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Abstract

This paper is devoted to a numerical method for the approximation of a class of free boundary

problems of Bernoulli’s type, reformulated as optimal shape design problems with appropriate shape

functionals. We show the existence of the shape derivative of the cost functional on a class of admissible

domains and compute its shape derivative by using the formula proposed in [5, 6], that is, by means

of support functions. On the numerical level, this allows us to avoid the tedious computations of

the method based on vector fields. A gradient method combined with boundary element method are

performed for the approximation of this problem, in order to overcome the re-meshing task required

by the finite element method. Finally, we present some numerical results and simulations concerning

practical applications, showing the effectiveness of the proposed approach.

Keywords shape optimization, free boundary problem, Bernoulli problem, optimal solution, shape derivative,

convex domain, support function, cost functional.

1 Introduction

The main target of shape optimization is to provide a common and systematic framework for optimizing structures

described by various practical physical or mechanical models; especially, hydrodynamics, elasticity, geophysics

and aerodynamics models. Shape optimization problems consist in finding the optimal shape (or domain) which
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minimizes a certain cost functional under given constraints such as a partial differential equation defined on the

variable domain. Since the seventies of the last century, many authors investigated the shape optimization field

and remarkable progress has been achieved in shape and topology optimization. In fact, the growing interest in

this field reflects a growing sophistication in structural analysis and optimization which allow solving more and

more difficult shape optimization problems. However, one may say that no uniform approach to shape optimization

problems has yet emerged.

The numerical investigation of shape optimization problems is based on the study of the first variation of

the cost functional, and in particular on the computation of its gradient. So, as the variation of the domain is

characterized by the variation of its boundary, in this process arise both numerical and theoretical difficulties. The

method of variation of domains using vector fields, introduced by Céa [11] and developed then, among others,

by Murat, Simon, Sokolowski, Delfour and Zolésio [12, 23], Allaire [2] and Henrot and Pierre [16], allowed to

solve some of these issues. But these techniques themselves present some difficulties from both theoretical and

numerical point of view. For example, when one wants to connect the set of admissible domains with vector fields,

one has to suppose high smoothness conditions on the initial data in order to differentiate functions depending

on the domain. Note also that to solve a conditional shape optimization problem by this method is yet more

complicated and usually requires to reduce it to a non conditional problem (for example, by Lagrange’s multipliers

method). Moreover, the numerical implementation of the shape optimization problem requires to extend the vector

field (obtained only on the boundary) to all the domain or to re-mesh at each iteration of the process, and both

approaches are expensive (see for example Allaire [2]). In this paper, in order to avoid part of the above issues,

we define and use another way of variation of domains, a way that is linked to the convexity context and based

on the Minkowski sum. Recall that for any convex bounded domain the support function of this domain is a

continuous convex and positive homogeneous function. Conversely, it is known that each continuous convex and

positive homogeneous function is the support function of a convex bounded set (sub-differential of this function at

the origin). Using this, the variation of the domain is clearly characterized by the variation of the corresponding

support function. Moreover, according to the works [5–7, 21], one can express the shape derivative of volume cost

functionals by means of support functions, and when solving problems numerically one gets a support function at

each step of the implementation, the domain being recovered as the subdifferential of the support function. This is

why we think that, in the context of convexity and numerical approximation, the use of support functions is more

advantageous than that of vectors fields.

More precisely, we are interested in this paper in a shape optimization problem for solving numerically the

so-called Bernoulli’s free boundary problem or Bernoulli’s problem. Note that many applications to fluid dynamic

and industrial application lead to such a free boundary problem. As an example, let us quote the problem where

the design of an annular capacitor is required in which one of the plates is prescribed while the other must be

determined, so that the intensity of the electrostatic field remains constant thereon. Depending on whether we

describe the internal or external plate, we have an exterior or an interior Bernoulli problem. This class of problems

has been extensively studied theoretically by several authors, see for example [1, 10, 13, 19] and references therein.

In practice, a way to study this type of problem is to transform it into a shape optimization problem where one

of the Dirichlet or Neumann boundary condition on the free boundary is included into a cost functional while the

other boundary condition is considered as part of an appropriate state problem. The question of existence for such

shape optimization formulations is studied for example in [14] or [8], using the C2 or C1 regularity of the free

boundary. On the numerical level, approximations of such shape optimization formulations of this free boundary

problem can be found in the literature, using techniques that are different from ours. For example, a variational

approach to shape derivatives is introduced in [18], a fictitious domain approach for solving this free boundary

problem is proposed in [15], a pseudo-solid approach for solving its discrete problem is introduced in [25], a shape

optimization approach by tracking the Neumann data and using the lagrangian formulation is developed in [22] and

an iterative method based on a level-set formulation and boundary element method is proposed in [4, 20]. In this

2



work, we propose a shape optimization formulation of this problem using a volume cost functional. We develop a

method for the shape differentiability of this cost functional, and establish the expression for its shape derivative via

support functions, using the formula of shape derivative with respect to convex domains proposed in [5, 6]. Then,

we propose a gradient method for solving the shape optimization problem. Thereby, during the numerical solving

of such problem, we get at each step support functions instead of domains. In this process, the discretization of

the state problem is done using the boundary element method [9], while in most of shape optimization approaches,

finite element method has been employed for sensitivity computation. However, the approaches generally suffer

certain drawbacks; indeed, in shape optimization, cumbersome parameterization of design domain is required and

time consuming re-meshing task is also necessary. Finally, we give some numerical results showing the effectiveness

of the proposed approach.

The outline of the paper is as follows. In the second section, we present the shape optimization formulation for

the approximation of Bernoulli’s problem. In the third section, we give some preliminary results on the existence

of the shape derivative of the cost functional on the considered family of admissible domains and establish the

expression for its shape derivative by means of support functions. In the fourth section, we propose an algorithm for

the approximation of the problem, based on a gradient method combined with the boundary element discretization.

Finally, in order to illustrate the main result of this paper, the last section is focused on some numerical simulation

applied to practical situations.

2 Shape optimization formulation of Bernoulli’s problem

Let D be a fixed smooth convex bounded and open subset of Rn (n ≥ 2). Let Ω be a doubly connected open subset

of D, that is, Ω is of the form Ω = Ω2 \ Ω1, where Ω2 is a smooth convex bounded and open subset of D and Ω1

is a smooth closed and bounded subset of Ω2. We denote by Γ1 the boundary of Ω1 which is also the fixed inside

part of the boundary of Ω and by Γ2 the boundary of Ω2 which is at the same time the outside free boundary of

Ω (see Figure 2).

Let us consider the external free boundary Bernoulli problem which consists in finding the free boundary Γ2

and u = u(x) solution of the problem

(P )





−∆u = f in Ω = Ω2 \ Ω1,

u = ϕ1 on Γ1,

u = ϕ2 on Γ2,

∂ν2u = ∂ν2G on Γ2,

(1)

where f , ϕ1, ϕ2 and G are given functions, ν2 is the outward unit normal vector to Γ2 and ∂ν2u = 〈∇u|Γ2 , ν2〉,

where 〈·, ·〉 denotes the scalar product in R
n.

Let us first remark that in the free boundary problem (1) two boundary conditions must be satisfied on Γ2.

This suggests to reformulate such a problem as an optimal shape design one to be able to solve it numerically. We

refer for example to [8, 14, 18] where the idea of reformulating a free boundary problem into a shape optimization

one is used. Here, it consists in finding Γ2 and u solution of the shape optimization problem
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



Minimize J (Ω, uΩ) for all Ω ∈ O

whereJ (Ω, uΩ) =

∫

Γ2

(uΩ(x)− ϕ2(x))
2dσ

and uΩ is solution of

(PE)





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ2,

(2)

where O is a set of admissible domains.

Figure 1: The considered domain Ω.

In order to avoid the difficulties that arise because the cost functional introduced in the shape optimization

problem (2) is defined by a surface integral, we propose in what follows a new formulation where the surface

integral is replaced by a volume integral. This moreover will allow us to be able to use the shape derivative

formulas developed in [5, 6].

2.1 New formulation of the problem

In order to propose a shape optimization formulation of the problem, we will first give some preliminary results on

convex domains.

