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Abstract

This paper is devoted to a numerical method for the approximation of a class of free boundary

problems of Bernoulli’s type, reformulated as optimal shape design problems with appropriate shape

functionals. We show the existence of the shape derivative of the cost functional on a class of admissible

domains and compute its shape derivative by using the formula proposed in [6, 7], that is, by means

of support functions. On the numerical level, this allows us to avoid the tedious computations of

the method based on vector fields. A gradient method combined with boundary element method are

performed for the approximation of this problem, in order to overcome the re-meshing task required

by the finite element method. Finally, we present some numerical results and simulations concerning

practical applications, showing the effectiveness of the proposed approach.

Keywords shape optimization, free boundary problem, Bernoulli problem, optimal solution, shape derivative,

convex domain, support function, cost functional.

1 Introduction

The main target of shape optimization is to provide a common and systematic framework for optimizing structures

described by various practical physical or mechanical models; especially, hydrodynamics, elasticity, geophysics
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and aerodynamics models. Shape optimization problems consist in finding the optimal shape (or domain) which

minimizes a certain cost functional under given constraints such as a partial differential equation defined on the

variable domain. Since the seventies of the last century, many authors investigated the shape optimization field

and remarkable progress has been achieved in shape and topology optimization. In fact, the growing interest in

this field reflects a growing sophistication in structural analysis and optimization which allow solving more and

more difficult shape optimization problems. However, one may say that no uniform approach to shape optimization

problems has yet emerged.

The numerical investigation of shape optimization problems is based on the study of the first variation of

the cost functional, and in particular on the computation of its gradient. So, as the variation of the domain is

characterized by the variation of its boundary, in this process arise both numerical and theoretical difficulties. The

method of variation of domains using vector fields, introduced by Céa [12] and developed then, among others,

by Murat, Simon, Sokolowski, Delfour and Zolésio [13, 26], Allaire [2] and Henrot and Pierre [19], allowed to

solve some of these issues. But these techniques themselves present some difficulties from both theoretical and

numerical point of view. For example, when one wants to connect the set of admissible domains with vector fields,

one has to suppose high smoothness conditions on the initial data in order to differentiate functions depending

on the domain. Note also that to solve a conditional shape optimization problem by this method is yet more

complicated and usually requires to reduce it to a non conditional problem (for example, by Lagrange’s multipliers

method). Moreover, the numerical implementation of the shape optimization problem requires to extend the vector

field (obtained only on the boundary) to all the domain or to re-mesh at each iteration of the process, and both

approaches are expensive (see for example Allaire [2]). In this paper, in order to avoid part of the above issues,

we define and use another way of variation of domains, a way that is linked to the convexity context and based

on the Minkowski sum. Recall that for any convex bounded domain the support function of this domain is a

continuous convex and positive homogeneous function. Conversely, it is known that each continuous convex and

positive homogeneous function is the support function of a convex bounded set (sub-differential of this function at

the origin). Using this, the variation of the domain is clearly characterized by the variation of the corresponding

support function. Moreover, according to the works [6–8, 24], one can express the shape derivative of volume cost

functionals by means of support functions, and when solving problems numerically one gets a support function at

each step of the implementation, the domain being recovered as the subdifferential of the support function. This is

why we think that, in the context of convexity and numerical approximation, the use of support functions is more

advantageous than that of vectors fields.

More precisely, we are interested in this paper in a shape optimization problem for solving numerically the

so-called Bernoulli’s free boundary problem or Bernoulli’s problem. Let us note that many applications to fluid

dynamic and industrial application lead to such a free boundary problem. As an example, let us quote the problem

where the design of an annular capacitor is required in which one of the plates is prescribed while the other must

be determined, so that the intensity of the electrostatic field remains constant thereon. Depending on whether we

describe the internal or external plate, we have an exterior or an interior Bernoulli problem. This class of problems

has been extensively studied theoretically by many authors, see for example [1, 11, 16, 22] and references therein.

A practical way to study this type of problem is to transform it into a shape optimization problem where one of

the Dirichlet or Neumann boundary condition on the free boundary is included into a cost functional while the

other boundary condition is considered as part of an appropriate state problem. The question of existence for

such shape optimization formulations is studied for example in [17] or [9], using the C2 or C1 regularity of the

free boundary. On the numerical level, approximations of such shape optimization formulations of this type of free

boundary problem can be found in the literature, using techniques that are different from ours. For example, a

variational approach to shape derivatives is introduced in [21], a fictitious domain approach for solving this free

boundary problem is proposed in [18], a pseudo-solid approach for solving its discrete problem is introduced in [28],

a shape optimization approach by tracking the Neumann data and using the lagrangian formulation is developed
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in [25] and an iterative method based on a level-set formulation and boundary element method is proposed in [5,23].

We also quote the recent work [4] where the authors consider shape optimization problems in convex geometry

and use support functions to study them via spectral expansions. In this work, we propose a shape optimization

formulation of this problem using a volume cost functional. We develop a method for the shape differentiability of

this cost functional, and establish the expression for its shape derivative via support functions, using the formula

of shape derivative with respect to convex domains proposed in [6, 7]. Then, we propose a gradient method for

solving the shape optimization problem. Thereby, during the numerical solving of such problem, we get at each

step support functions instead of domains. In this process, the discretization of the state problem is done using

the boundary element method [10], while in most of shape optimization approaches, finite element method has

been employed for sensitivity computation. However, the approaches generally suffer certain drawbacks; indeed,

in shape optimization, cumbersome parameterization of design domain is required and time consuming re-meshing

task is also necessary. Finally, we give some numerical results showing the effectiveness of the proposed approach.

The outline of the paper is as follows. In the second section, we present the shape optimization formulation for

the approximation of Bernoulli’s problem. In the third section, we give some preliminary results on the existence

of the shape derivative of the cost functional on the considered family of admissible domains and establish the

expression for its shape derivative by means of support functions. In the fourth section, we propose an algorithm for

the approximation of the problem, based on a gradient method combined with the boundary element discretization.

Finally, in order to illustrate the main result of this paper, the last section is focused on some numerical simulation

applied to practical situations.

