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RECOVERY OF NON-SMOOTH COEFFICIENTS APPEARING IN
ANISOTROPIC WAVE EQUATIONS

ALI FEIZMOHAMMADI AND YAVAR KIAN

Abstract. We study the problem of unique recovery of a non-smooth one-form A and a
scalar function q from the Dirichlet to Neumann map, ΛA,q, of a hyperbolic equation on
a Riemannian manifold (M, g). We prove uniqueness of the one-form A up to the natural
gauge, under weak regularity conditions on A, q and under the assumption that (M, g) is
simple. Under an additional regularity assumption, we also derive uniqueness of the scalar
function q. The proof is based on the geometric optic construction and inversion of the
light ray transform extended as a Fourier Integral Operator to non-smooth parameters and
functions.
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1. Introduction

Let T > 0, and let (M, g) denote a compact connected smooth n-dimensional Riemannian
manifold with smooth boundary ∂M . We consider the Lorentzian manifold (M, ḡ) defined as
M = (0, T )×M with the metric ḡ = −(dt)2 + g. Let div ḡ (resp., ∇ḡ) denote the divergence

Key words and phrases. Dirichlet to Neumann map, inverse problems, time-dependent coefficients, non-
smooth parameters, simple manifolds, light ray transform, magnetic potential.
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operator (resp., gradient operator) on (M, ḡ) and define the Laplace-Beltrami operator as-
sociated to (M, ḡ) through ∆ḡ· = div ḡ∇ḡ·. In local coordinates (t = x0, x1, . . . , xn) = (t, x),
we have

∆ḡ· =
n∑

i,j=0

1√
|ḡ|
∂i(
√
|ḡ|ḡij∂j·) = (−∂2

t + ∆g)·,

where ∆g is analogously defined on (M, g). In this paper, we will make the standing as-
sumption that (M, g) is simple, that is to say, it is simply connected, any geodesic in M has
no conjugate points and the boundary ∂M is strictly convex in the sense that the second
fundamental form is positive for every point on the boundary. Any two points in a simple
manifold can be connected through a unique geodesic.

We consider a scalar function q and a one-form A on (M, ḡ). In local coordinates, we
have

(1.1) A(t, x) = b(t, x) dt+
n∑
i=1

aj(t, x) dxj = b(t, x) dt+ A(t, x),

where A is a time-dependent one-form on (M, g). Throughout this paper we impose the
following regularity assumptions on these coefficients:

(1.2)

A ∈ W 1,1(0, T ;L2(M ;T ∗M)) ∩ C(M;T ∗M)

div ḡA ∈ Lp1(0, T ;Lp2(M)),

q ∈ Lp1(0, T ;Lp2(M)).

where p1 > 1 and p2 ∈ [n,∞] \ {2}. We consider the initial boundary value problem (IBVP)

(1.3)

 LA,qu := −∆ḡu+A∇ḡu+ qu = 0, on M,
u = f, on (0, T )× ∂M,
u(0, ·) = 0, ∂tu(0, ·) = 0 on M,

This problem is well-posed for any f ∈ H1
0 ((0, T ] × ∂M) (see Section 2.1) and admits a

unique solution u in the energy space

(1.4) X := C1(0, T ;L2(M)) ∩ C(0, T ;H1(M)).

We define the Dirichlet-to-Neumann (DN in short) map

(1.5) ΛA,q : H1
0 ((0, T ]× ∂M) 3 f 7→

(
∂ν̄u−

Aν̄
2
u

)
|(0,T )×∂M ∈ L2((0, T )× ∂M)

for equation (1.3). Here ν̄ represents the outward normal unit vector to (0, T ) × ∂M . We
refer the reader to Sections 2.1-2.2 for a rigorous presentation of the direct problem (1.3) and
this formulation of the DN map. In this paper, we are interested in determining the unknown
complex valued coefficients A, q, given the map ΛA,q, up to the natural obstructions for this
problem as discussed in [22, Section 1.2].

1.1. Main results. Before stating the main theorem, we need to define the set E ⊂ M
where we recover the coefficients. Let us define the domain of influence

D := {(t, x) ∈M| dist (x, ∂M) < t < T − dist (x, ∂M)}.
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By finite speed of propagation, no information can be obtained about the coefficients A, q
from ΛA,q on the set M\D. Thus, D represents the maximal set where one can, in theory,
recover the coefficients. Now, for T > 2 Diam(M), we start by fixing a subset of D given by

E := {(t, x) ∈M|Dg(x) < t < T −Dg(x)},
where Dg(x) denotes the length of the longest geodesic passing through the point x in M .
Since (M, g) is simple, this is a well-defined continuous function on M . With the definition
of E complete, we can state the main results in our paper as follows:

Theorem 1.1. Suppose T > 2 Diam(M) and that (M, g) is a simple Riemannian manifold.
Let A1,A2 denote one-forms and q1, q2 denote scalar functions satisfying (1.2) and such that

(1.6) supp (A1 −A2) ⊂ E and supp (q1 − q2) ⊂ E .
Then the condition

(1.7) ΛA1,q1 = ΛA2,q2

implies that there exists ψ ∈ C1(M) with ψ|∂M = 0 such that

(1.8) A1 = A2 + d̄ψ ∀ (t, x) ∈M,

where d̄ denotes the exterior derivative on M.

Theorem 1.2. Let the hypothesis of Theorem 1.1 be fulfilled and assume additionally that

(1.9) q1 − q2 ∈ Lp1(0, T ;L∞(M)), div ḡ(A1 −A2) ∈ Lp1(0, T ;L∞(M))

holds. Then the condition ΛA1,q1 = ΛA2,q2 implies that there exists ψ ∈ C1
0(M) with ∆ḡψ ∈

Lp1(0, T ;L∞(M)) such that

(1.10) A1 = A2 + d̄ψ, q1 = q2 +
1

2
∆ḡψ −

1

2
A2∇ḡψ − 1

4
〈∇ḡψ,∇ḡψ〉ḡ ∀ (t, x) ∈M.

The proof of Theorems 1.1-1.2 rely in part on the inversion of the light ray transform
of one-forms and scalar functions over M under the hypothesis (1.6) and the regularity
conditions (1.2). This has already been accomplished for C1 one-forms and continuous scalar
functions in [22], but some additional analysis is required here as we are working with a
wider regularity class for the coefficients A and q. Let us briefly recall the notion of the
light ray transform here. We denote by SM ⊂ TM the unit sphere bundle of (M, g), and
by γ(·;x, v) the geodesic with the initial data (x, v) ∈ SM . For all (x, v) ∈ SM int, we define
the exit times

τ±(x, v) = inf{r > 0 : γ(±r;x, v) ∈ ∂M}
and note that since (M, g) is simple, we have τ±(x, v) < Diam(M). Define

∂±SM = {(x, v) ∈ SM |x ∈ ∂M ± 〈v, ν(y)〉g > 0}.
All geodesics in M int can be parametrized by γ(·;x, v), (x, v) ∈ ∂−SM . The geodesic ray
transform on (M, g) is defined for f ∈ C∞(M) by

If(x, v) =

∫ τ+(x,v)

0

f(γ(r;x, v))dr, (x, v) ∈ ∂−SM.
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Next, we consider the Lorentzian manifold R×M with metric ḡ = −(dt)2 + g. Recall that
a curve β in R×M is called a null geodesic (also called light rays) if

(1.11) ∇ḡ

β̇
β̇ = 0 and 〈β̇, β̇〉ḡ = 0.

One can use the product structure of the Lorentzian manifold R ×M to see that the null
geodesics β can be parametrized as

β(r; s, x, v) = (r + s, γ(r;x, v)) ∀(s, x, v) ∈ R× ∂−SM.

Thus, we can identify null geodesics β through β(·; s, x, v) with (s, x, v) ∈ R × ∂−SM over
their maximal intervals [0, τ+(x, v)]. We define the light ray transform on R ×M that is
defined for f ∈ C∞(R×M) by

Lf(s, x, v) =

∫ τ+(x,v)

0

f(r + s, γ(r;x, v)) dr, ∀(s, x, v) ∈ R× ∂−SM.

Similarly, we define the light ray transform corresponding to smooth one-forms B, through
the expression

LB (s, y, v) := L(Bβ̇) (s, y, v).

We will sometimes use the short hand notation Lβf,LβB in place of the above notation. In
Section 2.4, we will show that Lβf is a Fourier Integral Operator and that the domain of
definition can be extended to Lp spaces. We will prove the following Proposition in Section 5,
that is a key step in proving Theorems 1.1-1.2.

