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A Fast Non Rigid Image Registration with
Constraints on the Jacobian using Large Scale

Constrained Optimization
Michaël Sdika

Abstract— This paper presents a new nonrigid monomodality
image registration algorithm based on B-splines. The deformation
is described by a cubic B-spline field and found by minimizing
the energy between a reference image and a deformed version
of a floating image. To penalize non invertible transformation,
we propose two different constraints on the Jacobian of the
transformation and its derivatives. The problem is modeled by an
inequality constrained optimization problem which is efficiently
solved by a combination of the multipliers method and the L-
BFGS algorithm to handle the large number of variables and
constraints of the registration of 3D images. Numerical experi-
ments are presented on MR images using synthetic deformations
and atlas based segmentation.

Index Terms— nonrigid registration, B-spline, Jacobian, mul-
tipliers method, multiresolution.

I. INTRODUCTION

THE problem of nonrigid registration is, given two images,
to find a (nonlinear) function that maps each point in the

reference image to a point in the floating image.
Nonrigid registration can be used to segment images using a

prelabeled atlas [1][2][3], to estimate the motion in a sequence
of images [4] and to compress and encode video [5]. It is also
used for morphometry [6][7], or statistical analysis of medical
images [8].

There are usually two ways to describe the transformation.
The first solution is to use a dense non parametric model and
estimate the position of each voxel after the transformation
as in [9], [10], [11] or [3]. In this case, the transformation is
often found by solving a nonlinear partial differential equation
(PDE). The brain tissues are, for example, modeled as a
material such as a linear elastic solid or viscous fluid that
is subject to a deformation. The second solution is to model
the transformation by a function of some parameters and
estimate those parameters. In this case the transformation is
known continuously (even between voxels), there are usually
much fewer variables to estimate and the resolution of the
transformation can be controlled independently of the image
resolution. The smoothness of the parameterized function with
respect to the voxels enables the analytical computation of
the derivatives needed for deformation based morphometry or
tensor based morphometry.
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Our algorithm falls into the second category. The defor-
mation is described by a linear combination of cubic B-
splines and we estimate the coefficients of the combination to
minimize the difference between the reference image and the
deformed floating image. As the space spanned by B-splines
is too general, we have to impose some constraints to find
a realistic transformation between the images. For example,
if the images are assumed to have the same structures, the
transformation should be topology preserving.

As far as we know, the modeling of the deformation using
B-splines was introduced by Szeliski and Coughlan in [12].
They proposed to regularize their deformation by adding a
penalization term including first or second order derivatives
of the deformation as done usually in PDE based registration.

In [13], Kybic et al. focused their work on the efficiency
of the implementation and showed that B-splines were a good
alternative to other parametrization such as wavelet or Fourier
representation.

In [14], Sorzano et al. extended the usual regularization
term based on the norm of the second derivatives taking
into account the vectorial nature of the deformation. They
obtained two terms based on the second derivative and, using
the analytic properties of B-splines, they write them as two
quadratic functions of the B-spline coefficients.

Rohlfing et al. [15] used a mutual information cost function.
They penalized their cost function by adding the absolute
value of the log of the Jacobian of the deformation or the
square of the second derivative for each voxel. They used finite
differences to compute the gradient of the Jacobian term.

In [16], Musse et al. used a block nonlinear Gauss-Seidel
algorithm to minimize the energy between the images with
the constraint that the Jacobian was continuously positive.
Their method only applies to 2D images. They described their
deformation by linear B-splines and, as they minimized the
cost one node at a time, they showed that the constraints are
reduced to two linear inequality constraints.

Noblet et al. extended the work of [16] in [17] to 3D images.
They used interval arithmetic to find the maximum feasible
step along their search direction to stay in the feasibility region
where the Jacobian is continuously positive. This algorithm
guarantees an invertible transformation between the images.
However, it is restricted to linear B-spline as higher order B-
splines would make the interval analysis part computationally
prohibitive.

In [18], Rueckert et al. used the sufficient injectivity con-
dition for B-spline of [19] to guarantee the invertibility. As
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this condition is very restrictive, they describe their transfor-
mation with a composition of about forty invertible B-spline
transformations. The topology preservation property is at the
cost of the compactness and simplicity of the transformation
representation.

Constraints on the Jacobian are also used in non parametric
registration. In [20], Haber et al. bound the Jacobian during
the registration. The optimization problem is solved using a
log-barrier interior penalization method coupled with Gauss-
Newton iterations. As they used a dense transformation, they
have to pay special attention to the discretization of the
constraints. Their dense representation also implies a larger
number of unknowns and constraints.

In this paper, we propose to solve the registration problem
by using a large scale constrained optimization algorithm. We
also propose two constraints to penalize non invertible trans-
formation. The Jacobian of the transformation is guaranteed
to be above a positive threshold of all the voxels at the end of
the algorithm and negative Jacobians are penalized between
voxels.