2 Shape optimization formulation of Bernoulli’s problem

Let D be a fixed smooth convex bounded and open subset of Rn (n ≥ 2). Let Ω be a doubly connected open subset

of D of class C2, that is, Ω is of the form Ω = Ω2 \ Ω1, where Ω2 is a convex bounded and open subset of D of

class C2 and Ω1 is a fixed, compact and connected subset of Ω2 of class C2. We denote by Γ1 the boundary of Ω1

which is also the fixed inside part of the boundary of Ω and by Γ2 the boundary of Ω2 which is at the same time

the outside free boundary of Ω (see Figure 2).

Let us consider the external free boundary Bernoulli problem which consists in finding the free boundary Γ2

and the solution u = u(x) of the problem

(P )





−∆u = f in Ω = Ω2 \ Ω1,

u = ϕ1 on Γ1 = ∂Ω1,

u = ϕ2 on Γ2 = ∂Ω2,

∂ν2u = ∂ν2G on Γ2,

(1)

where f , ϕ1, ϕ2 and G are given functions, ν2 is the outward unit normal vector to Γ2 and ∂ν2u = 〈∇u|Γ2
, ν2〉,

where 〈·, ·〉 denotes the scalar product in R
n.

Let us first remark that in the free boundary problem (1) two boundary conditions must be satisfied on Γ2.

This suggests to reformulate such a problem as a shape optimization one to be able to solve it numerically. This

is not a new idea and we refer for example to [9, 17, 21] where such a method is used. Here, it consists in finding

Γ2 and u solution of the shape optimization problem
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Minimize J (Ω, uΩ) for all Ω ∈ O

whereJ (Ω, uΩ) =

∫

Γ2

(uΩ(x)− ϕ2(x))
2dσ

and uΩ is solution of

(PE)





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1 = ∂Ω1,

∂ν2v = ∂ν2G on Γ2 = ∂Ω2,

(2)

where the set of admissible domains O is defined by

O = {Ω ⊂ R
n ; Ω = Ω2\Ω1, Ω2 ∈ O(Ω1, D)},

O(Ω1, D) = {Ω ⊂ R
n ; Ω ∈ U(D), Ω1 ⊂ Ω, and Ω ⊂ D},

and U(D) is the set of convex subdomains of D which are of class C2.

Figure 1: The considered domain Ω.

However, tracking the Dirichlet boundary data at the free boundary Γ2 of the state function u in a boundary

L2-cost functional led us to some analytical issues that we have not been able to solve. Moreover, it was noticed

by some authors that such an optimization formulation could be not well posed in some sense, see [15]. On the

other hand, one can make the choice of tracking the Neumann data at the free boundary in an L2-cost boundary

functional while assuming that the state function u satisfies a Dirichlet boundary value problem. The disadvantage

in this case is that it requires high smoothness assumptions on the domains and on the state solution, even if such

a formulation is rather well posed in the sense of [14]. In order to avoid the disadvantages related to the boundary

integral cost functional, we propose here a new formulation using a domain integral cost functional. This also aims

to use the shape derivative formulas developed in [6, 7].

2.1 New formulation of the problem

In order to propose another shape optimization formulation of (1), let us first give a preliminary result on convex

domains.

Lemma 1. Let Ω be an open bounded convex subset of Rn of class Ck, (k ≥ 1). Then, for all fixed y ∈ Ω, we have

〈ν(x), x − y〉 > 0, for all x ∈ ∂Ω,
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where ν is the exterior unit normal vector to ∂Ω. In particular, if 0 ∈ Ω, we get

〈ν(x), x〉 > 0, for all x ∈ ∂Ω.

Proof. Let Ω be an open convex domain. Assume first that 0 ∈ Ω. According to [13], there exists a convex

function ϕ : Rn → R such that

Ω = {x ∈ R
n / ϕ(x) < 0} et ∂Ω = {x ∈ R

n / ϕ(x) = 0}.

There exists also a neighborhood W of Γ such that ϕ ∈ Ck(W ), ∇ϕ 6= 0 on W and ν = ∇ϕ/||∇ϕ|| . If

x ∈ ∂Ω, by the characterization of the convexity at the points 0 and x we have 〈∇ϕ(x), 0−x〉 ≤ ϕ(0)−ϕ(x). Since

ϕ(0) < 0 and ϕ(x) = 0, then, 〈∇ϕ(x), x〉 ≥ −ϕ(0) > 0 . Hence, multiplying by 1
||∇ϕ(x)|| gives 〈ν(x), x〉 > 0 .

Now, if 0 /∈ Ω, we consider the translated Ω− y of Ω by means of a fixed y ∈ Ω. Clearly, this is an open bounded

convex subset of Rn of class Ck containing 0. Hence, by application of the above result, we obtain

〈νΩ−y(x), x〉 > 0, for all x ∈ ∂Ω− y.

Since νΩ−y(x− y) = ν(x) for all x ∈ ∂Ω, we get 〈ν(x), x − y〉 > 0, for all x ∈ ∂Ω. �

For simplicity, we shall assume in the rest of the paper that 0 ∈ Ω1. If Ω = Ω2\Ω1 is as before, then, according

to Lemma 1, we have

(ν2(x), x) > 0, for all x ∈ Γ2,

and this suggests to consider the integral

∫

Γ2

(uΩ(x) − ϕ2(x))
2〈ν2(x), x〉dσ, (3)

instead of that in (2). In what follows, we are going to transform this boundary integral into a domain one.

To do so, let us first recall that, since the domain Ω is doubly connected, the exterior unit normal vector to Ω

is given by

ν : ∂Ω −→ Sn−1

x 7−→ ν(x) =




ν2(x) si x ∈ Γ2

−ν1(x) si x ∈ Γ1.

where νk, for k = 1, 2 is the exterior unit normal vector to Ωk and Sn−1 is the unit sphere in R
n. If uΩ the solution

of (PE) associated to Ω = Ω2 \ Ω1, we can write

∫

Γ2

(uΩ(x) − ϕ2(x))
2〈ν2(x), x〉dσ =

∫

Γ2

(uΩ(x) − ϕ2(x))
2〈ν(x), x〉dσ

+

∫

Γ1

(uΩ(x)− ϕ2(x))
2〈ν(x), x〉dσ −

∫

Γ1

(uΩ(x)− ϕ2(x))
2〈ν(x), x〉dσ

=

∫

Γ

(uΩ(x)− ϕ2(x))
2〈ν(x), x〉dσ +

∫

Γ1

(uΩ(x)− ϕ2(x))
2〈ν1(x), x〉dσ

=

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx +

∫

Γ1

(ϕ1(x) − ϕ2(x))
2〈ν1(x), x〉dσ,

where div(v) denotes the divergence of the vector v and we have applied of course the divergence formula and the

fact that uΩ = ϕ1 on Γ1. Thus, we have

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx =

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), x〉dσ −

∫

Γ1

(ϕ1(x) − ϕ2(x))
2〈ν1(x), x〉dσ. (4)
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Since the term
∫
Γ1
(ϕ1(x) − ϕ2(x))

2〈ν1(x), (x)〉dσ do not depend on the variable domain Ω2, minimizing (3) is

equivalent to minimizing the domain integral (4). Therefore, we can propose as a shape optimization formulation

for the approximation of the free boundary problem (1), the following one

(PO)





Minimize J (Ω, uΩ) for all Ω ∈ O

whereJ (Ω, uΩ) =

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx

and uΩ is solution of

(PE)





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ2 .

