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ABSTRACT
Neutron stars radiate in a broad-band spectrum from radio wavelengths up to very high
energies. They have been sorted into several classes depending on their respective place in
the P − Ṗ diagram and depending on spectral/temporal properties. Fundamental physical
parameters such as their characteristic age and magnetic field strength are deduced from
these primary observables. However, this deduction relies mostly on interpretations based
on simple vacuum or force-free rotating dipole models that are unrealistic. In this paper,
we show that the computation of the stellar surface magnetic field is poorly estimated or
even erroneous if multipolar components and particle loading are neglected. We show how
quadrupolar magnetic field and monopolar winds alter field estimates and characteristic ages
in the P − Ṗ diagram. Corrections brought by general relativity are also discussed. We derive
some important parameters of pulsar physics such as the wind Lorentz factor (γ ) times the pair
multiplicity (κ) to be around γ κ ≈ 108–1010. Therefore, the standard magnetodipole radiation
losses formula must be used with caution to reckon neutron star surface magnetic fields and
related secular evolution parameters. Depending on models we found that all field strengths,
both for magnetars and for pulsars lie below the quantum critical value of Bc ≈ 4, 4 × 109 T.

Key words: plasmas – gravitation – relativistic processes – stars: magnetic field – stars: neu-
tron – pulsars: general.

1 IN T RO D U C T I O N

Neutron stars show up into different classes of compact objects like
isolated neutron stars, accreting pulsars, magnetars, radio pulsars,
and millisecond pulsars (Harding 2013). These many classes of
neutron stars originate from their electromagnetic activity like pair
creation/acceleration and radiation within the magnetosphere. Of
particular importance is the magnetic field they harbour, usually
close to or even higher than the critical field predicted by quantum
electrodynamics to be about Bc ≈ 4, 4 × 109˜T when the quantum
of energy associated to the electron cyclotron frequency equals its
rest-mass energy. The strength and topology of this magnetic field
dictates neutron star behaviour and their outcome as a special sub-
class of neutron stars. The simplest approach assumes that the field
lines are dipolar and the magnetic moment overlaps with the centre
of the star. However, such straightforward approximations face more
and more difficulties to explain recent high-quality multiwavelength
light curves and spectra. Thus off-centred dipoles emerged as a
better way to explain pair creation efficiency (Harding & Muslimov
2011) or gamma-ray pulsar light curves (Barnard, Venter & Harding
2016; Pétri 2017b; Kundu & Pétri 2017). Moreover, contributions
from multipolar components are also usually neglected with respect
to the dipolar part because the dipole is assumed to be dominant.

� E-mail: jerome.petri@astro.unistra.fr.

While this is true at large distances r from the star because of the
r−(2� + 1) decrease of the field strength, where � is the order of the
multipole, and when the respective components are of the same
amplitude, this no more holds for larger multipolar components
anchored in the stellar crust. Pétri (2015) investigated in depth
the impact of multipoles on sky maps, spindown luminosities, and
braking indices. Extension to general relativity was also given by
Pétri (2017a) who basically found the same conclusions.

For a pure dipole rotating in vacuum, the braking index is
around n = 3. However, several pulsars show braking indices well
below this n = 3 fiducial value. A simple explanation would be to
add a monopolar spindown luminosity arising from a relativistic
magnetized wind, shifting the braking index between 1 and 3 or
by change in the moment of inertia (Hamil et al. 2015). These
models have been challenged by Archibald et al. (2016) who
discovered the first pulsar with a braking index higher than 3.
Several explanations have then been given like increasing the
inclination angle as introduced by Beskin, Gurevich & Istomin
(1984), the torque exerted by a plasma-filled magnetic dipole model
(Ekşi et al. 2016), the presence of a magnetic quadrupole (Pétri
2015) or even gravitational waves that are also of quadrupolar
nature (Araujo, Coelho & Costa 2016). A new model suggested
by Tong & Kou (2017) includes braking indices less and larger
than three, reconciling the whole set of observations. We stress
that these uncertainties in the secular braking of the star goes
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back to the problem of neutron star magnetosphere models. The
magnetic field strength, its topology and the particle loading within
the magnetosphere are so far largely unconstrained.

Magnetic field strength estimates come indirectly from equating
the magnetic dipole losses to the rotational slowdown, resulting in
fields of the order B = 107–1010 T for normal pulsars and B = 104–
105 T for millisecond pulsars. Millisecond pulsars being much older,
the magnetic field has time to decrease significantly. For anomalous
X-ray pulsars and soft gamma repeaters, a similar calculation gives
B = 109–1011 T. This field is necessary to explain the bursts
releasing a colossal energy of 1037–1039 J. For accretion-powered
X-ray pulsars, electron cyclotron lines imply a field strength of B
= 108–109 T as reported by Truemper et al. (1978) for Her X-1
and by Wheaton et al. (1979) for 4U 0115+63. Observations of 4U
1907+09 and Vela X-1 by Makishima et al. (1999) confirmed the
cyclotron resonance line. Harmonics of the fundamental frequencies
have also been measured by Santangelo et al. (1999) and by Heindl
et al. (1999) for 4U 0115+63. For some isolated stars, surface
thermal emission, interpreted as proton cyclotron resonance, results
in a more intense field strength of B = 109–1010 T. It has also been
claimed that magnetars possess very strong magnetic fields above
the critical value Bc. Here again, this picture has been challenged
by the fact that low magnetic field magnetars have been found
(Rea et al. 2013, 2014) as well as high surface B-field pulsars. Bc

seems therefore not to play a central role in the pulsar/magnetar
dichotomy. However, possible wrong guesses of the magnetic field
must not be discarded. Indeed if higher order multipoles and
strong deviations from the vacuum or force-free rotating dipole
are expected within and around neutron stars, both classes could
be reconciled without segregation according to the magnetic field.
We will indeed demonstrate that Bc is not discriminating between
pulsars and magnetars.

In this paper, we emphasize the strong sensitivity of magnetic
field estimates on its topology, dipole versus multipole and particle
loading, vacuum versus force-free and on general relativistic effects.
In Section 2, we remind the state-of-the-art simulations of pulsar
magnetospheres in the two limits of vacuum and force-free environ-
ment, pointing out the braking efficiency related to the spindown
luminosity in several plasma regimes. In Section 3, we show detailed
results about magnetic field strength estimates from the above
assumptions. Derived quantities are the characteristic age exposed
in Section 4 and braking indices discussed in Section 5. There we
also derived some important pulsar magnetospheric parameters like
pair multiplicity and particle Lorentz factors. Conclusions are drawn
in Section 6.

2 MULTIPOLAR ELECTROMAG NETIC
R A D I AT I O N A N D S P I N D OW N

In this section, we compile analytical and numerical results from
previous works about neutron star spindown luminosities for several
magnetic field topologies in vacuum and when available, in force-
free magnetospheres, for flat and curved space–times. To simplify
the discussion and interpretation, we neglect corrections to these
spindowns arising from terms of the order R/rL (the first correcting
term in vacuum is second order O(R2/r2

L)). R represents the neutron
star radius and rL the light cylinder radius rL = c/�, with c the speed
of light and � the neutron star rotation rate. This is certainly valid
for normal radio pulsars but also a good estimate for millisecond
pulsars for which R/rL � 0.1. The precision should remain better
than 1 per cent.

We start with a reminder about neutron star electromagnetic
braking in flat space–time for vacuum multipoles and force-free
dipoles (detailed force-free multipole solutions are not yet avail-
able). Indeed, so far, no simulations have been performed for force-
free multipoles, but the formal dependence on � and B remains
the same apart from a constant numerical factor and the fact that
the aligned mode (�, m) = (2, 0) then also radiates [we extrapolate
results from the dipole case, knowing that there the aligned mode
(�, m) = (1, 0) also radiates]. We then extend the discussion to the
general-relativistic counterpart, showing an increase in the magnetic
field strength for an observer at rest on the stellar surface.