In the first part, we will model the problem of non-
rigid registration as a constrained optimization problem and
describe its components, especially the constraints imposed
on the transformation. We will then present the numerical
algorithm used to solve our problem. We will finish with
some numerical experiments on MR T1-weighted images of
the brain to evaluate the different variants of the algorithm. A
comparison is done with a classical regularization method and
with the ITK [21] implementation of the Demons of Thirion
[3].

II. THE NEW MODEL

We address in this article the problem of monomodality
image registration. For the sake of concreteness, we consider
3D images but the generalization to any dimension is easy.
We assume that the intensity of the voxels do not vary too
much between the two images, and can be used directly to
register the images. This assumption is usually satisfied after
preprocessing steps such as histogram equalization or bias field
removal for MRI images.

The transformation will be described by a linear combi-
nation of cubic B-splines uniformly placed on the image.
The B-spline coefficients are found by solving an inequality
constrained minimization. The cost function is data dependent
and makes the transformation of the floating image fit the
reference. The constraints (one per voxel) strongly penalize
non invertible transformation.

Formally, the problem can be written as

min
g(c,x)≤0
∀x∈P

1

|P|
∑
x∈P

ρ(If (t(c, x))− Ir(x)), (1)

where If is the floating image, Ir is the reference image,
P is the set of the voxels of the reference image, t is the
transformation parametrized by the B-spline coefficients c to
be estimated. g(c, x) is the constraint on the transformation
at the voxel x and will be given by the equations (2) or (3).
The ρ function specifies the dissimilarity between the intensity

of the images. In the implementation of our algorithm, we
use ρ(x) = x2

2 , but a robust M-estimation can be obtained if
we use for example the Cauchy function ρ(x) = α2

2 log(1 +

(x/α)2) or the Geman-McClure function ρ(x) = (x/α)2

2(1+(x/α)2) .
Multichannel registration can be done by considering Ir and
If as vectors. A regularization term can also be added to the
cost function if desired.

A. The Image Model

To evaluate the cost function, we only evaluate the reference
image on the voxels, but we need the values of the floating
image everywhere. So we define the floating image as a twice
continuously differentiable function using interpolating cubic
B-Spline:

If (x) =
∑
i

aiβ(x− i),

where i ∈ Z3 and β(x) = β(x1)β(x2)β(x3) is the 3D tensor
product of cubic B-spline. (Note that β will be indifferently
used for the cubic B-spline or its tensor product). The interpo-
lation coefficients ai are efficiently found from the values at
each voxel using the B-spline transform of [22]. Even though
the evaluation of cubic B-spline is more expensive than a
simpler model (nearest neighbor or linear interpolation), their
smoothness makes them desirable from an optimization point
of view. In practice, the computation time is reduced due to
the reduced number of iterations (see also [23]).

B. The Parametrization of the Deformation

The deformation is also described by cubic B-splines, and
thus is a twice differentiable function. The nodes are uniformly
placed on the image. The transformation is described as:

t(c, x) = x+
∑
i

ciβ(x/h− i).

The coefficients ci ∈ R3 are the parameters to be estimated
and h ∈ N3 is the spacing between the nodes.

C. The Search Space

As our transformation is modeled with cubic B-splines,
it is twice continuously differentiable. For C1 functions, a
necessary condition of invertibility is that its Jacobian is
strictly positive everywhere in R3. This condition, which is
specified by an infinite number of inequalities, is not directly
usable in this form in a numerical algorithm.

The first idea is to sample those constraints, that is to say
to force the Jacobian to be above a given positive threshold
for each voxel. The first constraint we propose for our model
(equation (1)) is:

g(c, x) = g1(c, x) = εd − J(c, x), (2)

where x is a given voxel, c the B-spline coefficients and J the
Jacobian of the transformation.

The g1 constraint imposes the positivity of the Jacobian
on all the voxels but lets the transformation free between the
voxels. To overcome this problem, we propose to constrain the
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Jacobian derivatives to be small when the Jacobian approaches
its lower bound εd. The constraint proposed is based on the
following lemma from [24]:

Lemma 1: Let f : R → R be a positive function, twice
differentiable everywhere. Furthermore, let f ′′(x) ≤M,M >
0 ∀x ∈ R, then, for any x ∈ R,

1

2
f ′2(x) ≤Mf(x).

This lemma establishes a necessary (and sufficient) condition
between a positive function and its first derivative. Intuitively,
one can understand that when a positive function approaches
zero, so does its derivatives (see the proof in appendix I).

For a function f : Rd → R positive, if we apply the lemma
1 on the function obtained by fixing all but one variable, and
summing the inequalities, we have :

1

2
‖∇f(x)‖22 ≤Mf(x).