(5)

In what follows, we propose a numerical method of the approximation of this problem based on a gradient

method. This requires to study the first variation or differentiability of the cost functional with respect to the

family of domains O. For this, we shall adapt the formulas proposed in [6, 7] to be able to express the shape

derivative of the cost functional by means of support functions.

3 Shape derivative of the cost functional

In order to obtain an expression of the shape derivative of the cost functional for the shape optimization problem

(5), we first recall the shape derivative formulas established in [6,7] in the case of convex domains and then adapt

them to our class O of doubly connected domains.

Let us start by recalling the notion of support function of a convex bounded domain. See [27] for more details.

To any bounded convex domain Ω, one can associate its support function defined by

PΩ : x ∈ R
n 7→ PΩ(x) = sup

y∈Ω
〈x, y〉 ∈ R ,

which is a continuous, convex and positively homogeneous function. The converse is also true: for any continuous,

convex, positively homogeneous function P there exists a unique convex bounded open set Ω, such that P is its

support function, that is, P = PΩ. Recall also that Ω is then obtained via the sub-differential of P at the origin:

Ω = ∂P (0) := {ξ ∈ R
n / 〈ξ, y〉 ≤ P (y), ∀y ∈ R

n}.

In [6, 7], the authors used the deformations Ωε = Ω0 + εΩ (Minkowski deformation) and Ω′
ε = (1 − ε)Ω0 +

εΩ (Niftiyev-Gasimov deformation), ε ∈ [0, 1], and compute the shape derivatives of the volume integral shape

functional

Ω 7→ J(Ω) =

∫

Ω

f(x)dx,

where f ∈ W 1,1
loc (R

n). They obtained the following formulas:

Theorem 1. Let Ω0 and Ω be convex and bounded domains in R
n. Then, we have

lim
ε→0+

J(Ωε)− J(Ω0)

ε
=

∫

∂Ω0

f(x)PΩ(ν0(x))dσ(x),

and

lim
ε→0+

J(Ω′
ε)− J(Ω0)

ε
=

∫

∂Ω0

f(x) (PΩ(ν0(x)) − PΩ0
(ν0(x))) dσ(x),

where ν0 denotes the exterior unit normal vector to Ω0.
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The compact and connected set Ω1 being fixed in R
n and of class C2, recall that O(Ω1, D) denotes the set of

all C2 open convex and bounded subsets Ω2 of Rn such that Ω1 ⊂ Ω2 and Ω2 ⊂ D, D being also fixed and is in

fact a large smooth convex and bounded domain. We shall also denote by U(D) the set of convex subdomains of

D which are of class C2.

Now, if ε ∈ [0, 1], Ω2 ∈ O(Ω1, D), Ω′
2 ∈ U(D) and if ε is small enough, we have Ω2 + εΩ′

2 ∈ O(Ω1, D) and we

can write obviously

J((Ω2 + εΩ′
2) \ Ω1) =

∫

D

χ(Ω2+εΩ′

2
)\Ω1

f(x)dx = J(Ω2 + εΩ′
2)− J(Ω1).

Hence, applying Theorem 1 yields

d

dε
(J(Ω2 + εΩ′

2 \ Ω1))|ε=0+ =
d

dε
(J(Ω2 + εΩ′

2))|ε=0+ =

∫

Γ2

f(x)PΩ′

2
(ν2(x))dσ(x). (6)

A straightforward consequence of Theorem 1 is then

Corollary 1. Let Ω2 ∈ O(Ω1, D), Ω′
2 ∈ U(D). Then, we have

lim
ε→0+

J((Ω2 + εΩ′
2) \ Ω1)− J(Ω2 \ Ω1)

ε
=

∫

Γ2

f(x)PΩ′

2
(ν2(x))dσ(x),

where ν2 denotes the exterior unit normal vector to Ω2.

This is why we shall use (Ω2 + εΩ′
2) \ Ω1 as the deformation of the admissible set Ω2 \ Ω1. Note that this is

equivalent to the deformation of the exterior boundary of Ω2 \ Ω1. Of course, the above limit is nothing but the

shape derivative of J at Ω2 \ Ω1 ∈ O in the direction Ω′
2.

In the situation where the function f depends on domains, we have the following formula:

Proposition 1. Let f and fε, ε ∈ [0, 1], be functions in L1(D) such that f0 ∈ W 1,1(D) and f = lim
ε→0+

1

ε
(fε − f0)

in L1(D). If Ω2 ∈ O(Ω1, D) and Ω′
2 ∈ U(D), define I(ε), ε ∈ [0, 1], by

I(ε) =

∫

(Ω2+εΩ′

2
)\Ω1

fε(x)dx.

Then, we have

lim
ε→0+

I(ε)− I(0)

ε
=

∫

Ω2\Ω1

f(x)dx +

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x). (7)

where ν2 denotes the exterior unit normal vector to Ω2.

Proof. First, we can write I(ε) =
∫
Ω2+εΩ′

2

fε(x)dx −
∫
Ω1
fε(x)dx and, clearly, we have

∣∣∣∣
∫

Ω1

(
1

ε
(fε − f0)− f

)
dx

∣∣∣∣ ≤
∫

D

∣∣∣∣
1

ε
(fε − f0)− f

∣∣∣∣ dx→ 0

as ε→ 0+, which reduces the study to the term
∫
Ω2+εΩ′

2

fε(x)dx to which we can apply Corollary 1 of [6] to obtain

lim
ε→0+

I(ε)− I(0)

ε
=

∫

Ω2

f(x)dx+

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x)−

∫

Ω1

f(x)dx =

∫

Ω2\Ω1

f(x)dx+

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x)

which ends the proof. �

In the case where f is the product of two functions depending on the domains, one can state the following:
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Corollary 2. Let (fε)ε∈]0,1[ and (gε)ε∈]0,1[ be two families of functions in L2(D) and let f0 ∈ H1(D), g0 ∈ H1(D)

and f, g be functions such that f = lim
ε→0+

1

ε
(fε − f0) in L2(D) and g = lim

ε→0+

1

ε
(gε − g0) in L2(D). Consider the

function

ε ∈]0, 1[ 7→ F (ε) =

∫

(Ω2+εΩ′

2
)\Ω1

fεgε(x)dx ∈ R.