Lemma 1. Let Ω an open bounded convex subset of Rn of class Ck, (k ≥ 1). Then, for all fixed y ∈ Ω, we have

〈ν(x), x − y〉 > 0, for all x ∈ ∂Ω,

where ν is the exterior unit normal vector to ∂Ω.

In particular, if 0 ∈ Ω, we get

〈ν(x), x〉 > 0, for all x ∈ ∂Ω.

Proof.

Let Ω be an open convex domain. Assume first that 0 ∈ Ω, according to [12], there exists a convex function

ϕ : Rn → R such that

Ω = {x ∈ R
n / ϕ(x) < 0} et ∂Ω = {x ∈ R

n / ϕ(x) = 0}.

There exists also W a neighborhood of Γ such that

ϕ ∈ Ck(W ), ∇ϕ 6= 0 on W and ν =
∇ϕ

||∇ϕ||
.
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Let x ∈ ∂Ω, by the characterization of the convexity at the points 0 and x we have

〈∇ϕ(x), 0 − x〉 ≤ ϕ(0)− ϕ(x).

Or since we have ϕ(0) < 0 and ϕ(x) = 0, then

〈∇ϕ(x), x〉 ≥ −ϕ(0) > 0.

Thus multiplying by 1
||∇ϕ(x)|| , we get

〈ν(x), x〉 > 0.

If 0 /∈ Ω, for a fixed y ∈ Ω, we consider a translation of Ω denoted by Ω − y which is an open bounded convex

subset of Rn of class Ck, such that 0 ∈ Ω− y. Hence by application of the above result we obtain,

〈νΩ−y(x), x〉 > 0, for all x ∈ ∂Ω− y.

Since νΩ−y(x− y) = ν(x) for all x ∈ ∂Ω, we get

〈ν(x), x − y〉 > 0, for all x ∈ ∂Ω.

�

Let now Ω be a doubly connected domain such that Ω = Ω2\Ω1 where Ω2 is a convex open subset of D of class

C2 and Ω1 is a closed smooth subset of Ω2. For the sake of simplicity, we suppose that 0 ∈ Ω1. Then, according

to Lemma 1, we have

(ν2(x), x) > 0, for all x ∈ Γ2.

So, ∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), x〉dσ ≥ 0.

As a result, we are able to propose as shape optimization formulation for the approximation of the free boundary

problem (1) the following one





Minimize J (Ω, uΩ) for all Ω ∈ O

whereJ (Ω, uΩ) =

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), x〉dσ

and uΩ is solution of

(PE)





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ2,

(3)

where the set of admissible domains O is defined by

O = {Ω ⊂ R
n / Ω = Ω2\Ω1, Ω2 ∈ O(D)},

and

O(D) = {Ω ⊂ R
n / Ω is an open, Ω1 ⊂ Ω, Ω ⊂ D and Ω ∈ C2 ∩ K},

here K denotes the set of all convex domains, C2 denotes the space of domains with boundaries of class C2, Ω1 is

a smooth closed bounded subset of Rn and D is a smooth convex domain of Rn chosen sufficiently large.

In what follows, we propose a shape optimization formulation using rather a volume cost functional defined on

Ω. Indeed, since the domain Ω is doubly connected, the exterior unit normal vector to Ω is given by
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ν : ∂Ω −→ Sn−1

x 7−→ ν(x) =




ν2(x) si x ∈ Γ2

−ν1(x) si x ∈ Γ1.

where νk, for k = 1, 2 is the exterior unit normal vector to Ωk and Sn−1 is the unit sphere in R
n.

Let us consider uΩ the solution of (PE) associated to Ω = Ω2 \Ω1, and using the fact that uΩ = ϕ1 on Γ1, we

get

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), (x)〉dσ =

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν(x), (x)〉dσ

+

∫

Γ1

(uΩ(x) − ϕ2(x))
2〈ν(x), (x)〉dσ −

∫

Γ1

(uΩ(x) − ϕ2(x))
2〈ν(x), (x)〉dσ.

Hence
∫

Γ2

(uΩ(x) − ϕ2(x))
2〈ν2(x), (x)〉dσ =

∫

Γ

(uΩ(x) − ϕ2(x))
2〈ν(x), (x)〉dσ −

∫

Γ1

(uΩ(x)− ϕ2(x))
2〈ν1(x), (x)〉dσ.

From the Stokes formula we obtain

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), (x)〉dσ =

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx −

∫

Γ1

(ϕ1(x) − ϕ2(x))
2〈ν1(x), (x)〉dσ,

where div(v) designates the divergence of the vector v.

According to the Lemma 1, we have

〈ν2(x), (x)〉 > 0, ∀x ∈ Γ2.

Moreover, since uΩ = ϕ1 on Γ1, we deduce

0 ≤

∫

Γ2

(uΩ(x)− ϕ2(x))
2〈ν2(x), (x)〉dσ =

∫

Ω

div((uΩ(x)− ϕ2(x))
2x)dx −

∫

Γ1

(ϕ1(x)− ϕ2(x))
2〈ν1(x), (x)〉dσ.

Since the term

∫

Γ1

(ϕ1(x) − ϕ2(x))
2〈ν1(x), (x)〉dσ do not depend on the variation of Ω2, we can propose as

shape optimization formulation for the approximation of the free boundary problem (1), the following one

(PO)





Minimize J (Ω, uΩ) for all Ω ∈ O

whereJ (Ω, uΩ) =

∫

Ω

div((uΩ(x) − ϕ2(x))
2x)dx

and uΩ is solution of

(PE)





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ2,

(4)

In the sequel, we will propose a numerical method of the approximation of this problem based on a gradient

method. This requires to study the first variation or differentiability of the cost functional with respect to the

family of domains O. For this, we shall adapt the formulas proposed in [5, 6] to be able to express the shape

derivative of the cost functional by means of support functions.
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3 Shape derivative of the cost functional

In order to obtain an expression of shape derivative of the cost functional for the shape optimization problem (4),

we begin first by recalling and adapting the result on the shape derivative formulas given in [5, 6] for the class of

doubly connected domains O.

3.1 Preliminaries

We start this section by recallind some definitions on convex bounded domains and the associated support functions

[24]. To any bounded convex domain Ω, one can associate its support function defined by

PΩ : y ∈ R
n 7→ PΩ(y) = max

x∈Ω
〈y, x〉 ∈ R.

which is a continuous, convex and positively homogeneous function.

The opposite statement is also true, for any continuous, convex, positively homogeneous function P (x) there

exists a unique convex bounded set Ω, such that P (x) is its support function, i.e. P (x) = PΩ(x), where Ω is

obtained as a sub-differential of its support function at the origin :

Ω = ∂P (0) := {ξ ∈ R
n / 〈ξ, y〉 ≤ P (y), ∀y ∈ R

n}.

In the sequel, in order to express the shape derivative formula of the cost functional, we propose a technique

of deformation [17] which consists in defining the deformation of Ω by Ω′ ∈ O(D), as follows Ωε = Ω + εΩ′, for

ε ∈ [0, 1]. This in fact allow us to avoid the tedious use of the shape derivative method based on the vector fields

and it permits, as we can see, to express the shape derivative of the cost fuctional with respect to support functions

instead of vector fields.

For this, recall first the shape derivative formula for a volume integral shape functional J to type

Ω ∈ O(D) 7→ J(Ω) =

∫

Ω

f(x)dx,

where f ∈ W 1,1(D). According to [5, 6], we have

Theorem 1. Let Ω,Ω′ ∈ O(D), we have that the shape derivative of J at Ω ∈ O(D) is given by

lim
ε→0+

J(Ωε)− J(Ω)

ε
=

∫

∂Ω

f(x)PΩ′ (ν(x))dσ(x),

where Ωε = Ω + εΩ′ and ν denotes the exterior unit normal vector to Ω.

Remark 1. If we take as deformation of Ω the domain Ωε = (1− ε)Ω+ εΩ′, according to [5,6], we obtain similar

shape derivative formula of J , that is

lim
ε→0+

J(Ωε)− J(Ω)

ε
=

∫

∂Ω

f(x) (PΩ′(ν(x)) − PΩ(ν(x))) dσ(x),

thereby, in the following, depending on what it is needed, we use one of the two deformations and consequently

investigate the associated shape derivative formula.