Proposition 1.3. Let f ∈ L1(0, T ;L2(M)) and B ∈ C(M;T ∗M) both vanish on the set
M\ E. Then the following statements hold:

(i) If Lβ f = 0 for all maximal null geodesics β ⊂ D, then f ≡ 0.
(ii) If Lβ B = 0 for all maximal null geodesics β ⊂ D, then B ≡ d̄ψ for some ψ ∈ C1(M)

with ψ|∂M = 0.

The proof of statement (ii) will be identical to that of statement (ii) in [22, Proposition
1.4], with the only difference being that B ∈ C(M;T ∗M) here as opposed to C1(M;T ∗M).
Reproducing the exact same analysis as in the proof there shows that one obtains existence
of a ψ ∈ C1(M) with ψ|∂M = 0 such that (ii) holds and therefore for the sake of brevity we
omit this proof. We will however prove statement (i) in Section 5.

1.2. Previous literature. Historically, uniqueness results for the recovery of coefficients
can be divided into two categories, based on whether or not the geometry and coefficients
are dependent on time. The time-independent case has been studied extensively and one
can outline at least three general methods for the recovery of the coefficients in this case.
The first approach, stemming from the seminal works [5, 7], relies on the so-called Boundary
Control (BC) method together with Tataru’s sharp unique continuation theorem [55]. This
method yields recovery of time-independent coefficients under very weak assumptions on
the transversal manifold (M, g). We refer the reader to [37] for an introduction to the BC
method and to the recent paper [39] for an example of a state of the art result and finally
to [6, 32] for review. The stability results are in general double logarithmic ([14]) although
in [45] a stronger low-frequency stability estimate was obtained by using ideas from the
BC method. Tataru’s unique continuation theorem fails when the time-dependence of the
metric or the coefficients is not real analytic [1, 2], and therefore adaptations based on the
BC method fails beyond this scenario. We refer the reader to [20] for recovery of coefficients
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when the time-dependence is real analytic. An alternative approach in deriving uniqueness
results in the time-independent category started from the seminal work [15], where Carleman
estimates were used for the first time in the context of inverse problems. Proofs based on
Carleman estimates tend to yield stronger stability estimates compared to BC method.
Methods based on using the classical geometric optic solutions to the wave equation have
also been quite fruitful in deriving uniqueness results in time-independent category (see for
example [11, 12, 52, 53]).

In the time-dependent category, apart from [20] mentioned above, most of the results
are concerned with wave equations with constant coefficient principal part. In [51], the
author used geometric optic solutions for the wave equation with constant principal terms
and an unknown zeroth order term to prove uniqueness by showing that the boundary data
determines the light ray transform of the unknown scalar function in Minkowski space and
subsequently inverting this transform. We refer the reader to [13, 28, 33, 34, 46, 47] for
similar results in this category.

Literature dealing with uniqueness results for the case of a wave equation with time-
dependent first and zeroth order coefficients on a Riemannian manifold, where the time-
dependence is non-analytic, is sparse. We refer to [36, 57] for the study of recovering a
time-dependent zeroth order term appearing in the wave equation. In the recent paper [54],
the authors used Fourier Integral Operators to show that a micro-local formulation of the
Dirichlet to Neumann map ΛA,q uniquely determines the light ray transforms of the one-form
A and scalar function q. There, it was assumed that the coefficients are in some Ck space
with k large enough. It was recently proved in [22] that if the one-form is C1 smooth and
the scalar function is continuous, then one can use the classical Gaussian beam construction
to uniquely obtain the light ray transforms of A and q from the knowledge of ΛA,q. The
inversion of the light ray transform was also proved for the first time under the assumption
that the geodesic ray transform is injective on the transversal manifold (M, g) and that the
coefficients are known for some explicit lengths of time near t = 0 and t = T . In this
paper, we generalize the result obtained in [22] to the case of non-smooth coefficients. We
prove that if (M, g) is simple, the Dirichlet to Neumann map uniquely determines the light
ray transform of the non-smooth coefficients and subsequently show the inversion of the
light ray transform as a Fourier Integral Operator under the additional assumption that the
coefficients are known on a slightly larger set compared to the sharp domain D where no
information can be obtained about the coefficients. This generalization and the difficulties
therein are discussed in more detail in the subsequent section.

1.3. Comments about our results. We discuss some of the main novelties of our result,
both by previewing some of the technical challenges and also by motivating the study of
non-smooth coefficients in their own right. The technical difficulties are three-fold. One
difficulty stems from the study of the forward problem and the need for sharper energy
estimates for the determination of the correction terms appearing in the formal geometric
optic ansatz. Another key difficulty stems from the one-form A, as any lack of smoothness in
the one-form appears at the level of the principal term corresponding to the geometric optic
ansatz, thus making the task of a meaningful geometric optic solution to the wave equation
and the reduction to the light ray transform of the coefficients more challenging. Finally,
let us remark that in [22] the inversion of the light ray transform was proved for smooth
coefficients. We generalize this inversion method to non-smooth functions by extending the
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notion of the light ray transform and the inversion method, in a distributional sense, to
non-smooth coefficients.

Aside from the technical challenges, it should be remarked that the recovery of non-
smooth coefficients is a well-motivated question in its own right as it can be associated with
the determination of various unstable phenomenon which can not be modeled by smooth
parameters. For elliptic equations, this topic has received a lot of attention these last few
decades (see [4, 17, 23, 24, 38]). However, only few authors have addressed this issue for
hyperbolic equations. Concerning the recovery of time dependent coefficients, [27] seems to
be the only paper addressing this issue. The result of [27] concerns the recovery of a zeroth
order coefficient on a flat Lorentzian manifold with the Minkowski metric. In Theorem 1.1
and 1.2, we prove, for what seems to be the first time, the extension of this work to the
recovery of non-smooth first and zeroth order coefficients appearing in a hyperbolic equation
associated with a more general Lorentzian manifold.

Let us observe also that our inverse problem is intricately connected with the recovery
of nonlinear terms appearing in hyperbolic equations. Indeed, following the strategy set by
[16, 18, 30, 31] for parabolic equations, through a linearization procedure initially introduced
by [30], one can reduce the problem of determining coefficients appearing in a non-linear
problem to the recovery of time-dependent coefficients appearing in a linear equation. In
[35] the author proved the extension of this approach to semi-linear hyperbolic equations.
Note that in this procedure, the time-dependent coefficient under consideration depends
explicitly on solutions of the nonlinear equation. Therefore, following the analysis of [35],
the recovery of non-smooth coefficients can be seen as an important step in the more difficult
problem of determining quasi-linear terms appearing in nonlinear hyperbolic equations.

1.4. Outline of the paper. This paper is organized as follows. In Section 2, we start by
considering the direct problem (1.3) and rigorously justify the definition (1.5) also deriving
a key boundary integral identity (see Lemma 2.3). Moreover, we discuss smooth approxi-
mations of the coefficients A, q and also extend the notion of the light ray transform to Lp

functions. Section 3 is concerned with the construction of geometric optic solutions to (1.3)
concentrating on maximal null geodesics in the set D. In Section 4 we prove Theorems 1.1-
1.2 by applying the geometric optic construction and Proposition 1.3. Finally, Section 5 is
concerned with the proof of statement (i) in Proposition 1.3. As explained in Section 1.1
statement (ii) follows analogously to statement (ii) in [22, Proposition 1.4].

2. Preliminaries

2.1. Direct problem. In this section we study the wave equation (1.3) and show that for
A, q satisfying (1.2) and each f ∈ H1

0 ((0, T ]× ∂M) it admits a unique solution u in energy
space (1.4). We will repeatedly use the Sobolev embedding theorem as follows.

(2.1) ‖f1f2‖Lp1 (0,T ;L2(M)) . ‖f1‖Lp1 (0,T ;Lp2 (M))‖f2‖C(0,T ;H1(M)).

This estimate holds since H1(M) ⊂ L
2n
n−2 (M) for n > 2 and H1(M) ⊂ Lp(M) for n = 2

and any p ∈ [1,∞). In order to study the IBVP given by (1.3), we start by considering the
following IBVP

(2.2)

 −∆ḡv +A∇ḡv + qv = F, (t, x) ∈M,
v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈M

v(t, x) = 0, (t, x) ∈ (0, T )× ∂M.
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We have the following well-posedness result for this IBVP.