We note that the J function is only piecewise twice differ-
entiable, and that the lemma 1 cannot be applied. The second
condition we propose for the registration is inspired by the
lemma 1 to impose a relation between the Jacobian and its
derivatives. This constraint is:

g(c, x) = g2(c, x) =
1

2
‖∇J(x)‖22 − φ(J(x)), (3)

where φ is a well chosen function.
A generalization of the condition imposed by the lemma 1 is

permitted by the φ function, which enables more control on the
variation of the Jacobian given its value. To keep the Jacobian
in a given range, we just have to choose a function φ which
is positive in this range and negative outside. For example,
φ(z) = 4M(z − Jmin)(Jmax − z) will only allow Jacobian
values in [Jmin, Jmax] at the voxels and bound its derivatives
by M(Jmax−Jmin)2. When the Jacobian approaches Jmin or
Jmax, its derivatives will be close to zero and the Jacobian will
not go too far away from [Jmax, Jmin] between the voxels.
If a volume preserving registration is desired, one can take
φ(z) = −(z − 1)2. This function will constrain all voxels to
have Jacobian of 1 and null Jacobian derivatives.

To enforce the positivity of the Jacobian, we propose the
following function:

φa,b,c,εd(z) =

∣∣∣∣∣ −a(z − εd)2 if z < εd
b(z−εd)2

(1+c(z−εd)2) otherwise.
(4)

where the parameters a, b, c and εd are positive. φa,b,c,εd is an
increasing C1 function. This function excludes the Jacobian
values lower than εd on the voxels and when the Jacobian
is close to εd, it forces its derivatives to be small, thus the
Jacobian is less likely to be negative between voxels. Figure
1 shows a plot of φa,b,c,εd for a = 100, εd = 0.01 and several
values of b and c.

Remark that for both g1 and g2, the node spacing of the
B-spline has an influence on the invertibility. Indeed, a larger
h leads to a higher number of constraints per node.
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Fig. 1. The φabcεd function for a = 100, εd = 0.01 and several values of
b and c.

III. THE OPTIMIZATION ALGORITHM

We now have to solve an inequality constrained optimization
problem with a large number of variables and constraints. For
example, to register 3D images of size 256x256x180 with a
node spacing of 6 voxels, the problem has 2x105 variables and
107 constraints. Note that for such a problem, the Hessian
matrix cannot be stored in memory of current computers.
Even storing only non zero elements in single precision would
require 11 gigabytes.

We use the multipliers method which solves the constrained
minimization problem by solving a sequence of unconstrained
problem while estimating the Lagrange multipliers. The in-
ner iterations will use the limited memory BFGS algorithm
[25][26]. A multiresolution approach will provide a good
starting point.

A. Multipliers Method

By writing the problem in the following way:

min
g(c)≤0

f(c),

we can define the augmented Lagrangian as

Lr(c, µ) = f(c) +
∑
x

µxg̃(c, x) +
r

2

∑
x

(g̃(c, x))
2
,

where g̃(c, x) = max(g(c, x),−µx

r ), and µx are the Lagrange
multipliers. Note that despite the max function, the augmented
Lagrangian is continuously differentiable. The multipliers
method consists of iteratively minimizing Lr with µ fixed then
updating the µ variable and the penalty parameter r. This gives
us the algorithm 1.

The starting point c0 is provided by the multiresolution
procedure. The inner minimization with fixed µ is done using
a numerical algorithm (see III-B). In our implementation, r0
was set to 104.

The multipliers are updated using the first order formula
which fits our requirement of low memory. This algorithm is
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Algorithm 1 Multipliers Method
µ = 0, c = c0, cprec = c0, r = r0
while ‖g(c)‖∞ > Cstop do
c = argminLr(. , µ)
µ = max(0, µ+ rg(c))
if ‖g(c)‖∞ > Cspeed‖g(cprec)‖∞ then
r = rCincr

end if
end while

globally convergent, and the solution is obtained for a finite
value of the penalty parameter. Note that for a simple exterior
penalization, the solution is only obtained when r tends to
infinity, making the problem ill-conditioned.

For more insight on the augmented Lagrangian and the
multipliers method see [27][28][29][30][31].

The constants Cstop, Cspeed and Cincr control, respectively,
the stopping criterion, the speed of the decrease of the con-
straints violations and the increase of the penalty parameters.
In our implementation, we took Cspeed = 0.4, Cincr = 1000.
The choice of Cstop, based on the two following propositions,
will guarantee the positivity of Jacobian for all the voxels.

Proposition 1: At the end of the algorithm used with the g1
constraint, the value of the Jacobian on the voxels is greater
than εd − Cstop.

Proof: At the end of the algorithm, for any voxel x we
have:

Cstop ≥ g1(c, x) = εd − J(c, x),

so

J(c, x) ≥ εd − Cstop.

Proposition 2: At the end of the algorithm used with the g2
constraint and the φa,b,c,εd function, the value of the Jacobian

on the voxels is greater than εd −
√

Cstop

a .
Proof: At the end of the algorithm, for any voxel x such

that J(c, x) < εd, we have:

Cstop ≥ g2(c, x) =
1

2
‖∇J(c, x)‖22 + a(εd − J(c, x))2

≥ a(εd − J(c, x))2,

from which we deduce:

J(c, x) ≥ εd −
√
Cstop

a
.