Then, we have

lim
ε→0+

F (ε)− F (0)

ε
=

∫

Ω2\Ω1

(gf0 + fg0)(x)dx +

∫

Γ2

f0g0(x)PΩ′

2
(ν2(x))dσ(x), (8)

where ν2 denotes the exterior unit normal vector to Ω2.

Proof. This is an easy consequence of Proposition 1 since f0g0 ∈ W 1,1(D) and

1

ε
(fεgε − f0g0)− f0g − fg0 =

1

ε
(fε − f0) (gε − g0) + g0

(
1

ε
(fε − f0)− f

)
+ f0

(
1

ε
(gε − g0)− g

)
−−−−→
ε→0+

0

in L1(D). �

4 Shape derivative of the shape optimization problem

Recall that U(D) is the set of convex subdomains of D which are of class C2,

O(Ω1, D) = {Ω ⊂ R
n ; Ω1 ⊂ Ω, Ω ⊂ D, Ω is open, convex and of class C2},

and O = {Ω ⊂ R
n ; Ω = Ω2\Ω1, Ω2 ∈ O(Ω1, D)},

where Ω1 is a fixed compact and connected subset of Rn of class C2 and D is a fixed large smooth convex and

bounded domain in R
n.

In this section, we state and prove the main theoretical result of this paper which concerns the shape derivative

of the functional

J (Ω, uΩ) =

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx , (9)

where Ω ∈ O and uΩ is the solution of the state problem on Ω, that is,





−∆uΩ = f in Ω = Ω2 \ Ω1

uΩ = ϕ1 on Γ1 = ∂Ω1

∂ν2uΩ = ∂ν2G on Γ2 = ∂Ω2.

(10)

The following remark will be useful in the proof of the theorem below.

Remark 1. When one assumes that Ω is strongly convex, Ωε can be considered as a deformation of the domain Ω

by a vector field V (x) satisfying 〈V (x), ν(x)〉 = PΩ′(ν(x)) (see [6, 7]). Therefore, when f ∈ H1(D), ϕ1 ∈ H
1
2 (Γ1)

and G ∈ H3(D), we can write

ũε = ũ+ ε u′ + ε vε in H1(D),

where ũ and ũε are extensions to D of uΩ and uΩε
respectively, and u′ is the shape derivative of ũ with respect to

the vector field V (see for example, [13, 26]). It follows from that result that there exists a function denoted F ′
0 in

L1(D), such that
1

ε
[F (., ũε,∇ũε)− F (., ũ,∇ũ)]− F ′

0 −→ 0 in L1(D), ε→ 0,

which allows to apply the Proposition 1 in order to compute the shape derivative of J .
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We can state now the main theoretical result of this paper.

Theorem 2. In the formulation (5), assume that f ∈ H1(D), ϕ2 ∈ H2(D), ϕ1 ∈ H
1
2 (Γ1) and G ∈ H3(D). Let

Ω2 ∈ O(Ω1, D), Ω′
2 ∈ U(D) and Ωε = (Ω2 + εΩ′

2) \Ω1. Assume further that 0 ∈ Ω′
2 and that Ω′

2 is strongly convex.

Then, the shape derivative of J (Ω, uΩ) at Ω = Ω2 \ Ω1 in the direction Ω′
2 is given by

lim
ε→0+

J (Ωε, uΩε)− J (Ω, uΩ)

ε
=

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ(x), (11)

where

B = div((uΩ − ϕ2)
2Id) + 〈∇(uΩ −G),∇ψ〉 − (f +∆G)ψ,

ψ is the solution of the adjoint state problem





−∆ψ = 0 in Ω,

ψ = 0 on Γ1 = ∂Ω1,

∂ν2ψ = −2(uΩ − ϕ2)〈ν2, Id〉 on Γ2 = ∂Ω2,

(12)

and ν2 denotes the exterior unit normal vector to Γ2.

Proof. The fact that 0 ∈ Ω′
2 implies that Ω2 ⊂ Ω2 + εΩ′

2 and hence that Ω = Ω2 \ Ω1 ⊂ Ωε = (Ω2 + εΩ′
2) \ Ω1.

Consequently, we obtain that uΩ and uΩε are respectively solutions of




−∆uΩ = f in Ω,

uΩ = ϕ1 on Γ1,




−∆uΩε = f in Ω,

uΩε = ϕ1 on Γ1.

Therefore, if we denote by δu = uΩε − uΩ, we obtain that δu satisfies




−∆(δu) = 0 in Ω,

δu = 0 on Γ1 ⊆ Γ.
(13)

Now, since div((uΩ−ϕ2)
2x) = 2(uΩ−ϕ2)〈∇(uΩ−ϕ2), x〉+n (uΩ−ϕ2)

2, let us introduce the function F defined

on D × R× R
n by F (x, y, z) = 2(y − ϕ2(x))〈z −∇ϕ2(x), x〉 + n(y − ϕ2(x))

2, so that we can write

J (Ω, uΩ) =

∫

Ω

F (x, uΩ(x),∇uΩ(x)) dx. (14)

Next, consider the expression △J = J (Ωε, uΩε)− J (Ω, uΩ). We can write

△J =

∫

Ω

(F (x, uΩε(x),∇uΩε (x)) − F (x, uΩ(x),∇uΩ(x))) dx+ J1(ε).

where

J1(ε) =

∫

Ωε

F (x, uΩε(x),∇uΩε(x))dx −

∫

Ω

F (x, uΩε(x),∇uΩε(x))dx.