Proposition 2.1. Let p1 ∈ (1,+∞) and p2 ∈ [n,+∞) \ {2}. For q ∈ Lp1(0, T ;Lp2(M)),
A ∈ L∞(M;T ∗M) and F ∈ Lp1(0, T ;L2(M)), problem (2.2) admits a unique solution v in
the space

(2.3) X0 := C([0, T ];H1
0 (M)) ∩ C1([0, T ];L2(M))

satisfying ∂νv ∈ L2((0, T )× ∂M) and the estimate

(2.4) ‖∂νv‖L2((0,T )×∂M) + ‖v‖X0
6 C(‖v0‖H1(M) + ‖v1‖L2(M) + ‖F‖Lp1 (0,T ;L2(M))),

with C depending only on p1, p2, n, T , M and any N > ‖q‖Lp1 (0,T ;Lp2 (M)) + ‖A‖L∞(M).

Proof. We will prove this result by following the approach developed in [27, Proposition 2.1].
Our first goal is to show that for any v ∈ W 2,∞(0, T ;H1

0 (M)) solving (2.2), the a priori
estimate (2.4) holds true. Then, applying [44, Theorem 8.1, Chapter 3], [44, Remark 8.2,
Chapter 3] and [44, Theorem 8.3, Chapter 3], the proof will be completed. We introduce the
energy E(t) at time t ∈ [0, T ] given by

E(t) :=

∫
M

(
|∂tv(t, x)|2 + |∇gv(t, x)|2

)
dVg(x).

Multiplying (2.2) by ∂tv, taking the real part and integrating by parts we get

(2.5)

E(t) =− 2R

∫ t

0

∫
M

[A(s, x)∇ḡv(s, x) + q(s, x)v(s, x)]∂tv(s, x)dVg(x)ds

+ 2R

∫ t

0

∫
M

F (s, x)∂tv(s, x)dVg(x)ds.

Repeating the arguments of [27, Proposition 2.1] we get

(2.6)

|
∫ t

0

∫
M

q(s, x)v(s, x)∂tv(s, x)dVg(x)ds|+ |
∫ t

0

∫
M

F (s, x)∂tv(s, x)dVg(x)ds|

6 ‖F‖2
Lp1 (0,T ;L2(M)) + C

(∫ t

0

E(s)
p1
p1−1ds

) p1−1
p1

,

where C depends only on T , M , p1, p2, n and any N > ‖q‖Lp1 (0,T ;Lp2 (M)). In the same way,
we obtain

(2.7)

|
∫ t

0

∫
M

[A(s, x)∇ḡv(s, x)]∂tv(s, x)dVg(x)ds|

6 ‖A‖L∞(M)

∫ t

0

E(s)ds

6 ‖A‖L∞(M)t
1
p1

(∫ t

0

E(s)
p1
p1−1ds

) p1−1
p1

6 ‖A‖L∞(M)T
1
p1

(∫ t

0

E(s)
p1
p1−1ds

) p1−1
p1

.
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Combining (2.6)-(2.7) with (2.5), we obtain

E(t) 6 ‖F‖2
Lp1 (0,T ;L2(M)) + C

(∫ t

0

E(s)
p1
p1−1ds

) p1−1
p1

,

where C depends only on T , M , p1, p2, n and any N > ‖q‖Lp1 (0,T ;Lp2 (M)) +‖A‖L∞(M). Using

this last estimate we can deduce that (2.2) admits a unique solution v in the space (2.3)
satisfying

(2.8) ‖v‖X0
6 C(‖v0‖H1(M) + ‖v1‖L2(M) + ‖F‖Lp1 (0,T ;L2(M)))

by applying arguments similar to the end of the proof of [27, Proposition 2.1]. Therefore the
proof of the proposition will be completed if we show that ∂νv ∈ L2((0, T )× ∂M) and that
the estimate

(2.9) ‖∂νv‖L2((0,T )×∂M) 6 C(‖v0‖H1(M) + ‖v1‖L2(M) + ‖F‖Lp1 (0,T ;L2(M)))

is fulfilled. For this purpose, notice that v solves −∆ḡv(t, x) = Fv(t, x), (t, x) ∈M,
v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈M

v(t, x) = 0, (t, x) ∈ (0, T )× ∂M,

with Fv = −A∇ḡv−qv+F . Applying the Sobolev embedding theorem we deduce that Fv ∈
L1(0, T ;L2(M)). Then, applying [32, Lemma 2.39] we deduce that ∂νv ∈ L2((0, T ) × ∂M)
and

‖∂νv‖L2((0,T )×∂M) 6 C(‖Fv‖L1(0,T ;L2(M)) + ‖v0‖H1(M) + ‖v1‖L2(M))

6 C(‖v‖C([0,T ];H1(M)) + ‖v‖C1([0,T ];L2(M)) + ‖F‖Lp1 (0,T ;L2(M))).

Combining this with (2.8) we deduce (2.9) and this completes the proof of the proposition.
�

We can use Proposition 2.3 to show that equation (1.3) admits a unique solution u in
energy space (1.4). Recall the following classical IBVP:

(2.10)

 −∆ḡw = 0, (t, x) ∈M,
w(0, x) = 0, ∂tw(0, x) = 0, x ∈M

w(t, x) = f, (t, x) ∈ (0, T )× ∂M.

According to [32, Theorem 2.30] (see also [41]), this equation admits a unique solution w
in the energy space (1.4). We now return to (1.3) and note that we have u = w + v,
where w solves (2.10) with boundary term f , and v solves (2.2) with F := −A∇ḡw − qw.
As A, q satisfy (1.2) and since w is in the energy space (1.4), it is immediate that F ∈
Lp1(0, T ;L2(M)). Thus, Proposition 2.1 applies to show that u is in the energy space (1.4),
with ∂νu ∈ L2((0, T )× ∂M), and we have that

‖∂νu‖L2((0,T )×∂M) + ‖u‖X 6 C‖f‖H1
0 ((0,T ]×∂M).

Using this estimate we can define the DN map as the bounded operator from H1
0 ((0, T ]×∂M)

to L2((0, T )× ∂M) defined by

ΛA,qf =

(
∂ν̄u−

Aν̄
2
u

)
|(0,T )×∂M

for u the solution of (1.3).
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We have the following lemma that will be used in Section 3.

Lemma 2.2. Let F ∈ Lp1(0, T ;L2(M)) and suppose u is the unique solution to (2.2) subject
to u0 = u1 = 0. Then the following estimate holds:

‖u‖C(0,T ;L2(M)) 6 C

∥∥∥∥∫ t

0

F (s) ds

∥∥∥∥
Lp1 (0,T ;L2(M))

.

Proof. We set v(t, x) :=
∫ t

0
u(s, x) ds and note that v solves

(2.11)

 −∆ḡv = H, (t, x) ∈M,
v(0, x) = 0, ∂tv(0, x) = 0, x ∈M

v(t, x) = 0, (t, x) ∈ (0, T )× ∂M,

with

H := −
∫ t

0

A(s, x)∇ḡu(s, x) ds−
∫ t

0

q(s, x)u(s, x)ds+

∫ t

0

F (s, x) ds.

Since u is in the energy space (1.4), we deduce v ∈ C2([0, T ];L2(M)) ∩ C1([0, T ];H1(M)).
In addition, since qu ∈ Lp1(0, T ;L2(M)) (see (2.1)) and A ∈ L∞(M;T ∗M), we deduce that
H ∈ W 1,p1(0, T ;L2(M)) ⊂ L2(M) and that v solves the elliptic boundary value problem{

−∆gv = E, (t, x) ∈ (0, T )×M,
v(t, x) = 0, (t, x) ∈ (0, T )× ∂M,

with E = −∂2
t v+H ∈ L2(M). Then, from the elliptic regularity of solutions of this boundary

value problem, we get v ∈ L2(0, T ;H2(M)) and it follows that v ∈ H2(M). We define the
energy E(t) at time t associated with v and given by

E(t) :=

∫
M

(
|∂tv|2(t, x) + |∇gv|2g(t, x)

)
dVg(x) >

∫
M

|u|2 dVg(x).

Multiplying (2.11) by ∂tv and taking the real part, we find

(2.12)

E(t) =− 2R

(∫ t

0

∫
M

(∫ s

0

q(τ, x)u(τ, x) dτ

)
∂tv(s, x) dVg(x) ds

)
− 2R

(∫ t

0

∫
M

(∫ s

0

A(τ, x)∇ḡu(τ, x) dτ

)
∂tv(s, x) dVg(x) ds

)
+ 2R

(∫ t

0

∫
M

(∫ s

0

F (τ, x) dτ

)
∂tv(s, x) dVg(x) ds

)
.