Now, let ε ∈]0, 1[ and let Ω be an element of O, then there exists Ω2 ∈ O(D) such that Ω = Ω2 \Ω1 and let Ω′
2

be an element of O(D). We denote by Λε and Ωε the domains defined by Λε = Ω2 + εΩ′
2 and Ωε = Λε \ Ω1.

We have also that

J(Ωε) =

∫

D

χΩε
f(x)dx =

∫

D

(χΛε
− χΩ1)f(x)dx.

Hence, according to the Theorem 1, we get
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d

dε
(J(Ωε))|ε=0+ =

d

dε
(J(Λε))|ε=0+ =

∫

Γ2

f(x)PΩ′

2
(ν2(x))dσ(x). (5)

Consequently, we have the corollary

Corollary 1. Let Ω2,Ω
′
2 ∈ O(D), we have that the shape derivative of J at Ω = Ω2 \ Ω1 ∈ O, is given by

lim
ε→0+

J((Ω2 + εΩ′
2) \ Ω1)− J(Ω2 \ Ω1)

ε
=

∫

Γ2

f(x)PΩ′

2
(ν2(x))dσ(x),

where ν2 denotes the exterior unit normal vector to Ω2.

In the situation where the function f depends on domains, one can show the following result.

Proposition 1. Let (fε)ε∈]0,1[ ⊂ L1(D) be a family of functions and let f0 ∈ W 1,1(D) and f be a function such

that f = lim
ε→0+

1

ε
(fε − f0) in L

1(D). Consider the function

ε ∈]0, 1[ 7→ I(ε) =

∫

Ωε

fε(x)dx ∈ R.

Then we have

lim
ε→0+

I(ε)− I(0)

ε
=

∫

Ω2\Ω1

f(x)dx +

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x). (6)

where ν2 denotes the exterior unit normal vector to Ω2.

Proof.

Let ε ∈]0, 1[, we have

I(ε)− I(0)

ε
=

1

ε

(∫

Ωε

fε(x)dx −

∫

Ωε

f0(x)dx

)
+

1

ε

(∫

Ωε

f0(x)dx −

∫

Ω0

f0(x)dx

)
.

Then

I(ε)− I(0)

ε
=

∫

D

χΩε

(
1

ε
(fε − f0)(x)− f(x)

)
dx+

∫

D

χΩε
(x)f(x)dx +

1

ε

(∫

Ωε

f0(x)dx −

∫

Ω0

f0(x)dx

)
.

First, we get that

∣∣∣∣
∫

D

χΩε

(
1

ε
(fε − f0)(x)− f(x)

)
dx

∣∣∣∣ ≤
∫

D

|

(
1

ε
(fε − f0)(x) − f(x)

)
|dx −−−−→

ε→0+
0.

On the other hand, since we have that χΩε
= χΛε

−χΩ1 and that the characteristic functions χΛε
converge almost

everywhere to the characteristic function χΩ2 , then from the Lebesgue convergence theorem in L1(D) and by the

use of formula (5), it follows that

lim
ε→0+

I(ε)− I(0)

ε
=

∫

D

χΩfdx+

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x).

Consequently we get

lim
ε→0+

I(ε)− I(0)

ε
=

∫

Ω

f(x)dx +

∫

Γ2

f0(x)PΩ′

2
(ν2(x))dσ(x)

�

We have also the following result, which concerns the situation where we use a translation of domains.
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Corollary 2. Let (fε)ε∈]0,1[ ⊂ L1(D) be a family of functions and let f0 ∈W 1,1(D) and f be a function such that

f = lim
ε→0+

1

ε
(fε − f0) in L

1(D). Let a and b elments of Rn. Consider the function

ε ∈]0, 1[ 7→ I(ε) =

∫

((Ω2+a)+ε(Ω′

2+b)\Ω1

fε(x)dx ∈ R.

Then we have

lim
ε→0+

I(ε)− I(0)

ε
=

∫

(Ω2+a)\Ω1

f(x)dx +

∫

∂(Ω2+b)

f0(x)P(Ω′

2+b)(νΩ2+a(x))dσ(x). (7)

where νΩ2+a denotes the exterior unit normal vector to Ω2 + a.

Proof.

Let ε ∈]0, 1[, we have that

1

ε

(∫

((Ω2+a)+ε(Ω′

2+b))\Ω1

fε −

∫

(Ω2+a)\Ω1

f0

)
=

∫

D

χ(Ω2+a+ε(Ω′

2+b))\Ω1

(
1

ε
(fε − f0)− f

)
+

∫

D

χ(Ω2+a+ε(Ω′

2+b))\Ω1
f

+
1

ε

(∫

(Ω2+a+ε(Ω′

2+b))\Ω1

f0 −

∫

(Ω2+a)\Ω1

f0

)
.

Then ∣∣∣∣
∫

D

χ(Ω2+a+ε(Ω′

2+b))\Ω1

1

ε
(fε − f0)− fdx

∣∣∣∣ ≤
∫

D

|
1

ε
(fε − f0)(x) − f(x)|dx −−−−→

ε→0+
0.

On the other hand, we know that χ(Ω2+a+ε(Ω′

2+b))\Ω1
= χΩ2+a+ε(Ω′

2+b) − χΩ1 , since the characteristic func-

tions χΩ2+a+ε(Ω′

2+b) converges almost everywhere to the characteristic function χ(Ω2+a). Thus it follows from

the Lebesgue convergence theorem in L1(D) that χ(Ω2+a+ε(Ω′

2+b))\Ω1
f converge to χ(Ω2+a)\Ω1

f in L1(D). Then

according to [5], we have

lim
ε→0+

1

ε

(∫

(Ω2+a+ε(Ω′

2+b))\Ω1

f0 −

∫

(Ω2+a)\Ω1

f0

)
=

∫

∂(Ω2+a)

f0(x)PΩ′

2+b(ν(Ω2+a)(x))dσ(x).

Hence, we get

lim
ε→0+

I(ε)− I(0)

ε
=

∫

(Ω2+a)\Ω1

f(x)dx +

∫

∂(Ω2+a)

f0(x)PΩ′

2+b(νΩ2+a(x))dσ(x). (8)

�

The following result concerns the situation where f is written as a product of two functions depending on the

domains.

Corollary 3. Let (fε)ε∈]0,1[ and (gε)ε∈]0,1[ be tow families of functions in L2(D) and let f0 ∈ H1(D), g0 ∈ H1(D)

and f, g be functions such that f = lim
ε→0+

1

ε
(fε − f0) in L2(D) and g = lim

ε→0+

1

ε
(gε − g0) in L2(D). Consider the

function

ε ∈]0, 1[ 7→ F (ε) =

∫

Ωε

fεgε(x)dx ∈ R

Then we have

lim
ε→0+

F (ε)− F (0)

ε
=

∫

Ω2\Ω1

(gf0 + fg0)(x)dx +

∫

Γ2

f0g0(x)PΩ′

2
(ν2(x))dσ(x), (9)

where ν2 denotes the exterior unit normal vector to Ω2.
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Proof.

Let ε ∈]0, 1[, we have

1

ε
(fεgε − f0g0)− f0g − fg0 = (fε − f0)

1

ε
(gε − g0) + g0

(
1

ε
(fε − f0)− f

)
+ f0

(
1

ε
(gε − g0)− g

)
.

Using the Hölder inequality we get

||
1

ε
(fεgε − f0g0)− f0g − fg0||L1(D) ≤||fε − f0||L2(D)||

gε − g0
ε

||L2(D) + ||g0||L2(D)||
fε − f0
ε

− f ||L2(D)

+ ||f0||L2(D)||
gε − g0
ε

− g||L2(D)

Using the fact that there exists M > 0 such that, for all ε ∈ [0, 1[, || gε−g0
ε

||L2(D) ≤ M and ||fε − f0||L2(D)

converge to 0 as ε→ 0, we obtain

||
1

ε
(fεgε − f0g0)− f0g − fg0||L1(D) ≤M ||fε − f0||L2(D) + ||g0||L2(D)||

fε − f0
ε

− f ||L2(D)

+ ||f0||L2(D)||
gε − g0
ε

− g||L2(D),

consequently

lim
ε→0+

||
1

ε
(fεgε − f0g0)− f0g − fg0||L1(D) = 0.