In our implementation we took Cstop = εd
2 for the g1 constraint

and Cstop =
aε2d
4 for the g2 constraint. Consequently, the

Jacobian is always higher than εd
2 on the voxels. When we

use g2, a large value for a gives a stronger constraint on
negative Jacobian and a larger Cstop can be used to stop the
algorithm earlier. However, a too large value for a will make
the problem ill-conditioned. Taking a = 100 seems to be a
good compromise.

B. Inner Iterations

The inner unconstrained minimization is solved using the
limited memory BFGS algorithm with a non monotone line
search.

The inverse BFGS formula is one of the most used quasi
Newton formulas. At each iteration, a symmetric positive
definite approximation of the inverse of the Hessian is updated
and used to find the next iterate. The update is formed using
a pair of vectors: the difference between the current point
and the last iterate and the difference between the gradient of
those two iterates. In the limited memory version, a predefined
number of update pairs is stored and the matrix-vector product
is formed from the list of update pairs. The Hessian matrix or
its inverse is thus never explicitly formed (see [25][26]). The
convergence of the algorithm and the validity of the BFGS
updates are ensured by a non monotone version of the weak
Wolfe line search of Lemaréchal (see [32][33][34]). Indeed,
non monotone line searches improve the convergence of
optimization algorithms by weakening the condition imposed
to terminate the line searches.

C. Multiresolution

A simple coarse to fine approach will be used to provide
a good starting point. A multiscale pyramid is built for the
reference and the floating image. The problem is then solved
for each level from the coarsest to the finest resolution. For
each level, the starting point used is obtained by applying the
EXPAND operator of [35] to the solution of the previous level.

This multiresolution approach is very important to reduce
the computation time of the algorithm and to avoid local
minima. Using a semi coarsening type of multiresolution (the
resolution is increased in one direction at a time) gave us
better results. Indeed the finer discretization in scale provided
by semi coarsening reduce even more the chance to be trapped
in a local minimum.

Note that accuracy is not necessary at intermediate scales.
Except for the full resolution, the optimization is stopped after
few iterations.

D. Numerical Issues

To be rigorous, the question of the constraint qualifications
and the numerical stability of the discretization and the al-
gorithm should be addressed. These questions are difficult to
solve. However, the multipliers method avoids solving a KKT
system and leads to a better conditioning. Then, the cubic
B-splines used for the interpolation and derivatives of the
floating image and the transformation as well as the spacing
between the nodes help for the stability. Indeed, for each node,
43h1h2h3 pixels have a direct influence during the registration.

IV. EFFICIENT IMPLEMENTATION OF THE AUGMENTED
LAGRANGIAN AND ITS GRADIENT

We need to provide to the L-BFGS algorithm the value of
the augmented Lagrangian and its gradient at each iteration
of the inner minimization. In this paragraph, we give the
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analytical expression for the gradient and how to implement
it efficiently.

As pointed out in [13] for the unconstrained case, the
gradient can be written as a sum of convolution with B-spline
derivatives:

∂Lr
∂ci

=
∑
k

∑
x

fk(x)h
−kβ(k) (x/h− i) ,

where k ∈ N3 is the derivation order and β(k) a tensor cubic
B-spline derivatives up to second order.

So the computation of the augmented Lagrangian and its
gradient is efficiently done in three steps for each derivation
order k:
• expansion of the deformation and its derivatives by

upsampling the B-spline coefficients with a factor h
followed by convolution with h−kβ(k),

• computation of the fk(x) for the different k for all the
voxels,

• reduction by a convolution with h−kβ(k) followed by a
downsampling with a factor h for the gradient computa-
tion.

The expression of the fk functions for the two constraints
proposed are given in the appendix II.

Note that we only need a full expansion of the B-spline
field along the x3 and x2 directions. For the last dimension
x1, we can expand one line at a time and save memory.

V. NUMERICAL EXPERIMENTS

The evaluation of nonrigid registration algorithms is a
difficult task. Several metrics may be used to compare different
registration methods (see for example [36]). In this paper, the
registration is evaluated by measuring its ability to recover
a synthetic transformation and to perform an atlas based
segmentation of brain structures.

We compare the results of our algorithm with different
regularization: without any constraints (NO), the g1 constraint
with a given εd (g1εd), the g2 constraint with its parameters
(g2a, b, c, εd), a standard bending energy penalization (BE λ),
and the Demons algorithm of [3].

In the BE method, the cost function is completed by the
term

Eλ(c) = λ

∫
R3

∑
i,j,k

(
∂2tk
∂xi∂xj

(c, x)

)2

dx,

which is a quadratic term in the B-spline coefficients. This
penalization term and its derivatives are computed using the
method described in [14].

For the Demons algorithm, we used a multiscale imple-
mentation provided by the ITK library [21] with a number of
iterations of 100 as suggested in [36]. Experiments have been
done with smoothing either the deformation field (Demons D
σ) or the update field (Demons U σ).