Repeating some arguments of [27, Lemma 3.1], we find

(2.13)

|
∫ t

0

∫
M

(∫ s

0

q(τ, x)u(τ, x) dτ

)
∂tv(s, x) dVg(x) ds|

6 C ‖q‖2
Lp1 (0,T ;Lp2 (M))

(∫ t

0

E(τ)
p1

(p1−1) dτ

) (p1−1)
p1

+
E(t)

5
,

(2.14)

|
∫ t

0

∫
M

(∫ s

0

F (τ, x) dτ

)
∂tv(s, x) dVg(x) ds|

6 ‖F∗‖2
Lp1 (0,T ;L2(M)) + T

p1−1
p1

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

,
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where F∗(t, x) :=
∫ t

0
F (s, x)ds and C > 0 depends on M and T . In the same way, using the

fact that div ḡA ∈ Lp1(0, T ;Lp2(M)) and v ∈ C1([0, T ];H1
0 (M)), we get

(2.15)∫ t

0

∫
M

(∫ s

0

A∇ḡu(τ, x)dτ

)
∂tv(s, x) dVg(x) ds

= −
∫ t

0

∫ s

0

∫
M

(div ḡA)u ∂tv(s, x) dVg(x) dτ ds−
∫ t

0

∫
M

∫ s

0

uA(τ, x)∂t∇ḡv(s, x) dVg(x) dτ ds

−
∫ t

0

∫
M

b(s, x)|∂tv(s, x)|2 dVg(x) ds.

Repeating the arguments of (2.13), we find

(2.16)

|
∫ t

0

∫ s

0

∫
M

(div ḡA)u(τ, x)∂tv(s, x) dVg(x) dτ ds+

∫ t

0

∫
M

b(s, x)|∂tv(s, x)|2 dVg(x) ds|

6 C

(∫ t

0

E(τ)
p1

(p1−1) dτ

) (p1−1)
p1

+
E(t)

5
,

with C depending on T , M , ‖div ḡA‖Lp1 (0,T ;Lp2 (M)) and ‖b‖L∞(M)). Moreover, applying Fu-

bini’s theorem, we have∫ t

0

∫
M

∫ s

0

u(τ, x)A(τ, x)∂t∇ḡv(s, x) dVg(x) dτ ds

=

∫
M

∫ t

0

uA(τ, x)

(∫ t

τ

∂t∇ḡv(s, x) ds

)
dτ dVg(x)

=

∫
M

∫ t

0

uA(τ, x)∇ḡv(t, x) dVg(x) dτ −
∫
M

∫ t

0

uA(τ, x)∇ḡv(τ, x) dτ dVg(x).

It follows that

|
∫ t

0

∫
M

∫ s

0

uA(τ, x)∂t∇ḡv(s, x) dVg(x) dτ ds|

6 ‖A‖L∞(M)

(∫ t

0

E(τ)
1
2 dτ

)
E(t)

1
2 + ‖A‖L∞(M)

∫ t

0

E(τ) dτ

6 5 ‖A‖2
L∞(M)

(∫ t

0

E(τ)
1
2 dτ

)2

+
E(t)

5
+ ‖A‖L∞(M)

∫ t

0

E(τ) dτ

6 5 ‖A‖2
L∞(M) T

(∫ t

0

E(τ) dτ

)
+
E(t)

5
+ ‖A‖L∞(M)

∫ t

0

E(τ) dτ

6 (5 ‖A‖2
L∞(M) T + ‖A‖L∞(M))

(∫ t

0

E(τ) dτ

)
+
E(t)

5
.

Applying Hölder’s inequality, we get

|
∫ t

0

∫
M

∫ s

0

uA(τ, x)∂t∇ḡv(s, x) dVg(x) dτ ds|

6 (5 ‖A‖2
L∞(M) T + ‖A‖L∞(M))T

1
p1

(∫ t

0

E(τ)
p1

(p1−1) dτ

) (p1−1)
p1

+
E(t)

5
.
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Combining this with (2.16), we deduce that

(2.17) |
∫ t

0

∫
M

∫ s

0

uA(τ, x)∂t∇ḡv(s, x) dVg(x) dτ ds| 6 C

(∫ t

0

E(τ)
p1

(p1−1) dτ

) (p1−1)
p1

+
2E(t)

5
,

with C depending only on T and ‖A‖L∞(M). We deduce that there exists C depending on

T , M , ‖q‖Lp1 (0,T ;Lp2 (M)), ‖A‖L∞(M) and ‖div ḡA‖Lp1 (0,T ;Lp2 (M)) such that

E(t) 6
4E(t)

5
+ C

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

+ ‖F∗‖2
Lp1 (0,T ;L2(M))

and therefore

E(t) 6 5C

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

+ 5 ‖F∗‖2
Lp1 (0,T ;L2(M)) .

Applying the Gronwall inequality yields

E(t)
p1
p1−1 6 c1 ‖F∗‖

2p1
p1−1

Lp1 (0,T ;L2(M)) e
c2t 6 c1 ‖F∗‖

2p1
p1−1

Lp1 (0,T ;L2(M)) e
c2T , t ∈ (0, T ),

where c1 depends only on p1 and c2 on C and p1. �

2.2. Dirichlet to Neumann map. In this section we will derive a representation formula
involving the DN map (Lemma 2.3) and also recall some invariance properties of the DN
map (Lemma 2.4).

Let us consider the following problem

(2.18)

 L∗A,qv = −∆ḡv −A∇ḡv + (q − div ḡA)v = 0, on M,
v = h, on (0, T )× ∂M,
v(T, ·) = 0, ∂tv(T, ·) = 0 on M.

Here, the differential operator L∗A,q represents the formal adjoint of LA,q. Repeating the

arguments of the previous section we can prove that, for each h ∈ H1
0 ([0, T ) × ∂M), this

problem admits a unique solution v in energy space (1.4), with ∂ν̄v ∈ L2((0, T ) × ∂M),
satisfying the estimate

‖∂ν̄v‖L2((0,T )×∂M) + ‖v‖X 6 C‖h‖H1
0 ([0,T )×∂M).

Therefore, we can define the DN map associated with (2.18) as follows

(2.19) Λ∗A,qh =

(
∂ν̄v +

Aν̄
2
v

)
|(0,T )×∂M .

It is straightforward to show that

(2.20) < ΛA,qf, h >=< f,Λ∗A,qh > ∀(f, h) ∈ H1
0 ((0, T ]× ∂M)×H1

0 ([0, T )× ∂M),

where 〈f1, f2〉 :=
∫

(0,T )×∂M f1f2 dVḡ. Using this equality together with Green’s identity, we

can derive the following classical representation formula.

Lemma 2.3. Let A1,A2, q1, q2 satisfy (1.2). Given any f1 ∈ H1
0 ((0, T ] × ∂M) and f2 ∈

H1
0 ([0, T )× ∂M), the following identity holds:

(2.21) 〈(ΛA1,q1 − ΛA2,q2)f1, f2〉 =

∫
M

[
u2A∇ḡu1 − u1A∇ḡu2

2
+ (q − 1

2
div ḡA)u1u2

]
dVḡ,
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where A := A1 −A2, q := q1 − q2, u1 solves (1.3) with A = A1, q = q1 and lateral boundary
term f1 while u2 solves (2.18) with A = A2, q = q2 and lateral boundary term f2.

We also have the following lemma regarding the gauge equivalence of the Dirichlet to
Neumann map:

Lemma 2.4. Let A, q satisfy (1.2). Suppose ψ ∈ C1(M) vanishes on (0, T ) × ∂M and
satisfies ∆ḡψ ∈ Lp1(0, T ;Lp2(M)). Then

ΛA,q = ΛÃ,q̃,

where

(2.22) Ã = A+ d̄ψ and q̃ = q +
1

2
∆ḡψ −

1

2
A∇ḡψ − 1

4
〈∇ḡψ,∇ḡψ〉ḡ.

Proof. We start by observing that if u solves differential equation (1.3) with coefficients A, q
and a lateral boundary condition f , then ũ = e

1
2
ψu solves equation (1.3) with coefficients

Ã, q̃ and the same lateral boundary condition f . Then it follows that

ΛÃ,q̃f =

(
∂ν̄ ũ−

Ãν̄
2
ũ

)
|(0,T )×∂M =

(
∂ν̄u+

∂ν̄ψ

2
u− Ãν̄

2
u

)
|(0,T )×∂M

=

(
∂ν̄u−

Aν̄
2
u

)
|(0,T )×∂M = ΛA,qf.