So using the Proposition 1 to the functional

ε ∈]0, 1[ 7→ F (ε) =

∫

Ωε

fε(x)gε(x)dx ∈ R,

we deduce that

lim
ε→0+

F (ε)− F (0)

ε
=

∫

Ω2\Ω1

(f0g + fg0)(x)dx +

∫

Γ2

f0(x)g0(x)PΩ′

2
(ν2(x))dσ(x). (10)

�

3.2 Shape derivative of the optimal shape design problem

In this section, we state the main theoretical result of this paper, which concerns the shape derivative of the shape

functional

J (Ω, uΩ) =

∫

Ω

div((uΩ(x)− ϕ2(x))
2x)dx (11)

where Ω ∈ O and uΩ is the solution of the state problem on Ω





−∆v = f in Ω = Ω2 \ Ω1,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ2,

(12)

Let ε ∈]0, 1[ and let Ω′
2 be an element of O(D). Denote by Ωε = (Ω2 + εΩ′

2) \ Ω1 and by Γ(ε) the boundary of

Ω2 + εΩ′
2. Let uΩε

be the solution of the state problem on Ωε





−∆v = f in Ωε,

v = ϕ1 on Γ1,

∂ν2v = ∂ν2G on Γ(ε),

(13)

10



Let us now note that

div((uΩ − ϕ2)
2x) = 2(uΩ − ϕ2)〈∇(uΩ − ϕ2), x〉+ n (uΩ − ϕ2)

2

so if we denote by F the following function

F : D × R× R
n −→ R

(x, y, z) 7−→ F (x, y, z) = 2(y − ϕ2(x))〈z −∇ϕ2(x), x〉 + n(y − ϕ2(x))
2,

(14)

we can write

F (., uΩ,∇uΩ) = 2(uΩ − ϕ2)〈∇(uΩ − ϕ2), Id〉+ n(uΩ − ϕ2)
2 = div((uΩ − ϕ2)

2Id),

where Id denotes the identity map in R
n. Then J can be written

J (Ω, uΩ) =

∫

Ω

F (x, uΩ(x),∇uΩ(x)) dx. (15)

Remark 2. We note that, when we assume that Ω is a strongly convex domain, Ωε can be considered as a

deformation of the domain Ω by the vector field V (x), such that 〈V (x), ν(x)〉 = PΩ′ (ν(x)) (see [5, 6]). Therefore,

when f ∈ H1(D), ϕ1 ∈ H
1
2 (Γ1) and G ∈ H3(D), we can write

ũε = ũ+ ε u′ + ε vε in H1(D),

where ũ and ũε designate respectively extensions on D of uΩ and uΩε
and u′ is the shape derivative of ũ with respect

to the vector field V ( see for example, [12,23]). It follows from that result that there exists a function denoted F ′
0

in L1(D), such that
1

ε
[F (., ũε,∇ũε)− F (., ũ,∇ũ)]− F ′

0 −→ 0 in L1(D), ε→ 0,

which ensures the existence of the shape derivative of J and allows to apply the proposition 1 in order to express

its shape derivative.

Indeed, we have the following result

Theorem 2. Suppose that f ∈ H1(D), ϕ2 ∈ H2(D), ϕ1 ∈ H
1
2 (Γ1) and G ∈ H3(D). Let Ω = Ω2 \ Ω1 ∈ O,

Ω′
2 ∈ O(D) and Ωε = (Ω2 + εΩ′

2) \ Ω1, then the shape derivative of J (Ω, uΩ) at Ω is given by

lim
ε→0+

J (Ωε, uΩε
)− J (Ω, uΩ)

ε
=

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ(x). (16)

where

B = div((uΩ − ϕ2)
2Id) + 〈∇(uΩ −G),∇ψ〉 − (f +∆G)ψ,

with ψ is the solution of the following problem (said the adjoint state problem):





−∆ψ = 0 in Ω,

ψ = 0 on Γ1,

∂ν2ψ = −2(uΩ − ϕ2)〈ν2, Id〉 on Γ2,

(17)

and ν2 denotes the exterior unit normal vector to Γ2.

Proof.

Let ε ∈]0, 1[ and let Ω be an element of O, then there exists Ω2 ∈ O(D) such that Ω = Ω2 \ Ω1 and let Ω′
2 be

an element of O(D). Let us suppose first that 0 ∈ Ω′
2. Denote by Λε and Ωε the domains defined respectively by

Λε = Ω2 + εΩ′
2 and Ωε = (Ω2 + εΩ′

2) \ Ω1 having respectively as boundary Γ(ε) and Γε. It is clear that Γ1 is also

inside boundary for Ωε. Let uΩ and uΩε
be respectively the solution of the boundary value state problem (12) and

11



(13). Since f , ϕ1 and G are smooth enough functions and the boundaries of Ω and Ωε are also smooth, we have

that uΩ ∈ H2(Ω), uΩε
∈ H2(Ωε). On other hand, according to [24], for all ε ∈]0, 1[ we have that

Ωε ∩ Ω = (Λε ∩ Ω2) \ Ω1 = ((Ω2 + εΩ′
2) ∩ Ω2) \ Ω1 = Ω2 \ Ω1. (18)

Then Ω = Ω2 \ Ω1 ⊂ Ωε. Consequently, we obtain that uΩ and uΩε
are respectively solution of




−∆uΩ = f in Ω,

uΩ = ϕ1 on Γ1,




−∆uΩε

= f in Ω,

uΩε
= ϕ1 on Γ1.

Hence, if we denote by δu = uΩε
− uΩ, we have that δu is solution of




−∆(δu) = 0 in Ω,

δu = 0 on Γ1 ⊆ Γ.
(19)

Now, Let us denote by △J := J (Ωε, uΩε
)− J (Ω, uΩ), we have

△J =

∫

Ωε

F (x, uΩε
(x),∇uΩε

(x))dx −

∫

Ω

F (x, uΩ(x),∇uΩ(x))dx.

Hence

△J =

∫

Ωε

F (x, uΩε
(x),∇uΩε

(x))dx −

∫

Ω

F (x, uΩε
(x),∇uΩε

(x))dx

+

∫

Ω

F (x, uΩε
(x),∇uΩε

(x))dx −

∫

Ω

F (x, uΩ(x),∇uΩ(x))dx

Consider J1 the function defined by

ε 7→ J1(ε) =

∫

Ωε

F (x, uΩε
(x),∇uΩε

(x))dx −

∫

Ω

F (x, uΩε
(x),∇uΩε

(x))dx.

So, we get

△J =

∫

Ω

(F (x, uΩε
(x),∇uΩε

(x)) − F (x, uΩ(x),∇uΩ(x)))dx + J1(ε).

Let us denote by δF = F (., uΩε
,∇uΩε

)− F (., uΩ,∇uΩ), we have

δF =2(uΩε
− ϕ2)〈∇(uΩε

− ϕ2), Id〉+ n(uΩε
− ϕ2)

2 − 2(uΩ − ϕ2)〈∇(uΩ − ϕ2), Id〉 − n(uΩ − ϕ2)
2

=F (., uΩε
,∇uΩε

)− 2(uΩ − ϕ2)〈∇(uΩ − uΩε
), Id〉 − 2(uΩ − ϕ2)〈∇(uΩε

− ϕ2), Id〉 − n(uΩ − ϕ2)
2

=2(uΩε
− uΩ)〈∇(uΩε

− ϕ2), Id〉 − 2(uΩ − ϕ2)〈∇(uΩ − uΩε
), Id〉+ n(uΩε

− ϕ2)
2 − n(uΩ − ϕ2)

2

=2δu〈∇δu, Id〉+ 2δu〈∇(uΩ − ϕ2), Id〉 − 2(uΩ − ϕ2)〈∇(uΩ − uΩε
), Id〉+ n[(uΩε

− ϕ2)
2 − (uΩ − ϕ2)

2]

=2δu〈∇(δu), Id〉+ 2δu〈∇(uΩ − ϕ2), Id〉+ 2(uΩ − ϕ2)〈∇(δu), Id〉+ n(uΩε
− ϕ2)

2 − n(uΩ − ϕ2)
2

since

(uΩε
− ϕ2)

2 − (uΩ − ϕ2)
2 = u2Ωε

− u2Ω + 2ϕ2(uΩ − uΩε
)

= (uΩε
− uΩ)

2 + 2uΩ(uΩε
− uΩ)− 2ϕ2(uΩε

− uΩ)

= (δu)2 + 2δu(uΩ − ϕ2),

then

12



δF = 2δu〈∇(δu), Id〉+ 2δu〈∇(uΩ − ϕ2), Id〉+ 2(uΩ − ϕ2)〈∇(δu), Id〉+ n(δu)2 + 2nδu(uΩ − ϕ2). (20)

Thus the function δF depends only on δu and ∇δu. On the other hand, let us consider the function HuΩ

HuΩ : Ω → R
n

x 7→ HuΩ(x) = 2(uΩ(x)− ϕ2(x))x

and denote by (Hi,uΩ)
n
i=1 the components of HuΩ . Let us also consider the function

KuΩ : Ω −→ R

x 7−→ KuΩ(x) = 2〈∇(uΩ − ϕ2)(x), x〉 + 2n(uΩ(x)− ϕ2(x)).