2.1 Minkowskian case

Plenty of results and literature exist about electromagnetic radiation
in vacuum and matter when gravity is neglected. A brief overview
of the main results useful to our present work is given below
for vacuum radiation and force-free radiation for any multipole
if available.

2.1.1 Vacuum dipole

The most studied rotator is a magnetic dipole radiating in vac-
uum. Exact solutions for a perfectly conducting sphere have been
computed already by Deutsch (1955), including corrections arising
from the radial dependence according to spherical Hankel functions
(Arfken & Weber 2005). There is no need to go into such details
for a faithful estimate of magnetic field strengths. The formula for
a point dipole is already sufficient. The well-known textbook result
found in Jackson (2001) is

Ldip = 8π

3 μ0 c3
B2 �4 R6 sin2 χ (1)

where χ is the magnetic obliquity, B the magnetic field strength at
the magnetic equator, � the rotation speed, and R the neutron star
radius. For a finite-size magnet such as in Deutsch (1955), there
are corrections of the order (R/rL)2 that we do not include. Note
that an aligned rotator (χ = 0◦) does not radiate and therefore the
parallel component of the magnetic field B� is not constrained. Note
also that B corresponds to the magnetic field value at the magnetic
equator which is two times weaker than its value at the magnetic
pole.

2.1.2 Force-free monopole

The force-free monopole represents the simplest model for a wind
carrying energy to brake the star. Astonishingly, an exact solution
for the full electromagnetic field has been found by Michel (1973)
and summarized in the spindown luminosity such as

Lmono
w = 8π

3 μ0 c
B2 �2 R4. (2)

A more realistic field requires a split-monopole for which solutions
for slow oblique rotators have been found by Bogovalov (1999). The
spindown luminosity is then the same as equation (2). It does not
depend on the obliquity χ . In the split monopole view, all particles
emanating from the stellar surface contribute to the wind outflow.
However, in a realistic geometry, the surface field is at least dipolar
and only a small fraction of the surface area, actually the polar caps,
contribute to the wind outflow. Thus, equation (2) cannot be used
to computed the pulsar braking index. The split-monopole solution
only applies outside the light-cylinder. Inside the light-cylinder,
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the magnetic field is mostly dipolar and the realistic spindown is
estimated through replacing R by rL and B by B(rL) which then
shows the same formal dependence as for magnetodipole losses
in vacuum given by equation (1). Therefore, we will not use this
force-free monopole to compute losses due to a particle flow. We
showed it for the completeness of our discussion.

Nevertheless, it is possible to estimate the spindown losses from
such a wind by applying a trick similar to the one described above
for finding the force-free dipole losses. Indeed, let us assume that,
due to the wind, the force-free monopole or split monopole sets in
at a radius rY less than rL. In equation (2), replacing now R by rY

and B by B(rY) we get the force-free wind losses by

Ėw = 8π

3 μ0 c

�2 B2 R6

r2
Y

= L⊥
dip

(
rL

rY

)2

(3)

which varies between the force-free monopole losses for rY = R
and the force-free dipole losses for rY = rL. The perpendicular
spindown is define by L⊥

dip = Ldip(χ = π/2). Equation (3) is the
same as equation (9) in Harding, Contopoulos & Kazanas (1999)
who derived it from a different perspective focusing on magnetars.
Several very similar expressions have been derived by other authors
where contributions from wind and magnetic field are taken into
account. See, for instance, Tong et al. (2013). Their reasoning is
also explained in Thompson & Blaes (1998), we do not repeat it
here.

The wind spindown in equation (3) is always larger than the
dipolar case whenever rY < rL (for a fixed magnetic field strength).
In the opposite case if rY � rL the wind spindown becomes
negligible and the braking is fully accounted for by the dipolar
emission. This dependence is very similar to the results of a force-
free aligned rotator computed by Timokhin (2006) who also found
an r−2

Y dependence.
If field lines close already inside the light-cylinder, the usual size

of polar caps must be replaced by Rpc ≈ R
√

R/rY (valid for R �
rY). Then assuming particles moving at almost the speed of light
with Lorentz factor γ and taking a primary beam number density
equal to the Goldreich–Julian density nGJ = 2 ε0 � · B, multiplied
by the multiplicity factor κ , the particle luminosity becomes

Lp = 4π ε0 � B c
R3

rY
γ κ

me c2

e
= γ κ

c

re
e 	V (4)

where 	V = �B R3/rY is the potential drop between the centre
and the rim of a polar cap and re the classical electron radius.
In relativistic magnetized jets, longitudinal currents are expected to
remain close to the Goldreich–Julian current density (Beskin 2010).
The secondary plasma generated by pair cascade usually does not
intervene in the electromagnetic torque exerted on the star, therefore
disregarding the pair multiplicity factor. However, this picture seems
to fail for an oblique and especially for a perpendicular rotator. We
therefore keep κ in all expressions.

Inspecting equation (3), assuming a time-independent location
of the Y-point rY for a given pulsar, the dependence on � is the
same as for the split monopole, meaning Ėw ∝ �2 but with a
different proportionality factor. It looks like radiation from a kind
of monopolar magnetized outflow. In this approximation, adding
the contributions respectively from the particle wind and from the
dipolar Poynting flux, the total spindown luminosity reduces to an
expression

Ė = a �2 + b �4 (5)

where a and b are constants depending on magnetic field strength
and particle loading. This expression is similar to the combined

wind and dipole spindown expected for magnetars as reported by
Harding et al. (1999) where some duty cycle is incorporated in the
picture, switching from wind dominated to electromagnetic field
dominated losses. Such formal dependences on � are used later to
compute the time evolution of the neutron star period, its age, and
its field strength. Actually, generally speaking, when two or more
mechanisms contribute to the spindown (for instance magnetic and
gravitational wave braking, particle and magnetic braking among
others), the losses are cast into a formal expression like

Ė = a �μ + b �ν (6)

where μ and ν are two reals. For such a law, the braking index n
remains in the interval [min(μ, ν), max(μ, ν)]. The exponents μ

and ν are derived from the physics of stellar braking and need not
to be integers. It is also conceivable to add other contributions with
additional power laws like �σ .

In the force-free regime, the particle wind output remains negli-
gible. It contributes to the current but not the luminosity. Expression
(3) is thus a good approximation to the torque exerted on the neutron
star. The microphysics is hidden in the location of the Y-point
depicted by the transition radius rY which depends on B, �, and γ .
To simplify the subsequent study in this regime, we assume that this
radius depends on the spin rate according to a power law. Using a
geometric weighted average, we set

rY = r
β

L R1−β (7)

where β ∈ [0, 1] in order to ensure that rY always lies between
the neutron radius R (monopole spindown) and the light-cylinder
radius rL (dipole spindown). Such expression has already been
introduced by Sturrock (1971). The braking index associated to this
force-free wind losses is thus n = 1 + 2 β, explaining any braking
index in the interval n ∈ [1, 3]. Similar prescriptions have been
introduced by Contopoulos & Spitkovsky (2006) for another study
of pulsar spindown and justifying the above prescription by the
efficiency of magnetic reconnection at the Y-point.

2.1.3 Force-free dipole

The first 3D simulations of the oblique rotator in force-free plasmas
has been computed by Spitkovsky (2006) followed by several other
computations by Kalapotharakos et al. (2012) and Pétri (2012),
confirming the magnetic field configuration. A good approximate
formula for the spindown luminosity is given by

Lffe = 3

2
L⊥

dip (k1 + k2 sin2 χ ) (8)

where the constants k1 and k2 are obtained by fitting the results
of the numerical simulation outputs. To a good precision, they are
given by k1 ≈ k2 ≈ 1. The spindown dependence on obliquity χ is
reminiscent of the vacuum case except that now the aligned rotator
also radiates because of the electron/positron pair wind leading to an
electric current braking the star by producing a toroidal magnetic
field of the same order of magnitude as the poloidal field when
crossing the light-cylinder. In this regime, the full magnetic field
strength B at the surface is constrained by the magnetodipole losses.
There is no more freedom to choose B� arbitrarily. Kinetic and
magnetohydrodynamic (MHD) simulation results are also available
but our coarse estimate remains precise enough for applications in
Section 3.
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4576 J. Pétri

2.1.4 Vacuum multipolar radiation

Computing multipolar radiation field solutions is more involved
since multipoles are made of several configurations with � ≥
2 and m ≤ �. However, it is already sufficient to consider the
quadrupolar fields to understand the impact of multipolar radiation
on magnetic field estimates. In Section 3, we show compelling
examples containing a dipole and a quadrupole magnetic field.