�

2.3. Smooth approximation of the coefficients A and q. The goal of this section is
to show that given one-forms Ak, k = 1, 2 satisfying (1.2), it is possible to find smooth

approximations Ak,ρ that are defined in a slightly larger manifold M̂ and such that (2.24)

holds. Let M ⊂ M̂ int ⊂ M̃ int denote a small artificial extension of the simple manifold M ,
so that M̂, M̃ are also simple manifolds and define M̂ = R × M̂ . We first consider the
Sobolev extension of Ak, k = 1, 2 to the larger manifold R × M such that the extension
belongs to W 1,1(R;L2(M)) ∩ C(R×M) and then extend this extended one-form to R× M̃
by setting it equal to zero on R× (M̃ \M). The scalar functions qk are extended to R× M̃
by setting them equal to zero outside of M. Let p ∈ M̃ \ M̂ . As M̃ is simple, there exists

a global coordinate chart on a neighborhood of M̂ given by (y1, . . . , yn). Indeed one such

coordinate system would be the polar normal coordinates around a point p ∈ M̃ \M̂ (see for
example [49, Chaper 9, Lemma 15]). We then consider the coordinate chart (t, y1, . . . , yn) on

a neighborhood of M̂ in R× M̃ and note that using this chart we can easily define smooth
approximations of the coefficients Ak, qk. Indeed, let ρ > 0 and define the smooth function
ζρ : M̂ → R through

ζρ(t, y) = ρ
n+1
4 χ(ρ

1
4

√
t2 + (y1)2 + . . .+ (yn)2)

where χ : R→ R is a non-negative smooth function satisfying χ(t) = 1 for |t| < 1
4

and χ = 0

for |t| > 1
2

and ‖χ‖L1(R) = 1. We define the smooth approximations Ak,ρ of the coefficients
Ak through the expressions

(2.23) Ak,ρ(t, x) := (Ak ∗ ζρ)(t, x) = bk,ρ dt+ Ak,ρ ∀(t, x) ∈ M̂ k = 1, 2.
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and note that in view of (1.2), the following estimates hold for k = 1, 2:

(2.24)
lim
ρ→∞

(
‖Ak,ρ −Ak‖W 1,1(0,T ;L2(M)) + ‖Ak,ρ −Ak‖Lp(M)

)
= 0 ∀ p ∈ [1,∞),

‖Ak,ρ‖Wk,∞(M) . ρ
k
4 ∀k ∈ N∗.

Additionally, since A ∈ C(M;T ∗M) we can write

(2.25) lim
ρ→∞
‖Ak,ρ −A‖C((0,T )×Ωρ) = 0, k = 1, 2

where Ωρ = {x ∈ M̃ | dist (x, ∂M) & ρ−
1
4}.

2.4. Light ray transform as a Fourier Integral Operator. The main goal of this section
is to extend the notion of Lβ over scalar functions in Lp Sobolev spaces. This extension is
based on showing that L is a Fourier Integral Operator. We will assume through out this
section that (M, ḡ) and (M, g) are as discussed in the introduction and that M ⊂ M̂ int

with M̂ as in Section 2.3. We start with the notion of light ray transform L of scalar
functions over null geodesics in R× M̂ showing that it has a unique continuous extension as
an operator from E ′(R × M̂) to D′(R × ∂−SM̂). This would naturally show that the light
ray transform Lβ of scalar functions over null geodesics on M has a continuous extension

from L1(0, T ;L2(M)) to D′(R× ∂−SM) as L1(0, T ;L2(M)) ⊂ E ′(R× M̂).
We will now show that the kernel of L is locally represented by an oscillatory integral.

It suffices to consider f ∈ C∞c (R × M̂) that is supported in a coordinate neighborhood and

work in local coordinates on M̂ . Let us also extend the geodesics γ(·; y, v), (y, v) ∈ ∂−SM̂ ,

as functions from R to M̂ so that γ(s; y, v) /∈ supp (f) for s /∈ [0, τ+(x, v)]. Then in local
coordinates

Lf(s, y, v) =

∫
R
f(r + s, γ(r; y, v)) dr =

∫
R

∫
Rn
f(t, x)δ(x− γ(t− s; y, v)) dx dt,

and writing ϕ(x, t; s, y, v; ξ) = ξ(x− γ(t− s; y, v)) it holds that

δ(x− γ(t− s; y, v)) =

∫
Rn
eiϕ(x,t;s,y,v;ξ) dξ.

Moreover, ϕ is an operator phase function in the sense of [25, Def. 1.4.4]. Indeed for fixed
(s, y, v) it clearly has no critical points when ξ 6= 0. That the same is true for fixed (t, x)
follows from the next lemma.

Lemma 2.5. Let (y0, v0) ∈ ∂−SM̂ and r0 ∈ (0, τ+(y0, v0)), and consider a small neighborhood

U of (r0, y0, v0) in R×∂−SM̂ . Then γ(r; y, v) as a map from U to M̂ has surjective differential
at (r0, y0, v0).

Proof. Write x0 = γ(r0; y0, v0), w0 = γ̇(r0; y0, v0) and let ξ∗ ∈ Tx0M̂ . Choose a path α in

M̂ such that α(0) = x0 and α̇(0) = ξ∗. Consider −w0 in local coordinates as a vector in all

Tα(ε)M̂ for small ε > 0. As

γ(r0;x0,−w0) = y0, γ̇(r0;x0,−w0) = −v0 /∈ Ty0(∂M̂),

it follows from the implicit function theorem that there is unique r(ε) near r0 such that

γ(r(ε);α(ε),−w0) ∈ ∂M̂ . Writing

y(ε) = γ(r(ε);α(ε),−w0), v(ε) = −γ̇(r(ε);α(ε),−w0),
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we have that γ(r(ε); y(ε), v(ε)) = α(ε). Hence the differential of the map γ takes vectors
(ṙ(0), ẏ(0), v̇(0)) to ξ∗ = α̇(0). �

As ϕ is an operator phase function, the light ray transform L has a unique continuous
extension as an operator from E ′(R× M̂) to D′(R× ∂−SM̂) by [25, Th. 1.4.1].

3. Geometric Optics

Throughout this section we consider one-forms A1,A2 and scalar functions q1, q2 to satisfy
regularity conditions given by (1.2) and consider their extensions to the manifold M̃ and

their smooth approximations on the manifold M̂ as outlined in Section 2.3. We consider a
fixed null geodesic β ⊂ D parametrized with respect to the time variable. The projection
of this null-geodesic on M is denoted by the (Riemannian) unit speed geodesic γ(·; y, v)
defined over its maximal domain I = [0, τ+(y, v)]. We extend γ to M̃ and let the interval

Î = [−δ̂−, τ+(y, v) + δ̂+] to denote the maximal domain of definition of γ on the manifold

M̂ . Subsequently we can parametrize the extended null geodesic β on M̂ through

β(t; s, y, v) = (s+ t, γ(r; y, v)) for t ∈ Î ,
where s ∈ R is a constant. We are interested in constructing the so called geometric optic
solutions u1, u2 in energy space (1.4), of the problems

(3.1)

{
−∆ḡu1 +A1∇ḡu1 + q1u1 = 0, (t, x) ∈M,
u1(0, x) = ∂tu1(0, x) = 0, x ∈M,{
−∆ḡu2 −A2∇ḡu2 + (q2 − div ḡA2)u2 = 0, (t, x) ∈M,
u2(T, x) = ∂tu2(T, x) = 0, x ∈M,

taking the form

(3.2) u1(t, x) = eiρΦ(t,x)c1,ρ(t, x) +R1,ρ(t, x), (t, x) ∈M,

(3.3) u2(t, x) = e−iρΦ(t,x)c2,ρ(t, x) +R2,ρ(t, x), (t, x) ∈M,

with ρ > 1. The phase function Φ and the smooth amplitude functions cj,ρ, j = 1, 2 are
constructed in a way that the principal terms eiρΦcj,ρ are compactly supported near the null
geodesic β. The remainder terms Rj,ρ asymptotically converge to zero as ρ→∞.

As we are interested in a particular null geodesic β, we outline a polar normal coordinate
system specific to this null geodesic. We start by considering a point p on {0} × γ with

p ∈ {0} × (M̃ \ M̂) and construct the polar normal coordinates (t, r, θ) about the point
p defined for r > 0 and θ ∈ SpM̃ = {v ∈ TpM̃ | |v|g = 1} through the diffeomorphism
(t, x) = (t, exp(rθ)). In this coordinate system the metric ḡ is smooth away from the point
p and takes the form

(3.4) ḡ(t, r, θ) = −(dt)2 + (dr)2 + g0(r, θ),

where g0 is a Riemannian metric on SpM̃ . As we will be only considering this coordinate

system on the manifold M̂ and owing to the fact that M̂ is simple, we can identify θ with a
globally defined coordinate system (θ1, . . . , θn−2) ∈ Rn−2. This can in fact be done in such a

manner that the null geodesic β on M̂ can be represented with coordinates (s+s0, s, 0, . . . , 0)

with s ∈ Î.
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In order to make the analysis simpler, we will introduce a new coordinate system near β
denoted by (z0, z1, . . . , zn) in terms of the polar normal coordinates (t, r, θ) on M̂ given by

(i) z0 := 1√
2
(t+ r),

(ii) z1 := 1√
2
(−t+ r + s0),

(iii) zj := θj for j = 2, . . . , n.