We note that

div(HuΩ) =

n∑

i=1

∂iHi,uΩ = KuΩ . (21)

It follows that

δF = 〈HuΩ ,∇(δu)〉+KuΩδu+ n(δu)2 + 2δu(x)〈∇(δu)(x), x〉.

Denote by Errδu the function

ε 7→ Errδu(ε) = n||δu||2L2(Ω) + 2

∫

Ω

δu(x)〈∇(δu)(x), x〉dx.

Then △J reads

△J =

∫

Ω

(〈HuΩ ,∇(δu)〉+KuΩδu)(x)dx + J1(ε) + Errδu(ε).

By using the relation (21), we get

div(HuΩδu) =

n∑

i=1

∂i(Hui,Ωδu) = 〈HuΩ ,∇(δu)〉+ div(HuΩ)δu = 〈HuΩ ,∇(δu)〉+ δuKuΩ .

Then

〈HuΩ ,∇(δu)〉 = div(HuΩδu)− δuKuΩ .

Therefore

∫

Ω

(〈HuΩ ,∇(δu)〉+KuΩδu)(x)dx =

∫

Ω

div(HuΩδu)(x)dx.

Consequently

△J =

∫

Ω

div(HuΩδu)(x)dx + J1(ε) + Errδu(ε). (22)

From the Green formula, we get

∫

Ω

div(HuΩδu)(x)dx =

∫

∂Ω

〈HuΩ(x), ν(x)〉δu(x)dσ(x)

=

∫

Γ2

〈HuΩ(x), ν2(x)〉δu(x)dσ(x) −

∫

Γ1

〈HuΩ(x), ν1(x)〉δu(x)dσ(x)

= 2

∫

Γ2

(uΩ − ϕ2)〈ν2(x), x〉δu(x)dσ − 2

∫

Γ1

(uΩ − ϕ2)〈ν1(x), x〉δu(x)dσ,
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On the other hand, let ψ be the unique solution of





−∆ψ = 0 in Ω,

ψ = 0 on Γ1,

∂ν2ψ = −2(uΩ − ϕ2)〈ν2, Id〉 on Γ2.

We note that ψ ∈ {v ∈ H1(Ω) / vγ1 = 0} ∩H2(Ω). Then from the Stokes formula, we get

∫

Ω

div(HuΩδu)(x)dx = −

∫

Γ2

∂ν2ψ(x)δu(x)dσ − 2

∫

Γ1

(uΩ − ϕ2)〈ν1(x), x〉δu(x)dσ.

Since δu = 0 on Γ1, we have

∫

Ω

div(HuΩδu)(x)dx = −

∫

Γ2

∂ν2ψ(x)δu(x)dσ. (23)

Now, using the fact that ∆(δu) = ∆ψ = 0 on Ω and δu = ψ = 0 on Γ1, by the Green formula we get

∫

Γ2

∂ν2ψ(x)δu(x)dσ =

∫

Γ

∂νψ(x)δu(x)dσ

=

∫

Ω

∇ψ∇δudx

=

∫

Γ

ψ(x)∂νδu(x)dσ

=

∫

Γ2

ψ(x)∂ν2δu(x)dσ =

∫

Γ

ψ(x)∂νδu(x)dσ.

Thus

∫

Γ2

∂ν2ψ(x)δu(x)dσ =

∫

Γ

ψ(x)∂νδu(x)dσ.

Therefore

∫

Ω

div(HuΩδu)(x)dx = −

∫

Γ

ψ(x)∂νδu(x)dσ.

Consequently

△J = J1(ε) + J2(ε) + Errδu(ε)

where

J2(ε) = −

∫

Γ

∂νδu(x)ψ(x)dσ,

Errδu(ε) = n||δu||2L2(Ω) + 2

∫

Ω

δu(x)〈∇(δu)(x), x〉dx,

and J1(ε) = J1,1(ε)− J1,2(ε)

with

J1,1(ε) =

∫

Ωε

F (x, uΩε
(x),∇uΩε

(x))dx, J1,2(ε) =

∫

Ω

F (x, uΩε
(x),∇uΩε

(x))dx,

According to the proposition 1 applied to the function Fε = F (., uΩε
,∇uΩε

), we get
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d

dε
(J1,1(ε))|ε=0+ =

∫

Ω2\Ω1

F ′
0(x)dx +

∫

Γ2

F0(x)PΩ′

2
(ν2(x))dσ, (24)

and
d

dε
(J1,2(ε))|ε=0+ =

∫

Ω2\Ω1

F ′
0(x)dx. (25)

So, by combining (24) and (25) we get

d

dε
(J1(ε))|ε=0+ =

∫

Γ2

F0(x)PΩ′

2
(ν2(x))dσ.

Consequently, since F0 = F (., uΩ,∇uΩ), one can deduce that

d

dε
J1(ε)|ε=0+ =

∫

Γ2

F (., uΩ,∇uΩ)(x)PΩ′

2
(ν2(x))dσ. (26)

Now let’s calculate the derivative of J2, we have

J2(ε) = −

∫

Γ

∂νδu(x)ψ(x)dσ = −

∫

Γ

∂νuΩε
(x)ψ(x)dσ +

∫

Γ

∂νuΩ(x)ψ(x)dσ

= −

∫

Γ

(∂νuΩε
(x)− ∂νG(x))ψ(x)dσ +

∫

Γ

(∂νuΩ(x) − ∂νG(x))ψ(x)dσ

which can be reads

J2(ε) = J2,1(ε) + J2,2(ε),

where

J2,1(ε) = −

∫

Γ

(∂νuΩε
(x) − ∂νG(x))ψ(x)dσ, J2,2(ε) =

∫

Γ

(∂νuΩ(x) − ∂νG(x))ψ(x)dσ.

Using the fact that uΩ satisfies the equation

∂ν(ε)uΩε
= ∂ν(ε)G on Γ(ε),

we get

J2,1(ε) = −

∫

Γ

(∂νuΩε
(x) − ∂νG(x))ψ(x)dσ +

∫

Γ(ε)

(
∂ν(ε)uΩε

(x) − ∂ν(ε)G(x)
)
ψ(x)dσ.

From the fact that ψ = 0 on Γ1, we obtain

∫

Γ1

(∂ν1uΩε
(x)− ∂ν1G(x))ψ(x)dσ = 0.

Or since Γε = Γ(ε) ∪ Γ1 et Γ(ε) ∩ Γ1 = ∅, then

∫

Γε

(∂νεuΩε
(x)− ∂νεG(x))ψ(x)dσ =

∫

Γ(ε)

(
∂ν(ε)uΩε

(x)− ∂ν(ε)G(x)
)
ψ(x)dσ.

Therefore

J2,1(ε) = −

∫

Γ

(∂νuΩε
(x)− ∂νG(x))ψ(x)dσ +

∫

Γε

(∂νεuΩε
(x)− ∂νεG(x))ψ(x)dσ.