Let us now rewrite the expression δF = F (x, uΩε
,∇uΩε

)− F (x, uΩ,∇uΩ) as follows:

δF = div((uΩε
− ϕ2)

2Id)− div((uΩ − ϕ2)
2Id) = div(δu(δu+ 2(uΩ − ϕ2))Id)

= 〈∇(δu), Id〉(δu + 2(uΩ − ϕ2)) + δu〈∇(δu+ 2(uΩ − ϕ2)), Id〉+ nδu(δu+ 2(uΩ − ϕ2))

= 2δu〈∇(δu), Id〉+ 2δu〈∇(uΩ − ϕ2), Id〉+ 2(uΩ − ϕ2)〈∇(δu), Id〉+ n(δu)2 + 2nδu(uΩ − ϕ2) (15)

= 〈vΩ,∇(δu)〉+ div(vΩ)δu+ n(δu)2 + 2δu(x)〈∇(δu)(x), x〉

= div(vΩδu) + n(δu)2 + 2δu(x)〈∇(δu)(x), x〉.
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where vΩ(x) = 2(uΩ(x) − ϕ2(x))x. Hence,

△J = J1(ε) + J2(ε) + J3(ε), (16)

where

J2(ε) =

∫

Ω

div(vΩδu)(x)dx and J3(ε) = n||δu||2L2(Ω) + 2

∫

Ω

δu(x)〈∇(δu)(x), x〉dx.

It follows from the divergence formula that

J2(ε) =

∫

∂Ω

〈vΩ, ν〉(x)δu(x)dσ = 2

∫

Γ2

(uΩ − ϕ2)〈ν2(x), x〉δu(x)dσ − 2

∫

Γ1

(uΩ − ϕ2)〈ν1(x), x〉δu(x)dσ,

and if ψ is the unique solution of the boundary value problem





−∆ψ = 0 in Ω,

ψ = 0 on Γ1,

∂ν2ψ = −2(uΩ − ϕ2)〈ν2, Id〉 on Γ2,

we can write

J2(ε) = −

∫

Γ2

∂ν2ψ(x)δu(x)dσ − 2

∫

Γ1

(uΩ − ϕ2)〈ν1(x), x〉δu(x)dσ = −

∫

Γ2

∂ν2ψ(x)δu(x)dσ(x), (17)

since δu = 0 on Γ1. Using the fact that ∆(δu) = ∆ψ = 0 on Ω and δu = ψ = 0 on Γ1, it follows from the Green’s

formula that

J2(ε) = −

∫

Γ

∂νψ(x)δu(x)dσ = −

∫

Γ

ψ(x)∂νδu(x)dσ.

On the other hand, J1 can be written J1(ε) = J1,1(ε)− J1,2(ε) with

J1,1(ε) =

∫

Ωε

F (x, uΩε
(x),∇uΩε

(x))dx and J1,2(ε) =

∫

Ω

F (x, uΩε
(x),∇uΩε

(x))dx.

Now, it follows from Remark 1 that one can apply Proposition 1 to the function Fε = F (., uΩε
,∇uΩε

) to obtain

d

dε
(J1,1(ε))|ε=0+ =

∫

Ω2\Ω1

F ′
0(x)dx +

∫

Γ2

F0(x)PΩ′

2
(ν2(x))dσ and

d

dε
(J1,2(ε))|ε=0+ =

∫

Ω2\Ω1

F ′
0(x)dx.

Hence,
d

dε
(J1(ε))|ε=0+ =

∫

Γ2

F0(x)PΩ′

2
(ν2(x))dσ, where F0 = F (., uΩ,∇uΩ). (18)

Next, let’s calculate the derivative of J2. We can write

J2(ε) = −

∫

Γ

∂νδu(x)ψ(x)dσ = −

∫

Γ

(∂νuΩε(x)− ∂νG(x))ψ(x)dσ +

∫

Γ

(∂νuΩ(x) − ∂νG(x))ψ(x)dσ

First, since ∂ν2uΩ = ∂ν2G on Γ2 and ψ = 0 on Γ1, we have
∫

Γ

(∂νuΩ(x) − ∂νG(x))ψ(x)dσ =

∫

Γ1

(∂ν1uΩ − ∂ν1G) (x)ψ(x)dσ +

∫

Γ2

(∂ν2uΩ − ∂ν2G) (x)ψ(x)dσ = 0.

Next, it follows from the fact that ∂νε
2
uΩε = ∂νε

2
G on ∂(Ω2 + εΩ′

2) and ψ = 0 on Γ1, that (∂νεuΩε − ∂νεG)ψ = 0

on Γε = ∂Ωε. Therefore, we can write

J2(ε) = −

∫

Γ

(∂νuΩε − ∂νG)ψdσ +

∫

Γε

(∂νεuΩε − ∂νεG)ψdσ,

and it follows from the divergence formula that

J2(ε) = −

∫

Ω

div(∇(uΩε −G)ψ)(x)dx +

∫

Ωε

div(∇(uΩε −G)ψ)(x)dx.
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Now, since −∆uΩε
= f on Ωε and Ω ⊂ Ωε, we also have −∆uΩε

= f on Ω. Hence,

div(∇(uΩε
−G)ψ) = 〈∇(uΩε

−G),∇ψ〉+ ψ∆(uΩε
−G) = 〈∇(uΩε

−G),∇ψ〉 + ψ(−f −∆G).

Let us write J2(ε) = J2,1(ε) + J2,2(ε) + J2,3(ε) + J2,4(ε), where

J2,1(ε) = −

∫

Ω

〈∇(uΩε
−G),∇ψ〉(x)dx, J2,2(ε) = −

∫

Ω

(−f −∆G)ψ(x)dx,

J2,3(ε) =

∫

Ωε

〈∇(uΩε
−G),∇ψ〉(x)dx and J2,4(ε) =

∫

Ωε

(−f −∆G)ψ(x)dx.

Let Bε stand for the function 〈∇(uΩε
− G),∇ψ〉. It follows from the argument of Remark 1 that there exists

B′
0 ∈ L1(D) such that

1

ε
(Bε −B0)−B′

0 −→ 0 in L1(D), ε→ 0.

Obviously, we have d
dε

(J2,2(ε))|ε=0+ = 0 and applying Proposition 1 yields the following shape derivatives:

d

dε
(J2,1(ε))|ε=0+ = −

∫

Ω2\Ω1

B′
0(x)dx,

d

dε
(J2,3(ε))|ε=0+ =

∫

Ω2\Ω1

B′
0(x)dx +

∫

Γ2

B0(x)PΩ′

2
(ν2(x))dσ,

and
d

dε
(J2,4(ε))|ε=0+ =

∫

Γ2

(−f −∆G)ψ(x)PΩ′

2
(ν2(x))dσ.