In this coordinate system, the null geodesic β on M̂ is given by the coordinates (s, 0) with
s ∈ (a0, b0) for some constants a0, b0. Furthermore the metric ḡ takes the form

(3.5) ḡ(z) = 2 dz0 dz1 +
n∑

j,k=2

gjk(z) dzj dzk.

We define a tubular neighborhood around the null geodesic β where the amplitude functions
are compactly supported, as follows:

(3.6) Vβ = {z ∈ M̂ | z0 ∈ [a0, b0], |z′| :=
√
|z1|2 + . . .+ |zn|2 < δ′},

where δ′ > 0 is sufficiently small that the set Vβ is disjoint from {0} ×M and {T} ×M .
This can be guaranteed due to the assumption β ⊂ D.

3.1. Construction of the Geometric Optics. We proceed to carry out the construction
of the geometric optic solutions to (3.1) in detail. We impose to the remainder term

Rk,ρ ∈ C([0, T ];H1
0 (M)) ∩ C1([0, T ];L2(M)), k = 1, 2

the following decay property

(3.7) lim
ρ→+∞

(‖Rk,ρ‖C(0,T ;L2(M)) + ρ−1 ‖Rk,ρ‖H1(M)) = 0.

To prove the decay of Rk,ρ with respect to ρ, given by (3.7), we need to suitably construct
Φ, c1,ρ, c2,ρ. We write

(3.8)
LA1,ρ,q1(e

iρΦc1,ρ) = eiρΦ
(
ρ2SΦ− iρTA1,ρc1,ρ + LA1,ρ,q1c1,ρ

)
,

L∗A2,ρ,q2
(e−iρΦc2,ρ) = e−iρΦ

(
ρ2SΦ + iρT−A2,ρc1,ρ + L∗A2,ρ,q2

c2,ρ

)
,

where

(3.9) SΦ := 〈∇ḡΦ,∇ḡΦ〉ḡ and TA· = 2〈∇ḡΦ,∇ḡ·〉ḡ + (−A∇ḡΦ + ∆ḡΦ) · .
We proceed to determine the phase function Φ(t, x) such that the eikonal equation

(3.10) SΦ = 0 on M
is satisfied. The amplitude functions ck,ρ(t, x) for k = 1, 2 are constructed such that the
transport equations

(3.11) TA1,ρc1,ρ = 0 and T−A2,ρc2,ρ = 0 on M
hold. Let us start with the eikonal equation. Existence of global smooth solutions to this
equation is not guaranteed in general, but owing to the assumption that the manifold is
simple, we can find plenty of such solutions. Indeed for the remainder of this section, we will
be working in the z coordinate system defined earlier. Recall that this coordinate system is
well-defined on M̂ and the null geodesic β on M̂ is represented by (s, 0) with s ∈ [a0, b0].
Recalling the form of the metric from (3.5), we pick

(3.12) Φ(z) = z1.
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To determine the amplitude functions, we first use (3.5) again to rewrite the transport
equations (3.11) as

(3.13) ∂z0c1,ρ +

(
∂z0 log |g|

4
− (A1,ρ)0

2

)
c1,ρ = 0,

(3.14) ∂z0c2,ρ +

(
∂z0 log |g|

4
+

(A2,ρ)0

2

)
c2,ρ = 0,

where (Ak,ρ)0 := Ak,ρ∇ḡΦ for k = 1, 2 and in particular we have

(3.15) (Ak,ρ)0 |β = Ak,ρβ̇.
We can take ck,ρ as follows:

(3.16) c1,ρ(z) := |g(z)|−1/4χ(
|z′|
δ

) exp

(
1

2

∫ z0

a0

[(A1,ρ)0(s, z′)] ds

)
,

and

(3.17) c2,ρ(z) := |g(z)|−1/4χ(
|z′|
δ

) exp

(
−1

2

∫ z0

a0

[(A2,ρ)0(s, z′)] ds

)
,

where χ is as defined in Section 2.3 and δ < δ′ (see (3.6)). It is clear that the amplitude
functions ck,ρ are compactly supported in the set Vβ and as a result

(3.18) ck,ρ(s, x) = ∂tck,ρ(s, x) = 0, for k = 1, 2, s ∈ {0, T}, x ∈M.

With the construction of the phase and amplitude functions completed as above, we let

F1,ρ = −LA1,q1

[
c1,ρe

iρΦ
]
, F2,ρ = −L∗A2,q2

[
c2,ρe

−iρΦ
]

and we recall that (3.10)-(3.11) imply that

(3.19) F1,ρ = −eiρΦ
[
LA1,ρ,q1c1,ρ + iρ(A1 −A1,ρ)∇ḡΦ c1,ρ

]
,

(3.20) F2,ρ = −e−iρΦ
[
L∗A2,ρ,q2

c2,ρ + iρ(A2 −A2,ρ)∇ḡΦ c2,ρ

]
.

We define the expression Rj,ρ, j = 1, 2, by the solution of the following IBVP

(3.21)

 LA1,q1R1,ρ = F1,ρ, (t, x) ∈M,
R1,ρ(0, x) = 0, ∂tR1,ρ(0, x) = 0, x ∈M

R1,ρ(t, x) = 0, (t, x) ∈ (0, T )× ∂M,

(3.22)

 L∗A2,q2
R2,ρ = F2,ρ, (t, x) ∈M,

R2,ρ(T, x) = 0, ∂tR2,ρ(T, x) = 0, x ∈M
R2,ρ(t, x) = 0, (t, x) ∈ (0, T )× ∂M.

In order to complete the construction of the solutions u1, u2 of (3.1), we only need to check
the decay of the expression Rk,ρ, k = 1, 2, given by (3.7). According to (2.23)-(2.24), we
have

(3.23)
‖cj,ρ‖Wk,∞(M) 6 Ckρ

k
4 , k ∈ N∗,

‖cj,ρ‖W 1,1(0,T ;L2(M)) 6 C,
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with C and Ck independent of ρ. Combining this with (3.19)-(3.20), we find

‖Fj,ρ‖Lp1 (0,T ;L2(M)) 6 C(ρ
1
2 + ρ ‖Aj,ρ −Aj‖Lp1 (0,T ;L2(M))), j = 1, 2.

Using (2.24) again and the estimate (2.4) it follows that

lim
ρ→+∞

ρ−1 ‖Rj,ρ‖H1(M) 6 C lim
ρ→+∞

ρ−1 ‖Fj,ρ‖Lp1 (0,T ;L2(M)) = 0, j = 1, 2.

Therefore, in order to prove (3.7), it only remains to prove that

(3.24) lim
ρ→+∞

‖Rj,ρ‖C(0,T ;L2(M)) = 0, j = 1, 2.

Proof of Estimate 3.24. The result for R1,ρ and R2,ρ being similar, we will only consider this
claim for R1,ρ. In view of Lemma 2.2, the proof of the estimate will be completed if we show
that

(3.25) lim
ρ→+∞

‖F∗,ρ‖Lp1 (0,T ;L2(M)) = 0,

where F∗,ρ(t, x) := −
∫ t

0
F1,ρ(s, x) ds. Recall that

(3.26)

F∗,ρ(t, x) =

∫ t

0

[
eiρΦ(τ,x)

[
LA1,ρ,q1c1,ρ(τ, x) + iρ(A1 −A1,ρ)∇ḡΦ c1,ρ(τ, x)

]]
dτ

=

∫ t

0

[
eiρΦ(τ,x)

[
(LA1,ρ,q1 − q1)c1,ρ(τ, x) + iρ(A1 −A1,ρ)∇ḡΦ c1,ρ(τ, x)

]]
dτ︸ ︷︷ ︸

I

+

∫ t

0

eiρΦ(τ,x)q1c1,ρ(τ, x) dτ︸ ︷︷ ︸
II

.

To analyze the terms I and II we will integrate by parts in the τ variable and note that by
equation (3.12) we have

(3.27) ∂τΦ(τ, x) =
1√
2
6= 0.