By the Green formula we get

J2,1(ε) = −

∫

Ω

div(∇(uΩε
−G)ψ)(x)dx +

∫

Ωε

div(∇(uΩε
−G)ψ)(x)dx.
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Using the fact that −∆uΩε
= f on Ωε and Ω ⊂ Ωε, we have that −∆uΩε

= f on Ω. Then

div(∇(uΩε
−G)ψ) = 〈∇(uΩε

−G),∇ψ〉+∆(uΩε
−G)ψ = 〈∇(uΩε

−G),∇ψ〉 + (−f −∆G)ψ.

Hence J2,1(ε) can be written

J2,1(ε) = J
(1)
2,1 (ε) + J

(2)
2,1 (ε) + J

(3)
2,1 (ε) + J

(4)
2,1 (ε),

where

J
(1)
2,1 (ε) = −

∫

Ω

〈∇(uΩε
−G),∇ψ〉(x)dx, J

(2)
2,1 (ε) = −

∫

Ω

(−f −∆G)ψ(x)dx,

J
(3)
2,1 (ε) =

∫

Ωε

〈∇(uΩε
−G),∇ψ〉(x)dx, J

(4)
2,1 (ε) =

∫

Ωε

(−f −∆G)ψ(x)dx.

Denote by Bε the function defined by Bε = 〈∇(uΩε
−G),∇ψ〉, it is easy to see from the Remark 2, that there

exists B′
0 ∈ L1(Ω), such that

1

ε
[Bε −B0]−B′

0 −→ 0 in L1(Ω), ε→ 0,

then using the proposition 1, we obtain the following shape derivative

d

dε

(
J
(1)
2,1 (ε)

)∣∣∣
ε=0+

= −

∫

Ω2\Ω1

B′
0(x)dx, (27)

d

dε

(
J
(2)
2,1 (ε)

)∣∣∣
ε=0+

= 0, (28)

d

dε

(
J
(3)
2,1 (ε)

)∣∣∣
ε=0+

=

∫

Ω2\Ω1

B′
0(x)dx +

∫

Γ2

B0(x)PΩ′

2
(ν2(x))dσ, (29)

and
d

dε

(
J
(4)
2,1 (ε)

)∣∣∣
ε=0+

=

∫

Γ2

(−f −∆G)ψ(x)PΩ′

2
(ν2(x))dσ. (30)

So, using equations (27), (28), (29) and (30) we get

d

dε
(J2,1(ε))|ε=0+ =

∫

Γ2

(B0(x) + (−f −∆G)ψ(x))PΩ′

2
(ν2(x))dσ. (31)

Now for the function J2,2, using the fact that uΩ satisfies

∂ν2uΩ = ∂ν2G on Γ2.

and that ψ = 0 on Γ1, we have

∫

Γ1

(∂ν1uΩ(x)− ∂ν1G(x))ψ(x)dσ = 0.

Hence
∫

Γ

(∂νuΩ(x)− ∂νG(x))ψ(x)dσ =

∫

Γ1

(∂ν1uΩ − ∂ν1G) (x)ψ(x)dσ +

∫

Γ2

(∂ν2uΩ − ∂ν2G) (x)ψ(x)dσ = 0

Then we get that, J2,2(ε) = 0. Therefore
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d

dε
(J2,1(ε) + J2,2(ε))|ε=0+ =

∫

Γ2

B0(x)PΩ′

2
(ν2(x))dσ +

∫

Γ2

(−f −∆G)ψ(x)PΩ′

2
(ν2(x))dσ

=

∫

Γ2

(〈∇(uΩ −G),∇ψ〉 + (−f −∆G)ψ)(x)PΩ′

2
(ν2(x))dσ.

Consequently

d

dε
(J2(ε))|ε=0+ =

∫

Γ2

(〈∇(uΩ −G),∇ψ〉+ (−f −∆G)ψ)(x)PΩ′

2
(ν2(x))dσ. (32)

Hence, from the formula (26) and (33) we obtain

d

dε
(J1(ε) + J2(ε))|ε=0+ =

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ. (33)

where

B(x) = div((uΩ(x)− ϕ2(x))
2x) + 〈∇(uΩ −G)(x),∇ψ(x)〉 − (f +∆G)(x)ψ(x).

Since, (J1 + J2)(0) = 0, then we get

J1(ε) + J2(ε) = ε

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ + Errδu(ε).

We deduce that

△J = ε

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ + Errδu(ε).

To conclude, it suffices to show that

Errδu(ε) = o(ε) where lim
ε→0+

o(ε)

ε
= 0,

For this, let ε ∈]0, 1[, from equation (19), we have that δu is solution of this problem




∆(δu) = 0 in Ω,

δu = 0 on Γ1 ⊆ Γ.
(34)

Then

n∑

i=1

∂i(δu∂i(δu)) =

n∑

i=1

(∂i(δu))
2 +

n∑

i=1

δu∂2i (δu).

Hence, we obtain

δu∆(δu) =
n∑

i=1

∂2i δu = −
n∑

i=1

(∂i(δu))
2 +

n∑

i=1

∂i(δu∂i(δu)).

From (34), we get δu∆(δu) = 0 in Ω, then we have

n∑

i=1

(∂i(δu))
2 =

n∑

i=1

∂i(δu∂i(δu)) in Ω.

So, by using the Green formula we obtain

||∇δu||2L2(Ω) =

n∑

i=1

∫

Ω

(∂i(δu))
2 =

n∑

i=1

∫

Ω

∂i(δu∂i(δu))(x)dx =

∫

Γ

δu∂ν(δu)(x)dσ.
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Therefore

||∇δu||2L2(Ω) = −

∫

Γ

∂νδu(x)δu(x)dσ = −

∫

Γ

∂νuΩε
(x)δu(x)dσ +

∫

Γ

∂νuΩ(x)δu(x)dσ

= −

∫

Γ

(∂νuΩε
(x) − ∂νG(x)) δu(x)dσ +

∫

Γ

(∂νuΩ(x) − ∂νG(x)) δu(x)dσ

which can be written

||∇δu||2L2(Ω) = Ξ1(ε) + Ξ2(ε),

where

Ξ1(ε) = −

∫

Γ

(∂νuΩε
(x)− ∂νG(x)) δu(x)dσ, Ξ2(ε) =

∫

Γ

(∂νuΩ(x)− ∂νG(x)) δu(x)dσ.

Using the fact that δu and uΩ satisfies respectively

δu = 0 on Γ1, ∂ν2uΩ = ∂ν2G on Γ2.

Then

Ξ2(ε) =

∫

Γ

(∂νuΩ(x)− ∂νG(x)) δu(x)dσ = 0.

Also since Γε = Γ(ε) ∪ Γ1 and Γ(ε) ∩ Γ1 = ∅, using the fact that ∂ν(ε)uΩε
= ∂ν(ε)G on Γ(ε), we get

∫

Γε

(∂νεuΩε
(x)− ∂νεG(x)) δu(x)dσ =

∫

Γ(ε)

(
∂ν(ε)uΩε

(x) − ∂ν(ε)G(x)
)
δu(x)dσ

+

∫

Γ1

(
∂ν(ε)uΩε

(x) − ∂ν(ε)G(x)
)
δu(x)dσ = 0.

Thus

Ξ1(ε) = −

∫

Γ

(∂νuΩε
(x) − ∂νG(x)) δu(x)dσ +

∫

Γε

(∂νεuΩε
(x)− ∂νεG(x)) δu(x)dσ.

Hence

Ξ1(ε) = −

∫

Γ

(∂νuΩε
(x) − ∂νG(x)) δu(x)dσ +

∫

Γε

(∂νεuΩε
(x)− ∂νεG(x)) δu(x)dσ.

So by using the Green formula, we get

Ξ1(ε) = −

∫

Ω

div(∇(uΩε
−G)δu)(x)dx +

∫

Ωε

div(∇(uΩε
−G)δu)(x)dx.

Using the fact that −∆uΩε
= f in Ωε and that Ω ⊂ Ωε, we have that −∆uΩε

= f in Ω. Then

div(∇(uΩε
−G)δu) = 〈∇(uΩε

−G),∇δu〉+∆(uΩε
−G)δu = 〈∇(uΩε

−G),∇δu〉+ (−f −∆G)δ.u

Hence Ξ1(ε) can be written

Ξ1(ε) = Ξ1,1(ε) + Ξ1,2(ε) + Ξ2,1(ε) + Ξ2,2(ε),

where

Ξ1,1(ε) = −

∫

Ω

〈∇(uΩε
−G),∇δu〉(x)dx, Ξ1,2(ε) = −

∫

Ω

(−f −∆G)δu(x)dx,

Ξ2,1(ε) =

∫

Ωε

〈∇(uΩε
−G),∇δu〉(x)dx, Ξ2,2(ε) =

∫

Ωε

(−f −∆G)δu(x)dx.