As in the dipole radiation, the aligned quadrupole does not radiate.
There is no mean to constrain this component by observation of the
magnetic braking. However, the m = 1 and 2 modes radiate such
that

Lm=1
quad = Lm=2

quad

10
= 128π

135 μ0 c5
B2 �6 R8. (9)

The factor 10 difference between the m = 1 mode and the m = 2
mode arises from our normalization of the multipolar components.
Following Pétri (2015), we enforced a constant total magnetic
energy outside the star whatever the geometry of the quadrupole.
Any quadrupole is therefore produced by the rotation on a sphere by
imposing two angles χ1 and χ2. It is therefore similar to the dipole
case where the total magnetic energy outside the star is independent
of the obliquity χ . So far, there are no force-free quadrupole
magnetosphere solutions available in the literature. Nevertheless,
we guess that the Poynting flux of a force-free aligned quadrupole
would be of the same order as the vacuum quadrupole spindown.
For a quadrupole, B is related to the maximum value at the surface
but it is not Bmax because of the complicated dependence of the
spherical components according to the coordinates (θ , φ) on the
stellar surface. However, the exact relation for an aligned quadrupole
is

Bmax =
√

10 B. (10)

For the other modes m = 1 and 2, the increase in the effective surface
field strength compared to the value entering in the spindown is of
the same order of magnitude, around a factor 3. Recall that the
true maximum surface dipole field is larger by a factor 2 than the
field strength B used in the spindown formula equation (8). Thus to
compare the weight of quadrupole with respect to dipole, we assume
that the value of B in the spindown formula is accurate enough. A
precise definition of the field strength at the surface when dipole
and quadrupole are present is even more involved and we keep the
values of B as above from the respective spindown expressions. We
will show that good analytical field strength guesses can be found
within a factor less than two.

2.2 General-relativistic case

When gravity comes into play, the magnetic field measured locally
sensibly deviates from its extrapolation to a distant observer because
of space–time curvature. Physical quantities, that is those actually
measured by an observer must be properly defined and normalized
according to some convention. In order to lay down the correct
interpretation of measuring fields, we tackle the simple problem of a
static magnetic dipole in Schwarzchild space–time. Frame dragging
effects can be included (Pétri 2017a), but they remain usually weak
even for millisecond pulsars.

The 3+1 formalism already exposed in Landau & Lifshitz (1971)
but also in Alcubierre (2008) enables us to write down Maxwell
equations in a way similar to Euclidian space–time (Komissarov
2011). In this approach, D and B are, respectively, the electric and
magnetic fields as measured locally by a fiducial observer. The exact

Figure 1. Surface magnetic field amplification B/B0 due to Schwarzchild
space–time compared to flat spacetime B0 for a multipole of order � and
depending on compacity Rs/R. The order � is shown in the legend.

solution for the general-relativistic static dipole in Schwarzchild
space–time goes back to Ginzburg & Ozernoy (1964). It clearly
shows an increase in the stellar surface field strength. Remind that
for an aligned rotator the magnetic field is given by

Br̂ = −6 B R3

R3
s

[
ln
(
1 − Rs

r

) + Rs
r

+ R2
s

2 r2

]
cos ϑ (11a)

Bϑ̂ = 3 B R3

R3
s

[
2
√

1 − Rs
r

ln
(
1 − Rs

r

) + Rs
r

2 r−Rs√
r (r−Rs)

]
sin ϑ. (11b)

Rs is the Schwarzschild radius of the star. This expression is
normalized such that a distant observer sees exactly a static dipole
of strength B in vacuum and flat space–time. The surface magnetic
field amplification due to Schwarzchild spacetime compared to a
flat space–time dipole depending on compacity Rs/R is shown in
Fig. 1. The increase goes up to 1.6 times for a compacity Rs/R =
0.5 as shown in solid blue line.

2.2.1 Vacuum dipole

Exact solutions to a slowly rotating magnetized neutron star are not
easily found. Only some approximate solutions have been computed
in the stationary regime by for instance Rezzolla & Ahmedov (2004)
and Pétri (2013). Time-dependent simulations were performed by
Pétri (2014) for a rotating dipole in general relativity. With respect
to the energy losses by Poynting flux, frame dragging is negligible
as shown by Pétri (2017a) for the dipole but also for multipoles.
The spindown luminosity is the same as for the flat space–time
rotator. Corrections are only sensitive to unrealistically high rotation
rates. Thus, we use the expression (1) as a good guess. To get the
correct value at the surface as measured by a fiducial observer, an
amplification factor must be applied as shown in the plot in Fig. 1.

2.2.2 Force-free dipole

Detailed simulations of general-relativistic force-free pulsar mag-
netospheres were done by Pétri (2016) assuming a fixed dipole
on the surface. Fitting formula for the spindown have also been
recently established depending on compactnesses and rotation speed
by Carrasco, Palenzuela & Reula (2018). Ruiz, Paschalidis &
Shapiro (2014) computed a full solution from the MHD stellar
interior into the force-free external magnetosphere for several
compactnesses. The spindown luminosities found are very similar.
Palenzuela (2013) included resistive effects into the MHD picture.
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To summarize the result, a good approximate expression is given
by

LGR
ffe = 3

2
L⊥

dip (h1 + h2 sin2 χ ). (12)

The coefficient (h1, h2) depend on compactness and rotation rate.
However for normal radio pulsars, the energy losses in equation (12)
tend to the flat space–time expression given by equation (8). For
millisecond pulsars, h1 ≈ 1 but h2 ≈ 1.5. The magnetic field
strength is therefore not significantly affected by the discrepancy
between normal and millisecond pulsars. We keep the flat space–
time formula as a good guess in general relativity too.

2.2.3 Vacuum multipolar radiation

The 3+1 formalism applied in Pétri (2013) for a stationary dipole is
used to compute numerical solutions of vacuum multipolar radiation
fields in a slowly rotating spacetime. Pétri (2017a) gives results up
to the � = 4 octopole. Static multipole solutions in Schwarzchild
spacetime are well known and expressed in terms of hypergeometric
functions 2F1 (Beskin 2009). Fig. 1 reports the magnetic field
amplification for axisymmetric multipoles with order (�, 0) up
to the octupole � = 4. A monotonic increase in amplification is
identified with respective maximum values of 1.6, 2.6, 3.4, and 4.6
for a compactness of 0.5. Curved spacetime amplifies higher order
multipoles � more than lower order multipoles �′ < �.

For the dipole, we saw that the flat space–time approximation
represents a good guess for slowly rotating general-relativistic
dipoles. For quadrupoles and higher orders, the situation is more
complex because the electric multipole of order �− 1 induced by the
magnetic multipole of order � contributes more to the total Poynting
flux whenever m < �. The (�, m < �) multipoles radiate 2–3 times
more than their flat space–time counterparts for a compactness
typically of 0.4–0.5. Thus, the strength of a multipole of order (�,
m < �) would be slightly less than the computation derived from
Minkowskian multipoles. For the sake of brevity, in the next section
about magnetic field estimates, we only account for Minkowskian
multipoles with possible magnetic amplification due to space–time
curvature. Nevertheless, this factor 2–3 for (�, m < �) must be kept
in mind for slightly better guesses.

3 MAG NETIC FIELD ESTIMATES

In this section, we show the impact of a relativistic magnetized
outflow and a quadrupolar vacuum field on the line of constant
stellar surface magnetic field B in the P − Ṗ diagram, emphasizing
the discrepancy with respect to customary strength estimates. For
the neutron star, we take a fiducial radius of R = 12 km and a
moment of inertia of I = 1038 kg m2.