For the term I, using the fact that A ∈ W 1,1(0, T ;L2(M)) and equation (3.18), we can
integrate by parts, with respect to τ ∈ (0, t), and write

(3.28)

√
2

2
I = −iρ−1eiρΦ(t,x) [(LA1,q1 − q1)c1,ρ(t, x) + iρ ((A1 −A1,ρ)∇ḡΦ)) c1,ρ(t, x)]

+ iρ−1

∫ t

0

[
eiρΦ(τ,x) [∂tA1∇ḡc1,ρ(τ, x) + (LA1,q1 − q1)∂tc1,ρ(τ, x)]

]
dτ

−
∫ t

0

[
eiρΦ(τ,x) [((A1 −A1,ρ)∇ḡΦ)) ∂tc1,ρ(τ, x)]

]
dτ

−
∫ t

0

[
eiρΦ(τ,x) [((∂tA1 − ∂tA1,ρ)∇ḡΦ)) c1,ρ(τ, x)]

]
dτ

= S1 + S2 + S3 + S4.
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For the term S1, we can apply (3.23) and (2.24) to write

‖S1‖Lp1 (0,T ;L2(M)) 6 Cρ−1 ‖c1,ρ‖W 2,∞(M) +
(
‖A1 −A1,ρ‖Lp1 (0,T ;L2(M))

)
‖c1,ρ‖L∞(M)

6 C(ρ−
1
2 + ‖A1 −A1,ρ‖Lp1 (0,T ;L2(M))) = o(1).

For the term S2 we similarly write

(3.29)

∥∥∥∥ρ−1

∫ t

0

[
eiρΦ(τ,x) [∂tA1∇ḡc1,ρ(τ, x) + (LA1,q1 − q1)∂tc1,ρ(τ, x)]

]
dτ

∥∥∥∥
Lp1 (0,T ;L2(M))

6 Cρ−1(‖A1‖W 1,1(0,T ;L2(M))) ‖c1,ρ‖W 2,∞(M)) 6 Cρ−
1
2 ,

with C independent of ρ. For the terms S3 and S4, let us first assume thatA1 ∈ C2([0, T ];L2(M)).
Then, integrating by parts with respect to τ ∈ (0, t) and applying (3.23), (2.24), we have∥∥∥∥∫ t

0

[
eiρΦ(τ,x) [((A1 −A1,ρ)∇ḡΦ) ∂tc1,ρ(τ, ·)]

]
dτ

∥∥∥∥
Lp1 (0,T ;L2(M))

6 Cρ−
1
2 ,

∥∥∥∥∫ t

0

[
eiρΦ(τ,x) [((∂tA1 − ∂tA1,ρ)∇ḡΦ) c1,ρ(τ, ·)]

]
dτ

∥∥∥∥
Lp1 (0,T ;L2(M))

6 Cρ−
1
2 ,

with C independent of ρ. Then, applying the density of C2([0, T ];L2(M)) inW 1,1(0, T ;L2(M),
we deduce that

lim
ρ→∞
‖S3‖Lp1 (0,T ;L2(M)) = lim

ρ→∞
‖S4‖Lp1 (0,T ;L2(M)) = 0.

Combining the above estimates we conclude that

lim
ρ→+∞

‖I‖Lp1 (0,T ;L2(M)) = 0.

Moreover, in a similar way to the terms S3 and S4, using a density argument combined with
(3.23), we have

lim
ρ→+∞

‖II‖Lp1 (0,T ;L2(M)) = 0.

This completes the proof of estimate 3.24. �

4. Reduction to the light ray transform and the proof of uniqueness

4.1. Reduction to the light ray transform of A1 − A2 and proof of Theorem 1.1.
Suppose Aj, qj for j = 1, 2 satisfy regularity conditions (1.2) and consider their extensions

to M̂ and smooth approximations Aj,ρ satisfying (2.24). We assume that ΛA1,q1 = ΛA2,q2

and proceed to show that for every β ⊂ R×M the following identity holds:

(4.1) LβA = 0,

where A := A1 − A2. We start by considering a maximal null geodesic β ⊂ D and extend
it to M̂. Define uj in energy space (1.4) to be solutions of (3.1) taking the form (3.2)-(3.3)
with the properties described in the previous section. Let

f1 := u1|(0,T )×∂M ∈ H1
0 ((0, T ]× ∂M) and f2 := u2|(0,T )×∂M ∈ H1

0 ([0, T )× ∂M).

Applying Lemma 2.3 we deduce that:

(4.2) 0 = 〈(ΛA1,q1 − ΛA2,q2)f1, f2〉 =

∫
M

[
u2A∇ḡu1 − u1A∇ḡu2

2
+ (q − 1

2
div ḡA)u1u2

]
dVḡ,
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where q := q1 − q2. Using the Sobolev embedding (2.1), and the bounds (3.23)-(3.7), we
write
(4.3)

|ρ−1

∫
M
Rj,ρA∇ḡRk,ρ dVḡ| . ρ−1‖A‖L∞(M)‖Rk,ρ‖L2(M)‖Rj,ρ‖H1(M) = o(1),

|ρ−1

∫
M
e±iρΦQRk,ρcj,ρ dVḡ| . ρ−1‖Q‖Lp1 (0,T ;Lp2 (M))‖Rk,ρ‖C(0,T ;L2(M)) = o(ρ−1),

|ρ−1

∫
M
QRj,ρRk,ρ dVḡ| . ρ−1‖Q‖Lp1 (0,T ;Lp2 (M))‖Rj,ρ‖C(0,T ;L2(M))‖Rk,ρ‖C(0,T ;H1(M)) = o(1).

for j, k = 1, 2 and Q = q − 1
2
div ḡA. Dividing equation (4.2) by ρ, using (3.2)-(3.3) and

applying the latter bounds, we observe that

lim
ρ→∞

∫
M
A∇ḡΦ c1,ρc2,ρ dVḡ = 0.

Recall from (3.16)-(3.17) that ck,ρ are compactly supported on Vβ. Recalling that A = 0
outside of (0, T )×M (both A1, A2 vanish there), and additionally using (2.3), we write

lim
ρ→∞

∫
Vβ
Aρ∇ḡΦ c1,ρc2,ρ dVḡ = 0.

which reduces to

lim
ρ→∞

∫
(a0,b0)×B(0,δ)

(Aρ)0(z0, z′)χ(
|z′|
δ

)2 exp

(
1

2

∫ z0

a0

(Aρ)0(s, z′) ds

)
dz0 dz′ = 0,

where (Aρ)0 = A∇ḡΦ. Observing that

(Aρ)0(z0, z′) exp

(
1

2

∫ z0

a0

(Aρ)0(s, z′) ds

)
=

d

dz0
exp

(
1

2

∫ z0

a0

(Aρ)0(s, z′) ds

)
,

together with (2.25) and vanishing of A in the exterior ofM, we simplify the former equation
to obtain ∫

B(0,δ)

χ(
|z′|
δ

)2 exp

(
1

2

∫ b0

a0

(A)0(s, z′) ds

)
dz′ = 0,

Finally, by taking δ → 0, and observing that (A)0(s, 0) = Aβ̇, we observe that

LβA ∈ 4πiZ.

Note that the above claim holds for any null geodesic β ⊂ D. Recall from the hypothesis
of Theorem 1.1 that A is supported on the set E . Thus, we can conclude that the latter
equality holds for any null geodesic in R×M . Let β = (s0 + t, γ(t)) for some s0 and consider
a one-parameter family of null geodesics βs = (s0 + s + t, γ(t)). Since A is continuous and
since Lβs = 0 for s large, we conclude that equality (4.1) holds. Applying statement (ii) in
Proposition 1.3 completes the proof of Theorem 1.1.
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4.2. Reduction to the light ray transform of q1− q2 and proof of Theorem 1.2. We
will assume throughout this section that the additional regularity assumptions (1.9) hold.
Applying Theorem 1.1 implies that there exists ψ ∈ C1

0(M) such that A1 = A2 + d̄ψ. Clearly,

∆ḡψ = div ḡ(A1 −A2) ∈ Lp1(0, T ;L∞(M)).

Let us now define Ã2 = A2 + d̄ψ and q̃2 = q2 + 1
2
∆ḡψ− 1

2
A2∇ḡψ− 1

4
〈∇ḡψ,∇ḡψ〉ḡ. Lemma 2.4

applies to show that

(4.4) ΛA1,q1 = ΛÃ2,q̃2
= ΛA1,q̃2 .

Analogously to the previous section, we start by considering a null geodesic β ⊂ D and
extend it to M̂. Define uj in energy space (1.4) to be solutions of (3.1) corresponding to
differential operators LA1,q1 and L∗A1,q̃2

, taking the form (3.2)-(3.3) and with the properties
described in Section 3. Let

f1 := u1|(0,T )×∂M ∈ H1
0 ((0, T ]× ∂M) and f2 := u2|(0,T )×∂M ∈ H1

0 ([0, T )× ∂M).