Therefore,

d

dε
(J2(ε))|ε=0+ =

∫

Γ2

(B0(x)− (f +∆G)ψ(x))PΩ′

2
(ν2(x))dσ

=

∫

Γ2

(〈∇(uΩ −G),∇ψ〉 − (f +∆G)ψ(x))PΩ′

2
(ν2(x))dσ, (19)

and gathering (18) and (19) gives

d

dε
(J1(ε) + J2(ε))|ε=0+ =

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ, (20)

where B(x) = div((uΩ(x)− ϕ2(x))
2x) + 〈∇(uΩ −G)(x),∇ψ(x)〉 − (f +∆G)(x)ψ(x).

Let us show now that J3(ε) = o(ε), that is, limε→0+
J3(ε)

ε
= 0.

We have

δu∆(δu) =

n∑

i=1

δu ∂2i δu = −

n∑

i=1

(∂i(δu))
2 +

n∑

i=1

∂i(δu∂i(δu)).

It follows from (13) that δu∆(δu) = 0 in Ω, so that

n∑

i=1

(∂i(δu))
2 =

n∑

i=1

∂i(δu∂i(δu)) in Ω.

Applying the divergence formula yields

n∑

i=1

∫

Ω

(∂i(δu))
2 =

n∑

i=1

∫

Ω

∂i(δu∂i(δu))(x)dx =

∫

Γ

δu∂ν(δu)(x)dσ =

∫

Γ

∂νuΩε(x)δu(x)dσ −

∫

Γ

∂νuΩ(x)δu(x)dσ,

which can also be written as

||∇δu||2L2(Ω) =

n∑

i=1

∫

Ω

(∂i(δu))
2 =

∫

Γ

(∂νuΩε(x)− ∂νG(x)) δu(x)dσ −

∫

Γ

(∂νuΩ(x)− ∂νG(x)) δu(x)dσ
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=

∫

Γ

(∂νuΩε(x) − ∂νG(x)) δu(x)dσ,

since δu = 0 on Γ1 and ∂ν2uΩ = ∂ν2G on Γ2. Moreover, it follows from the fact that ∂νε
2
uΩε = ∂νε

2
G on

∂(Ω2 + εΩ′
2) and δu = 0 on Γ1 that (∂νεuΩε − ∂νεG) δu = 0 on Γε = ∂Ωε, which allows us to write

||∇δu||2L2(Ω) =

∫

Γ

(∂νuΩε(x)− ∂νG(x)) δu(x)dσ −

∫

Γε

(∂νεuΩε(x)− ∂νεG(x)) δu(x)dσ,

to which we apply the divergence formula to obtain

||∇δu||2L2(Ω) =

∫

Ω

div(∇(uΩε
−G)δu)(x)dx −

∫

Ωε

div(∇(uΩε
−G)δu)(x)dx.

Now, the fact that −∆uΩε
= f in Ωε (hence, in Ω also) implies

div(∇(uΩε −G)δu) = 〈∇(uΩε −G),∇δu〉+∆(uΩε −G)δu = 〈∇(uΩε −G),∇δu〉 − (f +∆G)δu,

which allows us to write ||∇δu||2L2(Ω) = Ξ1(ε) + Ξ2(ε) + Ξ3(ε) + Ξ4(ε), where

Ξ1(ε) =

∫

Ω

〈∇(uΩε −G),∇δu〉(x)dx, Ξ2(ε) = −

∫

Ω

(f +∆G)δu(x)dx,

Ξ3(ε) = −

∫

Ωε

〈∇(uΩε −G),∇δu〉(x)dx and Ξ4(ε) =

∫

Ωε

(f +∆G)δu(x)dx.

Denote byWε the function defined byWε = 〈∇(uΩε
−G),∇δu〉 and byHε the function defined byHε = (f+∆G)δu,

with W0 = 0 and H0 = 0. Once more, the argument of Remark 1 implies that there exist W ′
0 ∈ L1(D) and

H ′
0 ∈ L1(D) such that, when ε→ 0,

1

ε
(Wε −W0)−W ′

0 −→ 0 and
1

ε
(Hε −H0)−H ′

0 −→ 0,

in L1(D). This allows us to apply Proposition 1 to obtain

d

dε
Ξ1(ε)|ε=0+ = −

∫

Ω2\Ω1

W ′
0(x)dx,

d

dε
Ξ2(ε)|ε=0+ = −

∫

Ω2\Ω1

H ′
0(x)dx (21)

d

dε
Ξ3(ε)|ε=0+ =

∫

Ω2\Ω1

W ′
0(x)dx +

∫

Γ2

W0(x)PΩ′

2
(ν2(x))dσ =

∫

Ω2\Ω1

W ′
0(x)dx (22)

and
d

dε
Ξ4(ε)|ε=0+ =

∫

Ω2\Ω1

H ′
0(x)dx +

∫

Γ2

H0(x)PΩ′

2
(ν2(x))dσ =

∫

Ω2\Ω1

H ′
0(x)dx. (23)

Consequently, d
dε

||∇δu||2L2(Ω)

∣∣∣
ε=0+

= 0, which implies that ||∇δu||2L2(Ω) = o(ε). It remains to apply the Poincaré

inequality: there exists a constant CΩ such that

||δu||2L2(Ω) ≤ CΩ||∇δu||
2
L2(Ω),

and ∣∣∣∣2
∫

Ω

δu〈∇(δu), Id〉

∣∣∣∣ ≤ C||δu||L2(Ω)||∇δu||L2(Ω) ≤ C CΩ||∇δu||
2
L2(Ω),

with some positive constant C. These two inequalities imply of course that

J3(ε) = n||δu||2L2(Ω) + 2

∫

Ω

δu(x)〈∇(δu)(x), x〉dx = o(ε).

Thus, recalling (20), we have proved that

△J = J1(ε) + J2(ε) + J3(ε) = ε

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ + o(ε),

and this achieves the proof of the theorem. �
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5 Identification process for optimal domain

The numerical optimization process used for the estimation of the unknown free boundary Γ2 of Ω is based on the

gradient method presented in the following.

5.1 Gradient Method

Using the gradient of J determined by equation (5), the computation of the optimal shape is summarized in the

following algorithm.

1. Choose Ω0 = Ω0,2 \ Ω1 ∈ O , ρ ∈]0, 1[ and a precision EPSD.

2. Solve the state problem 



∆u = f in Ω0,

u = ϕ1 on Γ1,

∂ν2u = ∂ν2G on Γ0,2.

