Pb collisions with the ATLAS
detector, Phys. Lett. B 789, 444 (2019).

[45] J. Jia, M. Zhou, and A. Trzupek, Revealing long-range
multiparticle collectivity in small collision systems via
subevent cumulants, Phys. Rev. C 96, 034906 (2017).

[46] P. Huo, K. Gajdošová, J. Jia, and Y. Zhou, Importance of
non-flow in mixed-harmonic multi-particle correlations in
small collision systems, Phys. Lett. B 777, 201 (2018).

[47] K. Aamodt et al. (ALICE Collaboration), The ALICE
experiment at the CERN LHC, J. Instrum. 3, S08002
(2008).

[48] B. Abelev et al. (ALICE Collaboration), Performance of the
ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A
29, 1430044 (2014).

[49] E. Abbas et al., Performance of the ALICE VZERO system,
J. Instrum. 8, P10016 (2013).

[50] K. Aamodt et al. (ALICE Collaboration), Alignment of the
ALICE Inner Tracking System with cosmic-ray tracks,
J. Instrum. 5, P03003 (2010).

[51] J. Alme et al., The ALICE TPC, a large 3-dimensional
tracking device with fast readout for ultra-high multiplicity
events, Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316
(2010).

[52] R. Brun, F. Carminati, and S. Giani, GEANT Detector
Description and Simulation Tool, CERN Program Library
Long Write-up, W5013 (1994).

[53] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An Introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[54] B. Schenke, P. Tribedy, and R. Venugopalan, Multiplicity
distributions in pþ p, pþ A, and Aþ A collisions from
Yang-Mills dynamics, Phys. Rev. C 89, 024901 (2014).

[55] L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, and F.
Wang, Anisotropic parton escape is the dominant source of
azimuthal anisotropy in transport models, Phys. Lett. B 753,
506 (2016).

S. Acharya,141 D. Adamová,93 S. P. Adhya,141 A. Adler,74 J. Adolfsson,80 M. M. Aggarwal,98 G. Aglieri Rinella,34

M. Agnello,31 N. Agrawal,10 Z. Ahammed,141 S. Ahmad,17 S. U. Ahn,76 S. Aiola,146 A. Akindinov,64 M. Al-Turany,105

PHYSICAL REVIEW LETTERS 123, 142301 (2019)

142301-7

https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1103/PhysRevLett.115.012301
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.1140/epjc/s10052-017-4988-1
https://doi.org/10.1140/epjc/s10052-017-4988-1
https://doi.org/10.1103/PhysRevC.97.024904
https://doi.org/10.1103/PhysRevC.85.014911
https://doi.org/10.1103/PhysRevC.87.064906
https://doi.org/10.1016/j.physletb.2017.07.038
https://doi.org/10.1016/j.physletb.2017.09.077
https://doi.org/10.1016/j.physletb.2017.09.077
https://doi.org/10.1016/j.physletb.2018.03.022
https://doi.org/10.1103/PhysRevLett.113.252301
https://doi.org/10.1016/j.physletb.2018.06.064
https://doi.org/10.1103/PhysRevC.98.034903
https://doi.org/10.1103/PhysRevC.91.064908
https://doi.org/10.1140/epjc/s10052-015-3646-8
https://doi.org/10.1140/epjc/s10052-015-3646-8
https://doi.org/10.1016/j.physletb.2018.01.069
https://doi.org/10.1016/j.physletb.2018.01.069
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1103/PhysRevC.94.024919
https://doi.org/10.1103/PhysRevLett.120.042002
https://doi.org/10.1103/PhysRevLett.120.042002
https://doi.org/10.1016/j.physletb.2019.05.038
https://doi.org/10.1016/j.physletb.2019.05.038
https://doi.org/10.1103/PhysRevLett.120.092301
https://doi.org/10.1103/PhysRevLett.120.092301
https://doi.org/10.1016/j.physletb.2018.11.065
https://doi.org/10.1103/PhysRevC.96.034906
https://doi.org/10.1016/j.physletb.2017.12.035
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1088/1748-0221/8/10/P10016
https://doi.org/10.1088/1748-0221/5/03/P03003
https://doi.org/10.1016/j.nima.2010.04.042
https://doi.org/10.1016/j.nima.2010.04.042
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1103/PhysRevC.89.024901
https://doi.org/10.1016/j.physletb.2015.12.051
https://doi.org/10.1016/j.physletb.2015.12.051


S. N. Alam,141 D. S. D. Albuquerque,122 D. Aleksandrov,87 B. Alessandro,58 H. M. Alfanda,6 R. Alfaro Molina,72 B. Ali,17

Y. Ali,15 A. Alici,10,53,27a,27b A. Alkin,2 J. Alme,22 T. Alt,69 L. Altenkamper,22 I. Altsybeev,112 M. N. Anaam,6 C. Andrei,47

D. Andreou,34 H. A. Andrews,109 A. Andronic,105,144 M. Angeletti,34 V. Anguelov,102 C. Anson,16 T. Antičić,106

F. Antinori,56 P. Antonioli,53 R. Anwar,126 N. Apadula,79 L. Aphecetche,114 H. Appelshäuser,69 S. Arcelli,27a,27b R. Arnaldi,58

M. Arratia,79 I. C. Arsene,21 M. Arslandok,102 A. Augustinus,34 R. Averbeck,105 S. Aziz,61 M. D. Azmi,17 A. Badalà,55
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33aDipartimento Interateneo di Fisica ‘M. Merlin’
33bSezione INFN

34European Organization for Nuclear Research (CERN)
35Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split

36Faculty of Engineering and Science, Western Norway University of Applied Sciences
37Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

38Faculty of Science, P.J. Šafárik University
39Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt

40Gangneung-Wonju National University
41Gauhati University, Department of Physics

42Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn
43Helsinki Institute of Physics (HIP)

44High Energy Physics Group, Universidad Autónoma de Puebla
45Hiroshima University

46Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT)
47Horia Hulubei National Institute of Physics and Nuclear Engineering

48Indian Institute of Technology Bombay (IIT)
49Indian Institute of Technology Indore

50Indonesian Institute of Sciences
51INFN, Laboratori Nazionali di Frascati

52INFN, Sezione di Bari
53INFN, Sezione di Bologna
54INFN, Sezione di Cagliari
55INFN, Sezione di Catania
56INFN, Sezione di Padova
57INFN, Sezione di Roma
58INFN, Sezione di Torino
59INFN, Sezione di Trieste

60Inha University
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