Denote byWε the function defined byWε = 〈∇(uΩε
−G),∇δu〉 and by Dε the function defined by Dε = (−f−

∆G)δu, with W0 = 0 and D0 = 0. It is easy to see from the Remark 2, that there exists D′
0 ∈ L1(Ω) and

W ′
0 ∈ L1(Ω), such that

1

ε
[Dε −D0]−D′

0 −→ 0 in L1(Ω), ε→ 0
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and
1

ε
[Wε −W0]−W ′

0 −→ 0 in L1(Ω), ε→ 0.

Then using the proposition 1, we get

d

dε
Ξ2,1(ε)|ε=0+ =

∫

Ω2\Ω1

W ′
0(x)dx +

∫

Γ2

W0(x)PΩ′

2
(ν2(x))dσ =

∫

Ω2\Ω1

W ′
0(x)dx (35)

and
d

dε
Ξ2,2(ε)|ε=0+ =

∫

Ω2\Ω1

D′
0(x)dx +

∫

Γ2

D0(x)PΩ′

2
(ν2(x))dσ =

∫

Ω2\Ω1

D′
0(x)dx. (36)

Hence, using (35) and (36) we obtain

d

dε
(Ξ1(ε))|ε=0+ = 0.

Consequently

||∇δu||2L2(Ω) = o(ε) where, lim
ε→0+

o(ε)

ε
= 0. (37)

On the other hand, from the Poincaré inequality, there exist a constant CΩ such that

1

ε
||δu||2L2(Ω) ≤ CΩ

1

ε
||∇δu||2L2(Ω) =

o(ε)

ε
.

Then

||δu||2L2(Ω) = o(ε) where, lim
ε→0+

o(ε)

ε
= 0.

Thus by using once again the Poincaré and Hölder inequalities, there exists α > 0 independent of ε such that

0 ≤

∣∣∣∣2
∫

Ω

δu〈∇(δu), Id〉

∣∣∣∣ ≤ α||δu||L2(Ω)||∇δu||L2(Ω) ≤ αCΩ||∇δu||
2
L2(Ω).

Hence form (37), we deduce that

2

∫

Ω

δu〈∇(δu), Id〉 = o(ε) avec, lim
ε→0+

o(ε)

ε
= 0.

To conclude, we show that the above result remains true in the case where Ω2 and Ω′
2 are not necessarily

neighborhoods of 0. In fact, let c0 ∈ Ω2 and c ∈ Ω′
2, then Ω2 − c0 and Ω′

2 − c are neighborhoods of 0. Hence,

applying the Corollary 2, for a = c0 and c = b, we get

lim
ε→0+

1

ε

(∫

(Ω2+εΩ′

2)\Ω1

Fε −

∫

Ω2\Ω1

F0

)
=

∫

Γ2

B(x)PΩ′

2
(ν2(x))dσ(x). (38)

This achieves the proof of the theorem.

�

4 Identification process for optimal domain

The numerical optimization process used for the estimation of the unknown free boundary Γ2 of Ω is based on the

gradient method presented in the following.
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4.1 Gradient Method

Using the gradient of J determined by equation (4), the computation of the optimal shape is summarized in the

following algorithm.

1. Choose Ω0 = Ω0,2 \ Ω1 ∈ O , ρ ∈]0, 1[ and a precision EPSD.

2. Solve the state problem 



∆u = f in Ω0,

u = ϕ1 on Γ1,

∂ν2u = ∂ν2G on Γ0,2.

(39)

3. Solve the adjoint state problem





∆ψ = 0 in Ω0,

ψ = 0 on Γ1,

∂ν2ψ = −2(u− ϕ2) 〈ν2(x), x〉 on Γ0,2.

(40)

4. Compute B by the relation

B (x) = div
(
(u− ϕ2)

2
x
)
+ (∇ (u−G) ,∇ψ)− (f +∆G)ψ).

5. Compute P0 = PΩ0,2

6. Compute P̂ the solution of

arg min
P∈P

j(P ) (41)

where

j(P ) =

∫

Γ0,2

B(x)(P − P0)(ν(x)) ds

and

P = {Φ ∈ C(R2) / Φ is convex and PΩ1 ≤ Φ ≤ PD}.

7. At step k

if ‖uk − ϕ2‖L2(Γk,2) ≤ EPSD Go to 10.

where uk is the solution of the state equation in Ωk (the domain at step k) and Γk,2 is the outside boundary

of Ωk.

8. Compute

Pk+1 = (1 − ρ)Pk + ρ P̂k

9. Compute the domain Ωk+1 associated to Pk+1 by

Ωk+1 = ∂Pk+1 (0) =
{
l ∈ R

2 / Pk+1 (x) ≥ (l, x) , ∀x ∈ R
2
}

Go to 2.

10. End.
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4.2 Discretization of the problem

In this section, we approach the optimal shape design problem (4) using the boundary element method. For this,

the state problem (39) and the adjoint state problem (40) can be written in terms of boundary integral equation [9]

by the equation

c(ξ)u(ξ) =

∫

∂Ω

{
u(y)∂νy ln |ξ − y|

}
dsy − ∂νyu(y) ln |ξ − y|dsy (42)

where c(ξ), called the free term, is 0 if ξ 6∈ Ω ∪ ∂Ω, 1 if ξ ∈ Ω and θ/2π if ξ ∈ ∂Ω, where θ is the interior angle

between the left and right tangents to the boundary at the point ξ; u∗(y; ξ) = (1/2π)ln(1/r) is the fundamental

solution for the Laplace equation; r = |y− ξ| is the distance between the collocation point ξ and the integration or

observation point y; and q∗ = −(1/2π)∂u∗/∂ν is the flux associated to the potential u∗(y; ξ).

The subdivision of the boundary can be done using different types of elements. In the present investigation,

constant elements are considered. Assuming that over each boundary element ∂Ωi of ∂Ω the functions u and

q =
∂u

∂ν
are constant and take their values ui and qi at the centroid ξi, the resulted discretized boundary integral

equation at node k has the following form

NE∑

l=1

Hklul =

NE∑

l=1

Gklql, (43)

where NE is the number of boundary elements ∂Ωi such that ∂Ω = ∪NE
i=1∂Ωi. The components of the coefficient

matrices H and G are given by

Hkl =

∫

∂Ωl

q∗k when k 6= l, (44)

Hkl =

∫

∂Ωl

q∗k +
1

2
when k = l, (45)

Gkl =

∫

∂Ωl

u∗k. (46)

A four-point Gaussian quadrature rule is employed for numerical integration of the components of the coefficient

matrices H and G. However, for calculating the diagonal components, special care must be taken. The diagonal

terms Hkk vanish due to the orthogonality of the element coordinate and the normal. The terms Gkk can be

calculated analytically and it is given by the following equation

Gkk =
Le

2π

[
ln(

2

Le

) + 1

]
(47)

where Le is the element length. The values of the off-diagonal coefficients of H and G can be written as [9]

Hkl =

4∑

i=1

−(
1

d2s
)Lws

√
(R1 −R2)2 + (S1 − S2)2

2
(48)

Gkl =

4∑

i=1

ln(
1

ds
)ws

√
(R1 −R2)2 + (S1 − S2)2

2
(49)

where R1, R2, S1 and S2 are the coordinates of the extreme mounts of each element, ws are the weighting for each

point, L is the distance from the collocation point to the line element tangent to the element and d is the distance

from collocation point to the Gauss integration points on the boundary element. We note that the system (43) can

easily be rearranged as a system of order n and written in a generic form

Ax = b (50)
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Its right-hand side is obtained by multiplication of the appropriate columns of the influence matrices H and G by

values known from boundary conditions. Components of the vector of the unknowns x as well as components of

the main matrix A depend on the boundary condition at the considered node. We obtain

Aij =

{
−Gij for Dirichlet’s boundary condition

Hij for Neumann’s boundary condition
(51)

xj =

{
qj for Dirichlet’s boundary condition

uj for Neumann’s boundary condition
(52)

Let now m be the number of the boundary elements located at the free boundary Γ2, such that m < n and n−m

is the number of boundary elements located at the inside fixed boundary Γ1 of Ω. Let Y = (yi)
m
i=0 be a partition

of Γ2, where yi = (y
(1)
i , y

(2)
i ), we denote by ξ = (ξi)

m
i=0 a partition of Γ2, such that ξi = (ξ

(1)
i , ξ

(2)
i ) is the centroid

of the boundary elements [yi, yi+1].