(24)

3. Solve the adjoint state problem





∆ψ = 0 in Ω0,

ψ = 0 on Γ1,

∂ν2ψ = −2(u− ϕ2) 〈ν2(x), x〉 on Γ0,2.

(25)

4. Compute B by the relation

B (x) = div
(
(u− ϕ2)

2
x
)
+ (∇ (u−G) ,∇ψ)− (f +∆G)ψ).

5. Compute P0 = PΩ0,2

6. Compute P̂ the solution of

arg min
P∈P

j(P ) (26)

where

j(P ) =

∫

Γ0,2

B(x)(P − P0)(ν(x)) ds

and

P = {Φ ∈ C(R2) / Φ is convex and PΩ1
≤ Φ ≤ PD}.

7. At step k

if ‖uk − ϕ2‖L2(Γk,2) ≤ EPSD Go to 10.

where uk is the solution of the state equation in Ωk (the domain at step k) and Γk,2 is the outside boundary

of Ωk.

8. Compute

Pk+1 = (1 − ρ)Pk + ρ P̂k

9. Compute the domain Ωk+1 associated to Pk+1 by

Ωk+1 = ∂Pk+1 (0) =
{
l ∈ R

2 / Pk+1 (x) ≥ (l, x) , ∀x ∈ R
2
}

Go to 2.

10. End.
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5.2 Discretization of the problem

In this section, we approach the optimal shape design problem (5) using the boundary element method. For this,

the state problem (24) and the adjoint state problem (25) can be written in terms of boundary integral equation [10]

by the equation

c(ξ)u(ξ) =

∫

∂Ω

{
u(y)∂νy ln |ξ − y|

}
dsy − ∂νyu(y) ln |ξ − y|dsy (27)

where c(ξ), called the free term, is 0 if ξ 6∈ Ω ∪ ∂Ω, 1 if ξ ∈ Ω and θ/2π if ξ ∈ ∂Ω, where θ is the interior angle

between the left and right tangents to the boundary at the point ξ; u∗(y; ξ) = (1/2π)ln(1/r) is the fundamental

solution for the Laplace equation; r = |y− ξ| is the distance between the collocation point ξ and the integration or

observation point y; and q∗ = −(1/2π)∂u∗/∂ν is the flux associated to the potential u∗(y; ξ).

The subdivision of the boundary can be done using different types of elements. In the present investigation,

constant elements are considered. Assuming that over each boundary element ∂Ωi of ∂Ω the functions u and

q =
∂u

∂ν
are constant and take their values ui and qi at the centroid ξi, the resulted discretized boundary integral

equation at node k has the following form

NE∑

l=1

Hklul =

NE∑

l=1

Gklql, (28)

where NE is the number of boundary elements ∂Ωi such that ∂Ω = ∪NE
i=1∂Ωi. The components of the coefficient

matrices H and G are given by

Hkl =

∫

∂Ωl

q∗k when k 6= l, (29)

Hkl =

∫

∂Ωl

q∗k +
1

2
when k = l, (30)

Gkl =

∫

∂Ωl

u∗k. (31)

A four-point Gaussian quadrature rule is employed for numerical integration of the components of the coefficient

matrices H and G. However, for calculating the diagonal components, special care must be taken. The diagonal

terms Hkk vanish due to the orthogonality of the element coordinate and the normal. The terms Gkk can be

calculated analytically and it is given by the following equation

Gkk =
Le

2π

[
ln(

2

Le

) + 1

]
(32)

where Le is the element length. The values of the off-diagonal coefficients of H and G can be written as [10]

Hkl =

4∑

i=1

−(
1

d2s
)Lws

√
(R1 −R2)2 + (S1 − S2)2

2
(33)

Gkl =

4∑

i=1

ln(
1

ds
)ws

√
(R1 −R2)2 + (S1 − S2)2

2
(34)

where R1, R2, S1 and S2 are the coordinates of the extreme mounts of each element, ws are the weighting for each

point, L is the distance from the collocation point to the line element tangent to the element and d is the distance

from collocation point to the Gauss integration points on the boundary element. We note that the system (28) can

easily be rearranged as a system of order n and written in a generic form

Ax = b (35)
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Its right-hand side is obtained by multiplication of the appropriate columns of the influence matrices H and G by

values known from boundary conditions. Components of the vector of the unknowns x as well as components of

the main matrix A depend on the boundary condition at the considered node. We obtain

Aij =

{
−Gij for Dirichlet’s boundary condition

Hij for Neumann’s boundary condition
(36)

xj =

{
qj for Dirichlet’s boundary condition

uj for Neumann’s boundary condition
(37)

Let now m be the number of the boundary elements located at the free boundary Γ2, such that m < n and n−m

is the number of boundary elements located at the inside fixed boundary Γ1 of Ω. Let Y = (yi)
m
i=0 be a partition

of Γ2, where yi = (y
(1)
i , y

(2)
i ), we denote by ξ = (ξi)

m
i=0 a partition of Γ2, such that ξi = (ξ

(1)
i , ξ

(2)
i ) is the centroid

of the boundary elements [yi, yi+1].

The discrete gradient of the cost function can be read as follows

j(P ) =

m∑

i=0

hiBi (Pi − PΩ(ν(ξi)))

where hi = ‖yi+1 − yi‖; P = (Pi = P (ν(ξi))
m
i=0; ν(ξi) is the outward unit normal vector to the boundary elements

yiyi+1 and Bi = B(ξ
(1)
i , ξ

(2)
i ) is given by the relation

Bi = 2 (ui − ϕ2(ξi))
(
∇uh(ξi)−∇ϕ2(ξi), ξi

)
+ 2 (ui − ϕ2(ξi))

2

+
(
∇
(
uh(ξi)−Gh(ξi)

)
,∇ψh(ξi)

)
+
(
f(ξi)−∆Gh(ξi)

)
ψi)

where uh is the approximate solution of the state equation, such that (uh(ξ) = ui)
n
i=0 is the solution of a linear

system of type (35), ψh is the approximate solution of the adjoint state equation, such that (ψh(ξ) = ψi)
n
i=0 is

the solution of a linear system of type (35) and Gh is a approximation of G. The discrete space of the admissible

support function can be read

P =
{
P = (P0, ..., Pm) ∈ R

m+1 / PΩ1
(ν(ξi)) ≤ Pi ≤ PD(ν(ξi)) i = 1, . . . , m− 1, P0 ≤ λ0 Pm + (1− λ0)P1,

Pi ≤ λi Pi−1 + (1− λi)Pi+1 i = 1, . . . , m− 1 and Pm ≤ λm Pm−1 + (1 − λm)P0}

where

λi =
‖ν(ξi−1)− ν(ξi)‖

‖ν(ξi)− ν(ξi+1)‖
for i = 1, . . . , m− 1

and

λ0 =
‖ν(ξm)− ν(ξ0)‖

‖ν(ξ0)− ν(ξ1)‖
λm =

‖ν(ξm−1)− ν(ξm)‖

‖ν(ξm)− ν(ξ0)‖
.