3.1 Minkowskian case

The magnetic field strength at the stellar surface is estimated assum-
ing that the neutron star braking is entirely due to electromagnetic
radiation through the Poynting flux. Within this approximation,
the spindown is equated to the rotational kinetic energy Ekin time
derivative such that

Lsd = dEkin

dt
= I � �̇ = −4π2 I Ṗ P −3. (13)

Note that Lsd is negative implying indeed a braking of the star when
Ṗ > 0.

Figure 2. Lines of constant magnetic field in the P − Ṗ diagram found
from the vacuum dipole losses (dashed lines) and force-free dipole losses
(solid lines). The magnetic field strength is shown in the legend in a log
scale.

3.1.1 Pure vacuum or force-free dipole

For the vacuum dipole, the lines of constant perpendicular magnetic
field B⊥ in the P − Ṗ diagram are given by

Ṗ = 32π3

3 μ0 c3

B2
⊥ R6

I P
(14)

where B⊥ is the magnetic field strength perpendicular to the rotation
axis. These lines are shown in Fig. 2. It is the standard way to
estimate magnetic field strengths in any class of neutron stars.

For a force-free dipole magnetosphere, we can constrain the full
magnetic field because the aligned component also radiates. In such
a case, the lines of constant magnetic field are obtained from an
average spindown assuming an isotropic obliquity χ distribution
such that

1

4π

∫
0

π ∫ 2π

0
(k1 + k2 sin2 χ ) sin χ dχ dφ = k1 + 2

3
k2 ≈ 5

3
. (15)

Thus, the average force-free spindown is

Lffe = 5

2
L⊥

dip. (16)

The vacuum field is therefore
√

5/2 ≈ 1.58 times larger than
the force-free field, on average, assuming the same spindown
luminosity. The line of constant total magnetic field B field (recall
that in plasma filled magnetospheres we constrain all components
of the field) is now

Ṗ = 80π3

3 μ0 c3

B2 R6

I P
(17)

and shown in Fig. 2. They are always slightly below the vacuum
estimates but still of the same order of magnitude. There is no
particular dependence on the period P. All lines are straight and
parallel to each other. This will no more be the case when a
quadrupole component is added as shown now.

3.1.2 Vacuum dipole + quadrupole

When a quadrupole is included, the situation gets more involved.
In addition to weighting the respective contribution of the m = 1
and 2 quadrupolar components, we have to set their weights with
respect to the dipolar part. Let us assume that the strength of the
dipole field at the surface is Bdip and that of the quadrupole Bquad.
We introduce the ratio between both field strengths as

x = Bquad

Bdip
. (18)
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4578 J. Pétri

Figure 3. Estimate of the maximum field strength at the surface compared
to the guess given by (1 + x) Bdip for different values of x and the angles
(χ , χ1, χ2) set alternatively to 0 and π/2. The constant line equal to 2 is
shown for reference.

As a good guess, the total magnetic field at the surface is

B = Bdip + Bquad = (1 + x) Bdip. (19)

The total magnetic field should take into account the (θ , φ)
dependence of each multipole but this is neglected in our discussion
because it does not impact strongly on the estimate. Actually, the
magnetic field strength depends on the spherical polar angles (θ ,
φ). The above estimate is only a guess not the exact field strength
at the surface. In order to get a better idea of the correctness of
equation (19), we computed the exact analytical expression for the
norm of any dipole/quadrupole configuration. According to Pétri
(2015), the geometry is fully set by the ratio x and the three angles
(χ , χ1, χ2). Detailed expressions can be found in the appendix of
the same paper. By setting the angles alternatively to 0◦ and 90◦ and
varying x, we looked for the maximum field strength at the surface.
The result is then compared to equation (19) and shown in Fig. 3. For
a perfect agreement, we would expect the ratio B/(1 + x) Bdip to be
equal to 2 (remembering that the polar field is twice the equatorial
field for a dipole) for x � 1 and close to

√
10 ≈ 3.16 for x � 1. We

are always close to this value thus our guess is reasonable.
The spindown ratio then follows as

ξ = Lquad

Ldip
= 16

45
η x2 R2

r2
L

(20)

where η = 1 for the m = 1 quadrupole and η = 10 for the m = 2
quadrupole. The dipolar field is then given by

Bdip =
√

3 μ0 Lsd r4
L

8π c R6 (1 + ξ )
. (21)

The line of constant total magnetic field in the P − Ṗ diagram is
defined by

Ṗ = 32π3

3 μ0 c3

B2

1 + x

R6

I P
(1 + ξ ) . (22)

For x � 1, the quadrupole does not contribute significantly to
the total spindown luminosity. Indeed, the radiation field must
be estimated from its value at the light-cylinder. Knowing that a
quadrupole decreases faster with distance than a dipole, it will
become even weaker at the light-cylinder with xL < x. However,
for x � 1, the quadrupole influences more the radiation field at the
light-cylinder with respect to the dipole. If the light-cylinder is close
to the stellar surface, thus for millisecond pulsars, it occurs already

Figure 4. Lines of constant magnetic field from the vacuum dipole–
quadrupole system with x = 100 and for the mode m = 1 in solid line
and m = 2 in dashed lines.

at moderate x > 1. Moreover, if x � 1, the quadrupole component
at the light-cylinder cannot be neglected. Its emission produces
sensitive effects at large distances as does the dipole emission.
The transition from quadrupole luminosity dominance to dipole
luminosity dominance arises around Lquad ≈ Ldip thus when the
light-cylinder equals to

rL = x R

√
16

45
η. (23)

Translated into pulsar period, this gives respectively for η = {1,
10} the period expressed in milliseconds such that

Pm=1(in ms) = 0.150 x (24a)

Pm=2(in ms) = 0.474 x. (24b)

For P < Pm, the quadrupole spindown of mode m is dominant
whereas for P > Pm the dipole spindown is dominant. Consequently,
for x � 10, the quadrupole is never dominant whatever P and m.
For x � 100, the quadrupole starts to dominate in millisecond
pulsar systems. This is clearly seen in the P − Ṗ diagram of Fig. 4
where the slope of constant B changes around Pm from −3 to −1.
Indeed, for a general multipole of order �, the slope is given by
Ṗ ∝ B2 P 1−2 �. As a general rule, for high rotation rates, the higher
multipole always dominates the spindown luminosity because of
its higher power-law dependence on �. In the present case, the
quadrupole dominates for millisecond pulsars whereas the dipole
losses dominate for normal radio pulsars.

3.1.3 Wind + force-free dipole

The most common and realistic case is a combination of a force-
FREE dipole and an ultrarelativistic particle wind carrying a
significant fraction of the total spindown luminosity. The ratio
between particle flux and Poynting flux is actually constrained by
the braking index as we will show in Section 5.

The line of constant magnetic field is found according to Ė =
Lffe + Lp for the simplest case rY = rL. Thus

Ṗ = P 3

4π2 I
(Lffe + Lp). (25)

The force-free dipole Poynting flux is set by B and �. For the
particle wind, we need also a constrain on γ κ . This is guessed
by the measured braking indices. Reasonable values would be γ =
105−7 and κ = 103−5. Thus, we show two examples with parameters
γ κ = {108, 1010}. Constant magnetic field lines in the P − Ṗ
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Neutron star magnetic field estimates 4579

Figure 5. Lines of constant magnetic field from the wind force-free dipole
system with γ κ = 108.

Figure 6. Corrected magnetic field strength for pulsars with measured
braking index and parameters γ κ = 1010. Pulsars with measured braking
indices are depicted by red stars and magnetars with measured indices by
blue crosses.

diagram are shown for γ κ = 108 in Fig. 5 and for γ κ = 1010 in
Fig. 6. The presence of a luminous particle wind strongly alters the
locii of constant magnetic field. Indeed, for normal radio pulsars,
the presence of this wind significantly decreases the estimate of
field strength by several orders of magnitude. This alteration is
especially glaring for high γ κ values as will be shown for pulsars
and magnetars with measured braking indices in Fig. 6. In Section 5,
we show how to get upper limits for γ κ from braking index
measurements.