A. An Inter Subject Registration Example

Our software without constraints, with the g1 (εd = 0.01)
and g2 constraints (with φ100,2,1,0.01) as well as the Demons
D σ = 1 algorithm have been used to register two different

subjects. T1 weighted images acquired on a 3T scanner with a
voxel size of 0.93mmx0.93mmx1mm were used. Before the
registration, the brains have been extracted using BET[37].
Then the images have been smoothed with a Gaussian kernel
(σ = 0.7) and histogram equalized to normalize the intensities
and enhance the contrast.

Figures 2 and 3 shows the results of the registration for the
slices 90 and 100. We show for each method the deformed
image, the deformed image with superimposed contours of
the reference and the deformation grid obtained by applying
the transformation to a regular grid.

We can see that in general the Demons are visually not as
good as the others. This is especially visible in the cortex at
the bottom of the brain. The top of the ventricle, subject to a
large deformation, does not match well either. Adding more
iterations did not improve the results.

The output image with g1 and g2 constraints are very similar
but the deformation grid of g2 seems somewhat more regular
than the one of g1.

Without constraints, the registration seems visually good
and sometimes better than the results of g1 or g2 but this
is at the cost of the topology preservation. For example, in
the cortex, at the bottom left of the brain at slice 100, the
output image matches better the contours of the reference.
However, when we look at the deformation grid, we clearly
see it contains folds.

For all the methods, the mean displacement of the voxels
over the brain tissues is around 57.

B. Experiments with Synthetic Deformation

T1 weighted images acquired on a 3T scanner with a voxel
size of 0.93mmx0.93mmx1mm were used.

A set of 20 invertible deformations and 20 non invertible
deformations has been synthetically generated and applied to
an MR image. Then, on the original image, the bias field has
been removed using the N3 algorithm of [38], a Gaussian
noise of σ = 30 has been added (mean intensity of the
white matter is 1194), a slight Gaussian smoothing has been
applied (sigma = 0.7) and a histogram equalization has been
performed. Only the brain tissues have been used to compute
the histogram. Next, each deformed image has been smoothed,
histogram equalized and used as reference of the registration
to the original image.

1) The Deformations: Our ground truth deformations are
expressed as d = dn◦· · ·◦d2◦d1, compositions of deformation
of the forms:

di(x) = x+
ri
2
ais

(∥∥∥∥x− ciri

∥∥∥∥2
2

)
,

where ai ∈ R3, ci ∈ R3, ri ∈ R+∗ and s : R3 → R. If we
want to generate invertible transformations, we force each di
to be invertible by choosing ai small enough (see appendix
III). An example of a deformed image is given in figure 4.

2) Invertibility of the Output: Our algorithm, with either of
the two proposed constraints, guarantees that the Jacobian is
strictly positive on all voxels. As the deformation we use in
our registration algorithm is given by a parametric model, we
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(a)

(b)

(c)

(d)

(e)

Fig. 2. Results for real subject registration. The first line (a) presents the reference (slice 90) and the floating images (slice 85). Lines (b), (c), (d) and (e)
present the deformed image, the deformed image with superimposed contours of the reference as well as the deformation grid for the registration without
constraints (b), with the g1 constraint (c), with the g2 constraint (d) and with the Demons algorithm (e).
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Results for real subject registration. The first line (a) presents the reference (slice 100) and the floating images (slice 89). Lines (b), (c), (d) and (e)
present the deformed image, the deformed image with superimposed contours of the reference as well as the deformation grid for the registration without
constraints (b), with the g1 constraint (c), with the g2 constraint (d) and with the Demons algorithm (e).
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(a) (b) (c) (d)

Fig. 4. Results for images with known simulated deformation: (a) floating image, (b) reference, (c) result with g1 constraint, (d) result with g2 constraint.

Invertible Non Invertible
|Jmin < 0| E(Jmin) E(err) |Jmin < 0| E(Jmin) E(err)

NO 20 -3.171 1.08 20 -3.706 1.56
BE 0.001 20 -0.904 0.87 20 -0.844 1.33
BE 0.005 8 -0.003 0.73 18 -0.159 1.18
BE 0.05 0 0.224 1.43 1 0.203 2.13
g1 0.01 18 -0.011 0.98 20 -0.023 1.44
g1 0.10 0 0.068 0.99 0 0.059 1.46

g1 0.01+BE 0.005 0 0.049 0.68 0 0.015 0.96
g1 0.10+BE 0.005 0 0.079 0.66 0 0.080 0.97

g2A 0 0.116 0.88 0 0.098 1.37
g2B 0 0.008 0.95 0 0.006 1.48

g2A+BE 0.005 0 0.087 0.51 0 0.068 0.88
g2B+BE 0.005 0 0.008 0.61 0 0.005 0.94
Demons D 1.0 2.37 3.14
Demons U 3.0 2.11 2.41
Demons U 4.0 1.63 2.06
Demons U 5.0 1.85 2.33