The discrete gradient of the cost function can be read as follows

j(P ) =

m∑

i=0

hiBi (Pi − PΩ(ν(ξi)))

where hi = ‖yi+1 − yi‖; P = (Pi = P (ν(ξi))
m
i=0; ν(ξi) is the outward unit normal vector to the boundary elements

yiyi+1 and Bi = B(ξ
(1)
i , ξ

(2)
i ) is given by the relation

Bi = 2 (ui − ϕ2(ξi))
(
∇uh(ξi)−∇ϕ2(ξi), ξi

)
+ 2 (ui − ϕ2(ξi))

2

+
(
∇
(
uh(ξi)−Gh(ξi)

)
,∇ψh(ξi)

)
+
(
f(ξi)−∆Gh(ξi)

)
ψi)

where uh is the approximate solution of the state equation, such that (uh(ξ) = ui)
n
i=0 is the solution of a linear

system of type (50), ψh is the approximate solution of the adjoint state equation, such that (ψh(ξ) = ψi)
n
i=0 is

the solution of a linear system of type (50) and Gh is a approximation of G. The discrete space of the admissible

support function can be read

P =
{
P = (P0, ..., Pm) ∈ R

m+1 / PΩ1(ν(ξi)) ≤ Pi ≤ PD(ν(ξi)) i = 1, . . . , m− 1, P0 ≤ λ0 Pm + (1− λ0)P1,

Pi ≤ λi Pi−1 + (1− λi)Pi+1 i = 1, . . . , m− 1 and Pm ≤ λm Pm−1 + (1 − λm)P0}

where

λi =
‖ν(ξi−1)− ν(ξi)‖

‖ν(ξi)− ν(ξi+1)‖
for i = 1, . . . , m− 1

and

λ0 =
‖ν(ξm)− ν(ξ0)‖

‖ν(ξ0)− ν(ξ1)‖
λm =

‖ν(ξm−1)− ν(ξm)‖

‖ν(ξm)− ν(ξ0)‖
.

The discrete domain associated to Ω0 = ∂P̄ (0) =
{
l ∈ R

2 / P̄ (x) ≥ (l, x) , ∀x ∈ R
2
}
is given as solution of the

following relations [21]

ν(1)(ξi) l
(1)
i + ν(2)(ξi) l

(2)
i = P̄i for i = 0, . . . , m

To compute li = (l
(1)
i , l

(2)
i ), we suppose that li − ξi is collinear to ν(ξi) i.e.

ν(1)(ξi) l
(2)
i − ν(2)(ξi) l

(1)
i = ν(1)(ξi) ξ

(2)
i − ν(2)(ξi) ξ

(1)
i for i = 0, . . . , m

5 Numerical results

To illustrate the ability of the present algorithm in estimating the optimal shape and location of the unknown

boundary Γ2, we consider in the following two the specific models: the analysis one and the design one.
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In the analysis model, the exact boundary Γ2 and the exact solution u of the free boundary problem (4) are

known. By using the exact value of u on Γ1 and Γ2, and arbitrary initial guesses of the boundary, one is asked

to reconstruct the exact boundary by the gradient method combined with our proposed method used for the

computation of the gradient.

The design model is devoted to the investigation of some numerical experiment based on the approaches

proposed in the previous works to explore free boundary problems of Bernoulli type.

5.1 Analysis model

The main objective of the analysis model is to show the validity of the present design algorithm in estimating the

unknown boundary and to verify the accuracy of our method in the computation of the shape derivative of the

cost function. For this reason the following numerical simulation is performed. For the first example, we consider

the exact solution of (2) given by u(x, y) = x2 − y2 and the exact domain given by considering Ω = Ω2 \Ω1, where

Ω2 = {(x, y) / x2 + y2 < (1.5)2}

Ω1 = {(x, y) / x2 + y2 ≤ (0.75)2}

In all the test cases considered for this analysis model, the initial guesses of the domain Ω2 is taken as a ellipse with

axes of length 3 in x and 2 in y and of center (0, 0). The number of boundary elements used for the discretization

of the free boundary and the fixed boundary were taken to be respectively m = 40 and n − m = 30 (n = 70).

The coefficient of deformation and the precision are respectively taken ρ = 0.01 and EPSD = 10−3. The optimal

boundary is reached after 181 iterations. In figure 5.1, we plot the fixed and initial domain, and the exact and the

optimal solution. We note that our approach give a good solution. the variation of the cost function with respect

to the number of iterations is presented in figure 5.1. In figure 5.1, we plot the initial boundary, the free boundaries

at 10, 40, 80, 120 and 150 iterations.
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Figure 2: The optimal and the exact solutions
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Figure 3: Variation of the cost with respect to the number of iterations
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Figure 4: the free boundaries at different number of iterations.
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Now we keep the same solution u = x2 − y2, but the exact domain is defined by the ellipse with axes of

length 1.5 in x and 1 in y and of center (0, 0). For the same number of boundary elements and for the coeffi-

cient of deformation and the precision respectively taken ρ = 0.0001 and EPSD = 10−3 the optimal boundary

is reached after 111 iterations. The fixed and the initial domain, and the exact and the optimal solution are pre-

sented in figure 5.1. In figure 5.1, we plot the variation of the cost function with respect to the number of iterations.
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Figure 5: The optimal and the exact solutions.
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Figure 6: Variation of the cost with respect to the number of iterations.

5.2 Design model

In this section, we present some numerical results for the exterior free boundary problems using the approach

presented in the previous section. The exterior Bernoulli free boundary reads as follows. Find outside boundary

Γ2 and function u = u(x) solution of the problem





−∆u = 0 in Ω,

u = 0 on Γ1,

u = 1 on Γ2,
∂u
∂ν

= C on Γ2,

(53)

where C is a negative constant.

The first numerical example is given in order to confirm the fundamental observation (see [13]), that is for a fixed

domain Ω1 which is the ball Br
0 of center (0, 0) and radius r a solution is a ball BR

0 of center (0, 0) and radius R,

such that R > r; and moreover R increases when C increases. In all the test cases considered for this design model,

the initial guesses of the domain is taken as a circle of radius 3. and of center (0, 0). In the first example, the fixed

domain is chosen as circle of radius 0.75 and of center (0, 0), and the number of boundary elements used for the

discretization of the free and fixed boundaries are taken the same as in the above examples. The coefficient of de-

formation and the precision are respectively taken ρ = 0.01 and EPSD = 10−5. The optimal domains for different

values of C are presented in figure 5.2. The values of the cost functions for different values of C are given in table 5.2.
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Figure 7: The optimal domains for different values of C.

C -0.35 -0.75 -1.5 -2.5

Cost 1.55 10−6 8.55 10−8 4.3 10−8 4.34 10−6

Table 1: Cost functions for different values of C.

Now for the second example, we keep the same data, but the fixed domain Ω1 is taken as a polygon. The

number of boundary elements used for the discretization of the free boundary and the fixed boundary were taken

to be respectively m = 40 and n − m = 40 (n = 80). The fixed domain and the optimal domains for different

values of C are presented in figure 5.2. We observe that the optimal shapes take the same profile to those obtained
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in [15, 18].
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Figure 8: The optimal domains for different values of C.

6 Conclusion

In this work, a shape optimization formulation is considered for the approximation of the free boundary Bernoulli

problem. We show the existence of the shape derivative of the cost functional and establish its expression via

support functions, in order to avoid the tedious use of the shape derivative method based on the vector fields.

Then the gradient method combined with the boundary element method are performed for the discretization of the

problem. Finally we give some numerical results showing the ability and effectiveness of the proposed approach.
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