3.1.4 Force-free wind regime

Taking the view of a force-free wind regime where the Y-point is
moved closer to the neutron star surface, we get another estimate of
the magnetic field strength depending on the parameter β. The lines
of constant magnetic field are now defined in the P − Ṗ diagram
by

Ṗ = 2 (2π)2+2 β

3π

B2 R4+2 β

μ0 I c1+2 β
P 1−2 β . (26)

Results are shown in Fig. 7 for β ∈ {0, 1/4, 1/2, 3/4, 1}. It is clearly
highlighted that the field estimate strongly depends on the value
of β thus on the location of the Y-point, and by many orders of
magnitude. The cases β = 1/4 and 3/4 are extreme in the sense
that they give field strengths far away from standard values. For
a given pulsar with fixed P and Ṗ , the magnetic field variation is
shown in Fig. 8 for a young pulsar with P = 1 S, Ṗ = 10−15, and
for millisecond pulsars with P = 10 ms, Ṗ = 10−18, and P = 5 ms,
Ṗ = 10−20.

Figure 7. Lines of constant magnetic field from the force-free wind regime
for β ∈ {0, 1/4, 1/2, 3/4, 1} as reported in the legend. The field strength is
B = 104 T.

Figure 8. Magnetic field estimate variations due to the index β for several
(P , Ṗ ) combinations.

The magnetic field strength follows a law given by

log B = a + 1

2
log Ṗ + β log(2πP R/c) (27)

where a is a constant. The dependence on β is only imprinted in the
period P not in its derivative Ṗ thus explaining the slopes observed
in Fig 8.

3.2 General-relativistic case

What matters for the magnetic field strength is its value really
measured by a local observer at the neutron star surface. Physics in
gravitational fields then reduces to special relativity physics. The
important point is to link this local measurements to signals received
by a distant observer on Earth. This far away observer essentially
measured the spin period and its derivative, P and Ṗ , respectively.
Note that these quantities are measured in the asymptotic flat
Minkowskian spacetime. The period felt by the local observer
is smaller due to gravitational blue shifting. Thus, when general
relativity is included in the picture of a rotating magnetic dipole,
care must be taken about space curvature and frame dragging effects.
However, Pétri (2017a) showed that frame dragging is negligible
even for millisecond pulsars. Thus discrepancies in the estimates
mainly arise from the curvature of space.

As a general trend, the spindown luminosity measured by the
distant observer in general relativity is enhanced compared to flat
spacetime. Nevertheless, this effect vanishes for slowly rotating
neutron stars for a dipole and for multipoles with � = m. For
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4580 J. Pétri

multipoles with � > m, the situation gets more involved due to
efficient radiation of electric multipoles of lesser order equal to
� − 1. We neglect such complications introducing corrections to
order unity. Consequently, the only relevant modification in the
local magnetic field strength arises from the magnetic amplification
explained in Section 2. For low-order multipoles, this represents
also only correcting factors of order unity, see Fig. 1. As a rule of
thumb, we keep estimates found in the Minkowskian case as good
guesses to the actual field felt by the local observer.

4 C HARACTERISTIC AG ES

Related to the magnetic field strength and spindown luminosity is
the characteristic age of significant magnetic braking. It is well
known that for a single multipole of order � the braking scales as
a power law of the spin rate � such that �̇ = −k �n where n =
2 � + 1 (Krolik 1991; Pétri 2015). The characteristic age derived
from this braking law, starting from a period at birth P0 going to the
actual value P follows from

τc = P

(n − 1) Ṗ

[
1 −

(
P0

P

)n−1
]

(28)

for n �= 1. For short initial periods such that P0 � P, the
characteristic age reduces to

τc = P

(n − 1) Ṗ
. (29)

This expression is however not valid for a monopolar braking given
by n = 1. In the case of pure magnetodipole loss (n = 3), when
the initial period is small, P0 � P, the characteristic age becomes
simply

τ dip
c = P

2 Ṗ
. (30)

This is the standard expression used to compute the age of isolated
pulsars. When several multipoles are present at the stellar surface,
the braking index, and characteristic age strongly depend on the ratio
between the multipolar spindown contributions. In this section, we
explore the consequences of a particle/force-free dipole system and
a dipole/quadrupole system.

For a pure vacuum dipole, taking into account the evolution of
the inclination angle due to the electromagnetic torque the braking
index is

nvac = 3 + 2 cot2 χ. (31)

Other non-vacuum models predict different evolutions of the in-
clination angle as summarized in Beskin (2018). For instance in
the Beskin–Gurevich–Istomin model, the braking index is approx-
imately

nBGI ≈ 1.93 + 1.5 tan2 χ (32)

whereas in the force-free/MHD regime, it becomes

nMHD ≈ 3 + 2
sin2 χ cos2 χ

(1 + sin2 χ )2
. (33)

We discuss in more detail the impact of the evolution of the
inclination on to the braking index in Section 5.

Figure 9. Characteristic age normalized to the pure dipole τ
dip
c for any

weight in the dipole–quadrupole system ξ and for a wind-dipole system
with different spin ratios η.

4.1 Wind and force-free dipole

For a neutron star containing a monopolar wind and a force-free
dipole, the braking law changes to

�̇ = −(aw � + bffe �3) (34)

where aw and bffe are constants related to the wind and force-free
dipole spindown luminosities, respectively. For a spin rate of �0 at
birth, integration by separation of variables leads to

τw
c = −

∫ �

�0

d�

aw � + bffe �3
= 1

aw
ln

(
�0

�

√
aw + bffe �2

aw + bffe �2
0

)
(35)

from which follows the characteristic age as

τw
c = 2 τ dip

c (1 + ξ ) ln

(
η

√
1 + ξ

1 + ξ η2

)
. (36)

We introduced the ratio between force-free dipole and wind lumi-
nosities as

ξ = bffe �2

aw
= Lffe

Lw
(37)

and the ratio between initial and actual rotation rate as

η = �0

�
. (38)

η is usually assumed to be large, η � 1. The characteristic age
diverges for a pure monopolar wind with n = 1, being

τw
c = 2 τ dip

c ln η (39)

whereas for a pure dipole ξ � 1, we retrieve the usual characteristic
age of τ dip

c .
The characteristic age normalized to the pure dipole τ dip

c and
depending on ξ and η is shown in Fig. 9 for η = {10, 100, 1000}.
For reference, the pure dipole is depicted as the horizontal brown
line. When the wind dominates the secular evolution of the neutron
star, the characteristic ages can be underestimated by one order of
magnitude. For the wind/force-free dipole system, the characteristic
age is insensitive to η as long as ξ � 10−2. This is recognized by
inspection of Fig. 9. This insensitivity will indeed applied to pulsars
and magnetars studied in Section 5.

The wind torque does not necessarily follow the aw � law. We
could use any exponent as given in equation (6). However, such
expressions have no analytical form when integrated by separation
of variable. Nevertheless, the general trend can be investigated by
using another simple prescription for the wind+force-free spindown
such as

�̇ = −(aw �2 + bffe �3) (40)
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Neutron star magnetic field estimates 4581

where aw and bffe are again constants related to the wind and
force-free dipole spindown luminosities, respectively. For a spin
rate of �0 at birth, integration by separation of variables leads to
another characteristic age given by

τw
c = −

∫ �

�0

d�

aw �2 + bffe �3

= 1

aw

(
1

�
− 1

�0

)
+ bffe

a2
w

ln

[
� (aw + bffe �0)

�0 (aw + bffe �)

]
. (41)

For very high initial rotation rates �0 � �, this age simplifies into

τw
c = 2 τ dip

c (1 + ξ )

(
1 + ξ ln

ξ

1 + ξ

)
(42)

with

ξ = bffe �

aw
. (43)

The characteristic age varies between P/2 Ṗ and P/Ṗ as expected
from the standard age expression (29) by putting n = 3 and 2,
respectively. This evolution is also depicted in Fig. 9 and noted
wind2.