Applying Lemma 2.3 again, we deduce that:

(4.5) 0 = 〈(ΛA1,q1 − ΛA1,q̃2)f1, f2〉 =

∫
M
qc1,ρc2,ρ dVḡ,

where q := q1− q̃2 ∈ Lp1(0, T ;L∞(M)). Recall that c1,ρ, c2,ρ are supported in the tubular set
Vβ near the null geodesic β. Estimate (3.24) implies that

|
∫
M
qck,ρRj,ρ dVḡ| 6 ‖q‖Lp1 (0,T ;L2(M))‖ck,ρ‖L∞(M)‖Rj,ρ‖C(0,T ;L2(M)) = o(1),

|
∫
M
qR1,ρR2,ρ dVg| 6 ‖q‖Lp1 (0,T ;L∞(M))‖R1‖C(0,T ;L2(M))‖R2‖C(0,T ;L2(M)) = o(1).

We now use the z coordinate system and note that by taking the limit as ρ→∞ and using
equations (3.16)-(3.17) with the preceding correction term bounds, we have∫

(a0,b0)×B(0,δ)

q(z0, z′)χ(
|z′|
δ

)2 dz0 dz′ = 0.

The arguments in Section 2.4 apply to deduce that

Lβ q = 0.

Together with statement (i) in Proposition 1.3, we conclude that equation (1.10) holds.

5. Inversion of the light ray transform

This section is concerned with the proof of Proposition 1.3. Recalling Section 1.1, we will
identify maximal null geodesics β ⊂ R×M with triplets (s, x, v) ∈ R× ∂−SM . Let us first
recall the unique inversion of light ray transform on smooth functions. This is reproduced
here as some of the arguments are necessary for the extension of the proof to L1(0, T ;L2(M))
functions.



DIRICHLET TO NEUMANN MAP 21

5.0.1. Inversion of light ray transform for smooth functions. For f ∈ C∞c (R × M), the
transform Lf(s, x, v) is compactly supported in s. Inversion of L is based on the following
Fourier slicing in time

L̂f(τ, x, v) =

∫
R
e−iτsLf(s, x, v) ds =

∫ τ+(x,v)

0

∫
R
e−iτsf(r + s, γ(r;x, v)) ds dr

=

∫ τ+(x,v)

0

eiτr
∫
R
e−iτtf(t, γ(r;x, v)) dt dr =

∫ τ+(x,v)

0

eiτrf̂(τ, γ(r;x, ξ)) dr.

In particular, L̂f(0, x, v) = I(f̂(0, ·))(x, v). Straightforward differentiation gives the following
lemma.

Lemma 5.1. For f ∈ C∞c (R×M), k = 0, 1, . . . , and (x, v) ∈ ∂−SM it holds that

∂kτ L̂f(τ, x, v)|τ=0 = I(∂kτ f̂(τ, ·)|τ=0)(x, v) +
k−1∑
j=0

(
k

j

)
Rk−j(∂

k
τ f̂(τ, ·)|τ=0)(x, v),(5.1)

where

Rjf(x, v) =

∫ τ+(x,v)

0

(ir)jf(γ(r, x, v)) dr, f ∈ C∞c (M).

If I is injective then Lf = 0 implies that ∂kτ f̂(τ, ·)|τ=0 = 0 for all k = 0, 1, . . . . As f is

compactly supported in t, the Fourier transform f̂ is analytic in τ . Hence f = 0 in this case.

5.0.2. A localization property. We have the following natural localization property.

Lemma 5.2. Let U ⊂ R and V ⊂ ∂−SM be open. Define W to be the set of points
(t, x) ∈ R ×M such that t = r + s and x = γ(r; y, v) for some r ∈ [0, τ+(y, v)], s ∈ U and
(y, v) ∈ V . Suppose that χ ∈ C∞(R×M) satisfies χ|W = 1. Then

Lf |U×V = L(χf)|U×V , f ∈ E ′(R×M).

In particular, for any f ∈ E ′(R × M) there are a, b ∈ R such that the support of Lf is
contained in [a, b]× ∂−SM .

Proof. The claimed localization clearly holds when f ∈ C∞0 (R × M). For a distribution
f ∈ E ′(R ×M) we choose a sequence of functions fj ∈ C∞0 (R ×M) such that fj → f in
E ′(R×M). Then

Lf |U×V = lim
j→∞
Lfj|U×V = lim

j→∞
L(χfj)|U×V = L(χf)|U×V .

There is a0 ∈ R such that f = 0 in (−∞, a0) ×M . If s < a0 − T then the non-trapping
assumption implies that the light ray β(r) = (r+ s, γ(r; y, v)) does not intersect supp (f) for
any (y, v) ∈ ∂−SM . Now setting U = (−∞, a), with a = a0−T −1, and V = ∂−SM , we can
choose χ so that χ = 1 in W and χ = 0 in supp (f). Then Lf vanishes in (−∞, a)× ∂−SM .
Similarly we can get an upper bound for the support with respect to time. �
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5.0.3. On partial Fourier transform in time. On a product manifold R ×M we define the
partial Fourier transform in time by

〈f̂(z), ϕ〉E ′×C∞(M) = 〈f, e−izt ⊗ ϕ〉E ′×C∞(R×M), f ∈ E ′(R×M), z ∈ C.

It follows from [26, Th. 2.1.3] that z 7→ 〈f̂(z), ϕ〉 is smooth and for all j = 1, 2, . . . ,

∂jz〈f̂(z), ϕ〉 = 〈f, ∂jze−izt ⊗ ϕ〉, ∂z̄〈f̂(z), ϕ〉 = 0.

The latter identity says that z 7→ 〈f̂(z), ϕ〉 is analytic, and the former implies that the map

f 7→ ∂jz f̂(z)|z=0 is continuous from E ′(R×M) to E ′(M).
Let a, b ∈ R and consider L2((a, b)×M) as a subspace of L2(R;E) with E = L2(M). Then

the above definition of f̂(z) coincides with the usual definition of the Fourier transform on
L2(R;E). Let us recall that the Fourier transform on L2(R;E) is a unitary isomorphism as
E is a Hilbert space, see e.g. the discussion on p. 16 of [43]. It is also easy to see that the

map f 7→ ∂jz f̂(z)|z=0 is continuous from L2((a, b)×M) to L2(M).

5.0.4. Geodesic ray transform on L2 functions. Since ∂M is strictly convex, I extends as a
map from L2(M) to L2(∂−SM) with a suitably chosen measure on ∂−SM (see for example
[47, Th. 4.2.1]). In what follows, we will therefore assume that I is a map from L2(M) to
L2(∂−SM).

5.0.5. The remainder operator Rj on L2 functions. Let us consider the operators Rj, j =
1, 2, . . . , defined in Lemma 5.1. For f ∈ C∞c (M) it holds that

|Rjf(x, v)| ≤ Lj
∫ τ+(x,v)

0

|f(γ(r, x, v))| dr = Lj I(|f |)(x, v), (x, v) ∈ ∂−SM,

where L = Diam(M). Therefore

‖Rjf‖L2(∂−SM) ≤ Lj ‖I(|f |)‖L2(∂−SM) ≤ C ‖f‖L2(M) ,

and Rj has a unique continuous extension as a map from L2(M) to L2(∂−SM).

5.0.6. The inversion. Let f ∈ L1((0, T );L2(M)) and choose a sequence of functions fj ∈
C∞c ((0, T )×M) such that fj → f in L1((0, T );L2(M)). Then Lfj → Lf in D′(R× ∂−SM).

As Lf and Lfj are compactly supported in time by Lemma 5.2, also ∂kz L̂fj(0) → ∂kz L̂f(0)

in D′(∂−SM). Furthermore, ∂kz f̂j(0)→ ∂kz f̂(0) in L2(M). Finally, using the L2-continuity of
I and Rk, we see that the identity (5.1), that holds for each fj, holds also for f by passing
to the limit.

Recalling that I is injective on L2(M) for simple manifolds (M, g) (see for example [3] or

[48]), we see that Lf = 0 implies that ∂kz f̂(0) = 0, as a function in L2(M), for all k = 0, 1, . . . .

For any ϕ ∈ C∞c (M) all the derivatives of the analytic function 〈f̂(z), ϕ〉 vanish at the origin.

Hence 〈f̂(z), ϕ〉 vanishes identically. Therefore f̂ vanishes as a function in L2(R;E) with
E = L2(M). We conclude that f = 0.
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[25] L. Hörmander, Fourier integral operators. I. Acta Mathematica, 127(12), 79183. (1971)
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