Initial 59.68 59.79

TABLE I
RESULTS FOR SIMULATED TRANSFORMATION. WE HAVE REPORTED FOR EACH METHOD THE NUMBER OF REGISTRATIONS (OUT OF 20) PRODUCING

NEGATIVE JACOBIANS (|Jmin < 0|), THE MEAN OF THE MINIMUM VALUE OF THE JACOBIAN (E(Jmin)) AND THE MEAN OF THE ERROR BETWEEN THE

OUTPUT AND THE GROUND TRUTH (E(err)). THE JACOBIANS ARE EVALUATED IN A 4X4X4 FINER GRID AND THE ERROR IS EVALUATED ONLY ON BRAIN

VOXELS. WE DISTINGUISH INVERTIBLE FROM NON INVERTIBLE GROUND TRUTH.

can analytically compute its value and derivatives everywhere
and not only on the voxels.

To have an idea of the ability of the methods to preserve the
positivity of the Jacobian even between voxels, we compute
the analytical value of the Jacobian on a grid 4x4x4 times
finer than the original reference image. For each registration,
we compute the minimum value of the Jacobian (Jmin) of this
grid. We didn’t report the results for the Demons algorithm as
one cannot compute the analytical value of the Jacobian in
this case.

3) Quality of the Registration: For all the voxels, we can
measure the error between the ground truth Tg and the output
of the registration T :

e(x, T, Tg) = ‖T (x)− Tg(x)‖2 .

As no information is available in the background, we only
took into account the voxels inside the brain region B given
by BET [37]. To measure the quality of the registration, we
measured the mean of the error

err(T, Tg) =
1

Nb

∑
x∈B

e(x, T, Tg), (5)

where Nb the number of voxels in the brain.

4) Results: The results of the simulations were reported
in table I for the two sets of ground truth transformations
(invertible or non invertible). The number of transformations
with negative Jacobians, the mean of Jmin and the mean of
err(T, Tg) are given for each method. The value of E(err)
before registration is 59.68 for the invertible simulation set
and 59.79 for the non invertible one.

We ran our registration algorithm without constraints (NO),
with the g1 constraint with εd = 0.01 or εd = 0.1, with the g2
constraint with φ100,0.01,0.02,0.01 (g2A) or φ100,2,1,0.01 (g2B)
and with the bending energy penalization (λ = 0.001, 0.005
and 0.05). We also combined the g1 or g2 constraint with BE
0.005 (g1+BE and g2+BE).

We first noticed that with NO, we obtain negative Jacobians
in all the cases. The registration without constraints does not
give a good mean error compared to the other methods.

The standard regularization with a small penalization (BE
0.001 or 0.005) does improve the registration and reduces the
number of negative Jacobians. However, an increase of the
penalization coefficients to improve the invertibility leads to a
strong reduction of the registration quality.

The Demons algorithms didn’t give good results either.
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We noticed however that Demons U gave better results than
Demons D. This may be explained by the fact that, as
pointed out in [39], Demons U approximates viscous fluid
registration when Demons D approximates elastic registration
and consequently, Demons U allows larger deformation.

The use of g1 constraint slightly improves the registration
results over NO. However, when εd = 0.01, the Jacobian
becomes negative between the voxels almost everytime. A
higher value or the addition of BE 0.005 is required to avoid
negative Jacobians. Indeed, the addition of the BE produces
more regular transformations, less likely to oscillate between
voxels. Moreover, the addition of BE 0.005 to g1 decreases
significantly the mean registration error.

The g2 constraint provides an improvement over NO as
well. Similarly to g1, the addition of BE 0.005 improves the
registration. The best results of the evaluation are obtained
by g2A + BE 0.005 with the lowest E(err) and no negative
Jacobians, even between voxels. You can notice that if, for
g2A, E(Jmin) is much bigger than εd = 0.01, for g2B, we
have E(Jmin) w εd.

C. Experiments with Atlas Based Segmentation

1) Presentation: In this section, we evaluate the perfor-
mance of the algorithm for segmentation of brain structures.
For this application, preserving the topology allows us to avoid
disconnect components, cavities or handles in the resulting
segmentation.

We used the MR brain data set and their man-
ual segmentation provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital, avail-
able at http://www.cma.mgh.harvard.edu/ibsr/. There are 18
256x256x128 brain images with a resolution of 0.93x0.93x1.5
(8 images), 1.0x1.0x1.5 (6 images) or 0.83x0.83x1.5 (4 im-
ages).

The first image is used as the reference image. All the other
images are registered to the reference and their segmentation
mask mapped to the reference. Then for each structure of the
segmentation, we measure the relative overlap between the
ground truth Sg , manually segmented on the reference, and
the segmentation given by the registration Sr:

RO(Sg, Sr) = 100× V (Sg ∩ Sr)
V (Sg ∪ Sr)

.