4.2 Dipole–quadrupole system

For a neutron star containing only a vacuum dipole and a vacuum
quadrupole, the braking law changes to

�̇ = −(adip �3 + bquad �5). (44)

Integration by separation of variables leads to the characteristic age
by

τc = −
∫ �

�0

d�

adip �3 + bquad �5

= 1

2 adip

(
1

�2
− 1

�2
0

)
+ bquad

a2
dip

ln

(
�

�0

√
adip + bquad �2

0

adip + bquad �2

)
.

(45a)

For very high initial rotation rates �0 � �, this age simplifies
to

τc = τ dip
c (1 + ξ )

(
1 + ξ ln

ξ

1 + ξ

)
(46)

by introducing now the ratio between quadrupolar and dipolar
spindown as

ξ = bquad �2

adip
= Lquad

Ldip
. (47)

This is half the age given in equation (42) from the previous case.
For dominant dipolar spindown luminosity, ξ � 1, the characteristic
age is approximately

τc = τ dip
c (1 + ξ (1 + log ξ )). (48)

In the dominant quadrupolar spindown luminosity corresponding
to ξ � 1, the characteristic age is approximately

τc = τ dip
c

2

(
1 + 1

3 ξ

)
(49)

which indeed correspond to an n = 5 braking index from a pure
quadrupole. The function in equation (46) is shown in violet in
Fig. 9 and noted dip+quad. It varies between τ dip

c /2 and τ dip
c .

The error in the characteristic age determination is then at most

a factor 2 when quadrupolar contributions are neglected. Here also,
the characteristic age varies between P/4 Ṗ and P/2 Ṗ as expected
from expression (29) by putting n = 5 and 3, respectively.

Next, we show that knowledge about the braking index of pulsars
and magnetars enables us to deeply constrain key magnetospheric
parameters such as particle Lorentz factor and pair multiplicity,
aside from the magnetic field although the results strongly depend
on the underlying model.

5 EFFECTI VE BRAKI NG I NDEX

Measured braking indices significantly different from n = 3 dipole
could reveal the presence of non-dipolar spindown. Indeed, a dozen
of pulsars have measured braking index gained from the knowledge
of the spin second derivative according to

n = � �̈

�̇2
. (50)

See Archibald et al. (2016) and Hamil et al. (2015) for a recent
compilation of pulsars and their braking index. All pulsars except
one have n � 3. Lower values are explained by the presence of a
relativistic wind. Higher values are easily incorporated by adding
a quadrupole. Therefore, starting with torques emanating from a
monopole wind, a force-free dipole and quadrupole seems the
easiest and most natural way to reconcile the whole set of data.
So let us start with such a system.

5.1 Wind+dipole+quadrupole system

For a contribution from the wind, the dipole and the quadrupole,
the braking law is advantageously written as

�̇ = −(a �p + b �3 + c �5) (51)

with p < 3, the index of the wind torque depending on the
microscopic dynamics of the particle acceleration in the polar caps.
This spindown evolution leads to a braking index of

n = p + 3 X + 5 Y

1 + X + Y
(52)

where we introduced respectively the ratio between dipole and
wind luminosities X and the ratio between quadrupole and wind
luminosities Y as

X = b
a

�3−p (53a)

Y = c
a

�5−p. (53b)

The braking index is therefore always in the range n ∈ [p, 5].
Alvarez & Carramiñana (2004) used the same law with explicit
time-dependent coefficients by performing a Taylor expansion of
the general spindown law with p = 1

�̇ = −F (�, t). (54)

The braking index is shown in Fig. 10, depending on log X and log Y.
Interestingly, for Y = 3−p

2 meaning that the quadrupole radiates
almost as much as the monopolar wind, the braking index is always
n = 3 whatever X. Getting n > 3 always requires a significant
quadrupole torque at least as strong as the wind.

For pulsars with known braking index less than 3, quadrupolar
spindown is negligible. Thus for a pure wind+dipole system we set
Y = 0 and the ratio in spindown luminosities is directly related to
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4582 J. Pétri

Figure 10. Isocontours of the braking index n for different ratio of
dipole/wind and quadrupole/wind luminosities. The value of n is shown
in the black and white squares. This plot is for p = 1.

the braking index through a relation similar to but generalizing the
one found in Lyne et al. (2015). We get

X = n − p

3 − n
. (55)

Relevant parameters for pulsars with n ∈ [1, 3] are shown in Table 1.
However, the measured braking indices are strongly affected by
glitches as reported by Espinoza, Lyne & Stappers (2017) who
found short-term evolution indices with n > 10.

Nevertheless, taking pulsars with measured averaged braking
indices from Table 1, we found that the ratio lies in 0.1 � X � 10
which means that spindown contribution from wind with Lp∝�2 and
dipole are very similar. Assuming a particle outflow with Lorentz
factor γ , the spindown equation (4) must be compared with the
dipole. We use the force-free expression as the magnetosphere is
now filled. This translates into a constrain on γ κ via the ratio
between wind and force-free dipole spindown as

Lw

Lffe
= 3

5
γ κ

me c2

e 	V
= 1

X
(56)

where 	V = �2 B R3/c is the potential drop between the centre
and the rim of a polar cap. In this particular model, we assume that
rL = rY, therefore β = 1. Note however that corrections from the
wind are weak because of the location of these pulsars in the P − Ṗ

diagram. They lie mostly in the transition zone between dipole and
wind dominance (Fig. 6). To compute the characteristic age, we can
set η = 100 as it is insensitive to η when X � 10−2.

Several magnetars possess also measured braking indices as
reported by Gao et al. (2016). For those with n ∈ [1, 3], we can
estimate γ κ and the field strength in the same way as for pulsars.
Even two gamma-ray burst (GRB) expected to harbour millisecond
magnetars have measured braking indices from temporal evolution
of their luminosity as reported by Lasky et al. (2017). Unfortunately,
there is no period detection associated to these GRBs. Useful
pertinent parameters are summarized in Table 2.

The histogram of magnetic field distribution according to the
corrections brought by the wind are shown in Fig. 11 with the

obvious bimodal distribution too, with magnetars possessing the
highest fields B � 109 T and the opposite for pulsars with B �
109 T.

The Lorentz factor pair multiplicity product distribution γ κ for
pulsars and magnetars is shown in Fig. 12. A bimodal distribution
is readily seen with γ κ for magnetars 1–2 orders of magnitude
less than for radio pulsars. If the Lorentz factor is limited by the
radiation reaction force due to curvature radiation taking curvature
radius on the surface as ρc = √

R rL and an electric field of the
order E = �B R, we get

γCR =
(

6π ε0

e
E ρ2

c

)1/4

. (57)

Therefore, we can guess the pair multiplicity factor which is
reported in the histogram of Fig. 13. The maximum Lorentz factor
lies in the range 108–109 irrespective of pulsar or magnetar. The σ

parameter defined by the ratio of magnetic field energy density over
particle energy density at the light-cylinder expressed as

σL = B2
L

γ κ nL me c2
(58)

is also computed and shown in Fig. 14. We did not found high σ L

values because the wind contributes significantly to the dynamics of
the magnetosphere. We next switch to the force-free wind regime.