The discrete domain associated to Ω0 = ∂P̄ (0) =
{
l ∈ R

2 / P̄ (x) ≥ (l, x) , ∀x ∈ R
2
}
is given as solution of the

following relations [24]

ν(1)(ξi) l
(1)
i + ν(2)(ξi) l

(2)
i = P̄i for i = 0, . . . , m

To compute li = (l
(1)
i , l

(2)
i ), we suppose that li − ξi is collinear to ν(ξi) i.e.

ν(1)(ξi) l
(2)
i − ν(2)(ξi) l

(1)
i = ν(1)(ξi) ξ

(2)
i − ν(2)(ξi) ξ

(1)
i for i = 0, . . . , m

6 Numerical results

To illustrate the ability of the present algorithm in estimating the optimal shape and location of the unknown

boundary Γ2, we consider in the following two the specific models: the analysis one and the design one.
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In the analysis model, the exact boundary Γ2 and the exact solution u of the free boundary problem (5) are

known. By using the exact value of u on Γ1 and Γ2, and arbitrary initial guesses of the boundary, one is asked

to reconstruct the exact boundary by the gradient method combined with our proposed method used for the

computation of the gradient.

The design model is devoted to the investigation of some numerical experiment based on the approaches

proposed in the previous works to explore free boundary problems of Bernoulli type.

6.1 Analysis model

The main objective of the analysis model is to show the validity of the present design algorithm in estimating the

unknown boundary and to verify the accuracy of our method in the computation of the shape derivative of the

cost function. For this reason the following numerical simulation is performed. For the first example, we consider

the exact solution of (2) given by u(x, y) = x2 − y2 and the exact domain given by considering Ω = Ω2 \Ω1, where

Ω2 = {(x, y) / x2 + y2 < (1.5)2}

Ω1 = {(x, y) / x2 + y2 ≤ (0.75)2}

In all the test cases considered for this analysis model, the initial guesses of the domain Ω2 is taken as a ellipse with

axes of length 3 in x and 2 in y and of center (0, 0). The number of boundary elements used for the discretization

of the free boundary and the fixed boundary were taken to be respectively m = 40 and n − m = 30 (n = 70).

The coefficient of deformation and the precision are respectively taken ρ = 0.01 and EPSD = 10−3. The optimal

boundary is reached after 181 iterations. In figure 6.1, we plot the fixed and initial domain, and the exact and the

optimal solution. We note that our approach give a good solution. the variation of the cost function with respect

to the number of iterations is presented in figure 6.1. In figure 6.1, we plot the initial boundary, the free boundaries

at 10, 40, 80, 120 and 150 iterations.
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Figure 2: The optimal and the exact solutions
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Figure 3: Variation of the cost with respect to the number of iterations
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Figure 4: the free boundaries at different number of iterations.
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Now we keep the same solution u = x2 − y2, but the exact domain is defined by the ellipse with axes of

length 1.5 in x and 1 in y and of center (0, 0). For the same number of boundary elements and for the coeffi-

cient of deformation and the precision respectively taken ρ = 0.0001 and EPSD = 10−3 the optimal boundary

is reached after 111 iterations. The fixed and the initial domain, and the exact and the optimal solution are pre-

sented in figure 6.1. In figure 6.1, we plot the variation of the cost function with respect to the number of iterations.
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Figure 5: The optimal and the exact solutions.
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Figure 6: Variation of the cost with respect to the number of iterations.

6.2 Design model

In this section, we present some numerical results for the exterior free boundary problems using the approach

presented in the previous section. The exterior Bernoulli free boundary reads as follows. Find outside boundary

Γ2 and function u = u(x) solution of the problem





−∆u = 0 in Ω,

u = 0 on Γ1,

u = 1 on Γ2,
∂u
∂ν

= C on Γ2,

(38)

where C is a negative constant.

The first numerical example is given in order to confirm the fundamental observation (see [16]), that is for a fixed

domain Ω1 which is the ball Br
0 of center (0, 0) and radius r a solution is a ball BR

0 of center (0, 0) and radius R,

such that R > r; and moreover R increases when C increases. In all the test cases considered for this design model,

the initial guesses of the domain is taken as a circle of radius 3. and of center (0, 0). In the first example, the fixed

domain is chosen as circle of radius 0.75 and of center (0, 0), and the number of boundary elements used for the

discretization of the free and fixed boundaries are taken the same as in the above examples. The coefficient of de-

formation and the precision are respectively taken ρ = 0.01 and EPSD = 10−5. The optimal domains for different

values of C are presented in figure 6.2. The values of the cost functions for different values of C are given in table 6.2.
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Figure 7: The optimal domains for different values of C.

C -0.35 -0.75 -1.5 -2.5

Cost 1.55 10−6 8.55 10−8 4.3 10−8 4.34 10−6

Table 1: Cost functions for different values of C.

Now for the second example, we keep the same data, but the fixed domain Ω1 is taken as a polygon. The number

of boundary elements used for the discretization of the free boundary and the fixed boundary were taken to be

respectively m = 40 and n−m = 40 (n = 80). The fixed domain and the optimal domains for different values of C

are presented in figure 6.2. We observe that the optimal shapes take the same profile to those obtained in [18,21].
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Figure 8: The optimal domains for different values of C.

7 Conclusion

In this work, a shape optimization formulation is considered for the approximation of the free boundary Bernoulli

problem. We show the existence of the shape derivative of the cost functional and establish its expression via

support functions, in order to avoid the tedious use of the shape derivative method based on the vector fields.

Then the gradient method combined with the boundary element method are performed for the discretization of the

problem. Finally we give some numerical results showing the ability and effectiveness of the proposed approach.
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