A RO value of 100 means a perfect segmentation. We present
in the table II, the mean of the relative overlap for five
structures of the left part of the brain: the putamen (P), the
caudate (C), the thalamus proper (TP), the lateral ventricle
(LV), and the cerebral white matter (CWM). The global mean
of RO over these five structures is given in the last column.
The values of RO before registration are given at the last line
of this table.

2) Results: We first see that using the Demons does not
produce a good segmentation compared to the B-spline regis-
tration. In opposition to the previous experience, the bending
energy penalization does not always improve the segmentation.
If adding the BE penalization to NO, g1 and g2 improves the
results for P and TP, this is not the case for C, LV and CWM.

A good segmentation can be produced with NO, BE, g1 and
g2 but with the two constraints proposed, a good quality can
be obtained while no Jacobians are encountered.

D. Computation Time

The computation time on a AMD processor 2.4 Ghz for
images with 256x256x180 voxels and with a node spacing of
6x6x6 is around 4 minutes without constraints, 10 minutes
with the g1 constraint and 20 minutes with the g2 constraint.
The addition of the penalization to g1 or g2 reduces the CPU
time by 30%. Demons D algorithm with sigma = 1.0 and
100 iterations per level is about 10 minutes

VI. CONCLUSION

In this study, we have presented a nonrigid registration
algorithm. The registration is modeled by a nonlinear opti-
mization problem with nonlinear constraints to prevent the
Jacobian to be negative. The optimization problem is solved
using a combination of the multipliers method and the L-BFGS
algorithm with a non monotone line search. The numerical
resolution is efficient and does not require too much memory.

The transformation is modeled using cubic B-splines, mak-
ing it intrinsically smooth, local, compact and fast to com-
pute. The approach can however easily be applied to other
parametrization.

Numerical experiments were performed with atlas based
segmentation and recovery of a synthetic deformation and the
proposed methods show good results.

Depending on the application, the invertibility of the trans-
formation may not always be desirable ”everywhere”. For ex-
ample, for inter subject registration, some topological changes
may occur due to multiple sclerosis lesions or tumor. In these
cases topological changes should be handled in a specific way
but the topological constraints should be kept everywhere else.
This issue will be addressed in a future work.

APPENDIX I
PROOF OF THE LEMMA 1

Let (x, h) be two reals. By the Taylor-Lagrange theorem
∃cx,h ∈]x, x+ h[:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(cx,h)h

2

By the positivity of f and the definition of M :

0 ≤ f(x) + f ′(x)h+
1

2
Mh2

which is a positive second order polynomial in h, so its
discriminant is negative:

f ′2(x)− 2Mf(x) ≤ 0.
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|Jmin < 0| E(Jmin) P C TP LV CWM Mean
NO 17 -3.9014 64.6 64.8 71.3 77.5 71.9 70.0

BE0.001 17 -0.6453 68.3 65.8 73.7 75.8 69.2 70.5
BE0.005 5 0.0342 68.8 62.6 73.6 71.6 64.6 68.2
BE0.05 0 0.5291 66.4 56.7 71.5 61.6 56.4 62.5
g10.01 17 -0.0305 65.0 65.4 71.7 78.0 72.0 70.4
g10.10 0 0.0528 65.1 65.5 71.8 77.8 71.9 70.4

g10.01+BE 0.005 0 0.0898 68.7 62.6 73.6 71.6 64.6 68.2
g10.10+BE 0.005 0 0.1185 68.8 62.6 73.6 71.6 64.6 68.2

g2A 0 0.1489 67.4 64.0 72.8 73.8 68.9 69.4
g2B 0 0.0101 65.8 65.7 72.2 77.3 71.1 70.4

g2A+BE 0.005 0 0.1894 68.6 62.2 73.5 70.5 63.9 67.8
g2B+BE 0.005 0 0.0803 68.9 62.7 73.7 71.7 64.6 68.3
Demons D 1.0 61.0 61.3 69.4 73.0 65.7 66.1
Demons U 3.0 59.3 56.9 66.0 62.7 62.6 61.5
Demons U 4.0 62.2 57.8 69.0 62.0 59.8 62.2
Demons U 5.0 56.8 54.2 67.2 55.5 56.9 58.1

Initial 47.5 38.2 64.2 34.1 43.9 45.6

TABLE II
RESULTS FOR ATLAS BASED SEGMENTATION. WE HAVE REPORTED FOR EACH METHOD THE NUMBER OF REGISTRATIONS (OUT OF 17) PRODUCING

NEGATIVE JACOBIANS (|Jmin < 0|), THE MEAN OF THE MINIMUM VALUE OF THE JACOBIAN (E(Jmin)) AND THE MEAN RELATIVE OVERLAP FOR THE

PUTAMEN (P), THE CAUDATE (C), THE THALAMUS PROPER (TP), THE LATERAL VENTRICLE (LV) AND THE CEREBRAL WHITE MATTER (CWM). THE

LAST COLUMN IS THE MEAN RELATIVE OVERLAP OVER THESE FIVE STRUCTURES. THE JACOBIANS ARE EVALUATED IN A 4X4X4 FINER GRID.