5.2 Force-free wind regime

Another prescription is given by the force-free split monopole
beginning at a radius rY, the location of the Y-point. We use
equation (3) to derive all important parameters of the pulsar
magnetosphere. Its dependence on β is directly related to the braking
index by

β = n − 1

2
. (59)

Thus from observations, we immediately resolve for β, see Table 1.
Then, the magnetic field strength is solution of Ė = Ėw, thus

B =
√

3 μ0 c1+2 β

8π

Ė

�2+2 β R4+2 β
. (60)

The magnetic field estimates in this model are given in the columns
of Table 1 noted by Bw and compared with the force-free dipole
field Bffe. The estimated magnetic field strengths are considerably
reduces compared to the vacuum or force-free dipole estimates.
We found that in this regime, it always lies below the quantum
critical value as shown in the histogram of Fig. 15 with magnetars
usually closer but still less than Bc, see Table 2. To further
estimate microscopic parameters, let us assume that this spindown
is completely carried by the wind. This furnishes an absolute upper
limit for γ κ but does not reflect realistic cases as spindown is almost
exclusively Poynting dominated. Nevertheless let us approximate
the spindown such that Ė = Lp from which we deduce the product
γ κ as

γ κ = 2

3

e 	V

me c2
=

√
2

3

√
Ė

Le
. (61)

Thus, the product evolves simply as
√

Ė. It is shown in Fig. 16. The
pair multiplicity factor κ is also plotted in Fig. 17. The magnetization
parameter σ defined by the ratio of magnetic field energy density
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Table 1. Pulsar essential parameters with known braking index. Derived quantities are β, the pair multiplicity κ , and the Lorentz factor γ .

PSR P (s) Ṗ (10−12) n β log Bw (T) log Bffe (T) log γ log κ

J0534+2200 0.033392 0.4210 2.51 ± 0.01 0.755 7.82 8.34 8.24 2.53
J0540−6919 0.050569 0.4789 2.140 ± 0.009 0.57 7.46 8.45 8.03 2.49
J0835−4510 0.089328 0.1250 1.4 ± 0.2 0.2 6.25 8.29 7.47 2.40
J1119−6127 0.40796 4.020 2.684 ± 0.002 0.842 8.86 9.37 8.50 1.12
J1208−6238 0.440590 3.26951 2.598 0.799 8.69 9.34 8.42 1.11
J1513−5908 0.15125 1.531 2.839 ± 0.001 0.919 8.72 8.94 8.54 1.52
J1640−4631 0.20644 0.976 3.15 ± 0.03 1.075 9.13 8.91 8.75 1.01
J1734−3333 1.1693 2.279 0.9 ± 0.2 −0.05 5.62 9.48 6.86 1.96
J1803−2137 0.133667 0.13436 1.9 0.45 6.89 8.39 7.76 1.85
J1826−1334 0.101486 0.07525 2.2 0.6 7.16 8.20 7.94 1.71
J1833−1034 0.061883 0.2020 1.8569 ± 0.001 0.428 6.94 8.31 7.81 2.40
J1846−0258 0.32657 7.107 2.65 ± 0.1 0.58 8.14 9.45 8.12 1.77

2.16 ± 0.13 0.825 8.90 9.45 8.50 1.39

Table 2. Magnetar essential parameters with known braking index. Derived quantities are β, the pair multiplicity κ , and the Lorentz factor γ .

PSR P (s) Ṗ (10−12) n β log Bw (T) log Bffe (T) log γ log κ

CXOU J1714 3.8253 6.40 1.7 0.35 7.74 10.4 7.67 1.10
2.1 0.55 8.58 10.4 8.09 0.68
2.2 0.6 8.78 10.4 8.19 0.58

PSR J1622 4.3261 1.7 2.35 0.675 8.82 10.2 8.28 0.12
2.6 0.8 9.35 10.2 8.54 −0.14

SGR 0526 8.0544 3.8 1.82 0.41 7.85 10.5 7.71 0.45
2.4 0.7 9.15 10.5 8.37 −0.19

SGR 1627 2.5945 1.9 1.87 0.435 7.84 10.1 7.81 0.95
Swift J1834 2.4823 0.796 1.08 0.04 6.08 9.91 6.97 1.62

Figure 11. Magnetic field strength distribution Bw for pulsars and magne-
tars corrected for the wind load. Bw is normalized to Bqed.

over particle energy density at the location of the Y-point

σL = B2
Y

γ κ nY me c2
(62)

is shown in Fig. 18. Now the magnetization remains important σ Y �
1 for pulsars which is consistent with the force-free dynamics of the
magnetosphere implied by the spindown luminosity equation (3).
However, for magnetars, this assertion is only marginally true.
Certainly, in the force-free regime, the wind contribution to braking
is low with Lp � Ė, therefore we expect γ κ to be much lower than
the values presented here.

Figure 12. The product γ κ distribution for pulsars and magnetars for the
wind load.

It should be kept in mind that the numerical values presented in
this study are only guesses and that more firm and precise prediction
of the dynamics within the magnetosphere requires a better and
deeper knowledge of matter radiation interaction which is not yet
accessible neither analytically nor via computer simulations.

5.3 Braking index and magnetic field profile

Many mechanisms have been invoked to explain braking indices
deviating from the fiducial n = 3 value. All of them account for
some detailed processes based either on moment of inertia changes,
magnetic field decaying or increasing in time, obliquity variation
or also precession. Based on some simple physical arguments,
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Figure 13. The pair multiplicity κ distribution for pulsars and magnetars
for the wind load.

Figure 14. The magnetization parameter σL distribution for pulsars and
magnetars for the wind load.

Figure 15. Magnetic field strength distribution Bw for pulsars and magne-
tars for the force-free wind regime. Bw is normalized to Bqed.

we remind that the spindown luminosity is properly guessed by
computing the Poynting flux emanating from of a sphere of radius rL

in vacuum (or of radius rY in a force-free wind regime) with a
proper choice of the magnetic field amplitude. Such arguments
given by Michel (1991) and reused by Pétri (2017a) are applied to
any poloidal magnetic field profile. Let us assume for instance that
the field strength decreases like

Bp = B

(
R

r

)s

(63)

Figure 16. The product γ κ distribution for pulsars and magnetars for the
force-free wind regime.

Figure 17. The pair multiplicity κ distribution for pulsars and magnetars
corrected for the force-free wind regime.

Figure 18. The magnetization parameter σ distribution for pulsars and
magnetars for the force-free wind regime.

where s is some positive real number. The field strength at the
light-cylinder is therefore

BL = B

(
R

rL

)s

(64)

and the associated Poynting flux deduced again from the monopole
solution starting at the light-cylinder is

F = 8π

3 μ0
c B2 R2

(
R

rL

)2 s−2

= 8π

3 μ0
B2 c3−2 s R2 s �2 s−2 (65)
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leading to a braking index

n = 2 s − 3. (66)

We retrieve the standard values for a monopole (s = 2 and n = 1), a
dipole (s = 3 and n = 3) and generally for any multipole of order �

(s = � + 2, n = 2 � + 1). Consequently, any braking index can be
explained by a proper radial decrease of the poloidal magnetic field.
A non-multipolar field decrease can be obtained by electric currents
flowing within the magnetosphere. This requires non-corotating
magnetospheric models with electric currents flowing within the
closed magnetosphere for instance.

A last important factor contributing to the braking index is the
time evolution of the pulsar geometry, that is, in the dipolar case,
the inclination angle evolution due to the electromagnetic torque.
We discuss this topic in the following paragraph.

5.4 Obliquity evolution and braking index

So far we did not take into account the actual geometry of a particular
pulsar. To simplify the discussion, we used a mean evolution by
averaging against the obliquity χ of the dipole. However, because
the torque exerted on the neutron star depends on this angle χ ,
the braking index of a dipole in vacuum can significantly differ
from the n = 3 value when χ evolves on the same time-scale as the
period P. Therefore, not only the stellar rotational braking evolution
but also the obliquity evolution impacts on the braking index. Many
prescriptions have been used to guess the time evolution of the two
parameters � and χ , depending on vacuum dipole or force-free
rotator, the presence of a wind, itself depending or not on χ and
lastly on possible acceleration gaps at work around the polar caps.
We believe that all these models fall into a joint evolution of � and
χ summarized by the following expressions

�̇ = −[(a + b cos2 χ ) �μ + (c + d sin2 χ ) �ν] (67a)

� χ̇ = −(e �μ + f �ν) sin χ cos χ. (67b)

The dots indicate time derivatives. We introduced eight real
parameters denoted by (a, b, c, d, e, f, μ, and ν) (these parameters
should not be confused with any physical constants like speed of
light c and electric charge e, used throughout the paper). Let us
comment on these expressions. Two contributions are identified
for the spindown and for the torque. The first term proportional
to �μ arises from a wind carrying energy and angular momentum
in the aligned case but decreasing in strength when moving to the
perpendicular case, thus the presence of the cos 2χ term. The second
term proportional to �ν arises from a dipole, let it be vacuum or
force-free, which is known to decrease the spindown removal and
angular momentum when switching from a perpendicular to an
aligned rotator, thus opposite to the wind contribution, explaining
the sin 2χ as seen in numerical simulations. The braking index then
straightforwardly follows as

n = μ (a + b cos2 χ ) �μ + ν (c + d sin2 χ ) �ν

(a + b cos2 χ ) �μ + (c + d sin2 χ ) �ν

− 2
(b �μ − d �ν) (e �μ + f �ν) sin2 χ cos2 χ

[(a + b cos2 χ ) �μ + (c + d sin2 χ ) �ν]2
. (68)

By appropriately choosing the eight parameters (a, b, c, d, e, f,
μ, and ν), we retrieve many models discussed in the literature.
However, we reduce the number of free parameters by noting that
in the force-free dipole case, c ≈ d ≈ f and ν = 3. For a vacuum

magnetosphere, we would also set c = 0. For the wind contribution,
we assume a similar formal dependence with a ≈ b ≈ e and μ =
1, although other choices are possible. We add or remove a cos 2χ

dependence for the wind by putting a = 0 or b = 0 as done in several
wind models. The first term on the right-hand side of equation (68)
represents the braking index when the obliquity is assumed constant
in time, whereas the second term depicts the change in braking index
induced by the evolution of the inclination angle χ . It can be positive
or negative depending on the sign of (b �μ − d �ν) associated to
the dominant torque mechanism, wind or force-free.

As a simple representative case in this brief discussion, we choose
a = b = e and c = d = f, reminiscent of some vacuum or force-free
model. Then, introducing the ratio between dipole and monopole
spindown losses such as

X = c

a
�ν−μ (69)

the braking index reduces to a more tractable form given by

n = μ (1 + cos2 χ ) + ν (1 + sin2 χ ) X

(1 + cos2 χ ) + (1 + sin2 χ ) X

−2
(1 − X2) sin2 χ cos2 χ

[(1 + cos2 χ ) + (1 + sin2 χ ) X]2
. (70)

To go further, we assume a strictly monopolar wind and a strictly
dipole force-free part thus setting μ = 1 and ν = 3. The time
evolution of the rotation period and the angle, for a normalized
rotation rate ω = �/�0 and a normalized time t̃ = t/τ where
c τ �2

0 = 1 (c is not the speed of light) is therefore

ω̇ = −
[

(1+cos2 χ)
X0

+ (1 + sin2 χ ) ω2
]

(71a)

χ̇ = −
[

1
X0

+ ω2
]

sin χ cos χ. (71b)

X0 is the initial ratio between dipolar and monopolar spindown as
defined in equation (69). When the dipole losses dominate, for X �
1, we retrieve the force-free law given by equation (33) which has
a maximum at nFFE

max = 13/4. In the opposite limit, for dominating
monopole losses, for X � 1, we get an index

nmono ≈ 1 − 2
sin2 χ cos2 χ

(1 + cos2 χ )2
(72)

which has a minimum index of nmono
min = 3/4.

Consequently, our simple prescription of a monopolar wind
and dipolar force-free magnetosphere is able to reproduce all the
measured braking indices from 0.9 to 3.15. Fig. 19 shows the range
of braking indices depending on spindown ratio X and obliquity χ .
For a dominant dipole, it lies around n = 3, whereas for a dominant
monopole it lies around n = 1. In the region around equipartition
X ≈ 1, the braking index evolves around n = 2. These findings are
insensitive to the angle χ .

As a typical example of period and obliquity evolution, we nu-
merically solved equation (71) for a pulsar with initial obliquity χ0

= 60◦ and an initial rotation �0. The evolution of the rotation
rate �(t) is shown in Fig. 20 for different initial ratio X0 from force-
free domination X0 = 104 to wind domination X0 = 10−1. The
related evolution of the obliquity χ (t) is plotted in Fig. 21. In the
regime of X0 � 1, the evolution reduces to the MHD/force-free limit
found in Philippov, Tchekhovskoy & Li (2014). Nevertheless, when
the star slows down, the initial ratio X0 decreases to lower values
because X(t) = X0 ω(t)2 decreases too. Therefore, for very low
angular velocities, the wind always dominates the dynamics when
the transition from force-free to wind occurs, around X0 ω2(t) ≈ 1.
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Figure 19. Braking index for a force-free dipole + wind monopole system
with evolving inclination angle.

Figure 20. Evolution of the normalized pulsar angular velocity �(t)/�0 for
an initial obliquity χ0 = 60◦.

Figure 21. Evolution of the pulsar inclination angle χ (t), in degrees, for an
initial obliquity χ0 = 60◦.

This condition is shown as a vertical dashed colour line in the time
evolution of the angular velocity (Fig. 20), obliquity (Fig. 21), and
braking index (Fig. 22). After that time, the velocity decreases faster
and the shift towards alignment also accelerates. The inclination
angle χ (t) always evolves towards an alignment to χ = 0◦ when χ0

< 90◦. Moreover correspondingly, the final braking index tends to
the value n = 1 because the spindown ratio X(t) decreases towards

Figure 22. Evolution of the pulsar braking index n(t) for an initial
obliquity χ0 = 60◦.

the monopolar wind domination. Indeed, according to Fig. 19, in
the limit X � 1 and χ � 1, the braking index is always n = 1.
This trend is clearly recognized in Fig. 22. This however does not
mean that old pulsars will all tend to n = 1 because when slowing
down, the pair creation efficiency declines, implying a new increase
in X(t) and therefore increase of the braking index towards n = 3,
according to Fig. 19 when evolving into the region χ ≈ 0◦ and X
� 1.

As a conclusion, we demonstrated the difficulty to explain the
measured braking indices without including the temporal evolution
of inclination angle χ . The fact that the product γ κ is two orders
of magnitude greater than its maximum possible value implies that
the implicit assumption that the evolution of the inclination angle
plays no role is probably far from reality. Moreover, there are several
interpretations for a given value of the braking index. Consequently,
we do not believe that fitting this braking index for any pulsar will
be of any importance to support or not pulsar slowing down models
if further specific individual pulsar parameters are disregarded or
unavailable.

6 C O N C L U S I O N S

Guessing confident values for the magnetic field of neutron stars is
far from a trivial task. The sole knowledge about pulsar periods P
and their corresponding derivatives Ṗ is not enough to faithfully
constrain the stellar surface field strength. Uncertainties come
on one side from our ignorance of the particle load within the
magnetosphere, that translates into number density, Lorentz factor
and multiplicity, on the other side because of our ignorance of the
magnetic topology at the surface. We demonstrated that constant
magnetic field lines in the P − Ṗ diagram significantly differ from
the standard vacuum or force-free dipole spindown approximation
when multipoles and particle winds modify the flow and the
energy balance. General relativity complicates even more this view
by increasing the spindown efficiency and amplifying the local
surface magnetic field strength. Under some simple assumptions,
we showed how to compute the particle Lorentz factor and the pair
multiplicity factor but giving too large contributions of the particle
energy flux to explain braking indices n < 3. This overestimate by
two orders of magnitude takes its root in the assumption that the
flux is particle dominated at the light-cylinder and most importantly
because we neglected the time evolution of the obliquity. Results
about field strength and particle dynamics differ considerably
depending on the underlying model. For instance, a force-free wind
regime decreases by several orders of magnitude the estimate of the
true stellar magnetic field at the surface.
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Our calculations rely on simple arguments that need to be refined
with help of numerical MHD or kinetic simulations in order to better
assess the interplay between particle dynamics and electromagnetic
fields. It is only once this stage has been reached that we will be
able to correctly guess realistic magnetic field measurements.
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