APPENDIX II
GRADIENT OF THE COST FUNCTION

In this appendix, we give the analytical expressions of the
fk functions of the section IV needed to compute the gradient
of the augmented Lagrangian.

Let

vk1k2k3 =
∂kt(c, x)

∂xk
=
∂kx

∂xk
+
∑
j

cj
∏
l

h−kll β(kl)

(
xl
hl
− jl

)
be the expansion of the B-spline coefficients using the kernel
β(k)(x)
hk = β(k1)(x1)

h
k1
1

β(k2)(x2)

h
k2
2

β(k3)(x3)

h
k3
3

and

J = J(c, x) = det (v100, v010, v001)

be the Jacobian of the deformation.
We also define the spatial derivatives of the Jacobian

J1 =
∂J(c, x)

∂x1
= det (v200, v010, v001)

+ det (v100, v110, v001)

+ det (v100, v010, v101) .

J2 = ∂J(c,x)
∂x2

and J3 = ∂J(c,x)
∂x3

have similar expression.
The function associated with the zero order term is the data

fitting term

f000 = ρ′(If (t(x))− Ir(x))∇If (t(x)).
For the terms of superior order we have two different

expressions depending of the constraints we have chosen (g1
or g2). All those functions can be written

fk1k2k3(c, x) =

∣∣∣∣ f̃k1k2k3(c, x) if µx + rg(c, x) > 0
0 otherwise

If we note × is the cross product of R3, we have for the g1
constraint (2):

f̃100 = − (µx + rg1(c, x)) v010 × v001
f̃010 = (µx + rg1(c, x)) v100 × v001
f̃001 = − (µx + rg1(c, x)) v100 × v010

For the g2 constraint (3) if we define

J̃i = (µx + rg2(c, x)) Ji

and
φ̃′ = (µx + rg2(c, x))φ

′(J)

then we have:

f̃100 = (v110 × v001 − v101 × v010)J̃1
+ (v020 × v001 − v011 × v010)J̃2
+ (v011 × v001 − v002 × v010)J̃3
− φ̃′v010 × v001

f̃010 = −(v200 × v001 − v101 × v001)J̃1
− (v110 × v001 − v011 × v001)J̃2
− (v101 × v001 − v002 × v001)J̃3
+ φ̃′v001 × v001

f̃001 = (v200 × v010 − v110 × v001)J̃1
+ (v110 × v010 − v020 × v001)J̃2
+ (v101 × v010 − v011 × v001)J̃3
− φ̃′v001 × v010

f̃200 = v010 × v001J̃1
f̃020 = −v001 × v001J̃2
f̃002 = v001 × v010J̃3
f̃011 = v001 × v010J̃2 − v001 × v001J̃3
f̃101 = v001 × v010J̃1 + v010 × v001J̃3
f̃110 = −v001 × v001J̃1 + v010 × v001J̃2

APPENDIX III
GENERATING INVERTIBLE SYNTHETIC DEFORMATIONS

Let’s define di by

di(x) = x+
ri
2
ais

(∥∥∥∥x− ciri

∥∥∥∥2
2

)
,
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and αs by
αs = sup

t≥0

{
t
∣∣s′(t2)∣∣} .

di will be invertible if we ensure that ∀x det(d′i(x)) > 0. Let
yi =

x−ci
ri

, we have:

det (d′i(x)) = det
(
I + s′

(
‖yi‖22

)
aiy

T
i

)
= 1 + s′

(
‖yi‖22

)
aTi yi

≥ 1−
∣∣∣s′ (‖yi‖22)∣∣∣ ‖yi‖2 ‖ai‖2

≥ 1− αs ‖ai‖2
Thus, by choosing ai such that ‖ai‖2 <

1
αs

, the function di
is invertible. For the function s(t) = e−t we used, we have :
αs =

1√
2e

.
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version électronique : http://www.inria.fr/rrrt/RR-3178.html.

[9] R. Bajcsy and S. Kovacic, “Multiresolution elastic matching,” Comput.
Vision Graph. Image Process., vol. 46, no. 1, pp. 1–21, 1989.

[10] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “A deformable
neuroanatomy textbook based on viscous fluid mechanics,” in Proc.
27th Annual Conf. Inform. Sci. Syst., J. Prince and T. Runolfsson,
Ed. Baltimore, MD: Department of Electrical Engineering, The Johns
Hopkins University, 1993, pp. 211–216.

[11] G. E. Christensen, “Consistent linear-elastic transformations for image
matching,” in IPMI ’99: Proceedings of the 16th International Confer-
ence on Information Processing in Medical Imaging. London, UK:
Springer-Verlag, 1999, pp. 224–237.

[12] R. Szeliski and J. Coughlan, “Spline-Based Image Registration, Tech.
Rep. 94/1, April 1994.

[13] J. Kybic and M. Unser, “Fast parametric elastic image registration,”
IEEE Transactions on Image Processing, vol. 12, no. 11, pp. 1427–
1442, November 2003.
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