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Preconditioned P-ULA for Joint
Deconvolution-Segmentation of Ultrasound

Images – Extended Version
Marie-Caroline Corbineau, Denis Kouamé, Emilie Chouzenoux, Jean-Yves Tourneret, Jean-Christophe Pesquet

Abstract

Joint deconvolution and segmentation of ultrasound images is a challenging problem in medical imaging. By adopting a
hierarchical Bayesian model, we propose an accelerated Markov chain Monte Carlo scheme where the tissue reflectivity function
is sampled thanks to a recently introduced proximal unadjusted Langevin algorithm. This new approach is combined with a
forward-backward step and a preconditioning strategy to accelerate the convergence, and with a method based on the majorization-
minimization principle to solve the inner nonconvex minimization problems. As demonstrated in numerical experiments conducted
on both simulated and in vivo ultrasound images, the proposed method provides high-quality restoration and segmentation results
and is up to six times faster than an existing Hamiltonian Monte Carlo method.

Index Terms

Ultrasound, Markov chain Monte Carlo method, proximity operator, deconvolution, segmentation.

I. INTRODUCTION

IN medical ultrasound (US) imaging, useful information can be drawn from the statistics of the tissue reflectivity function
(TRF) to perform segmentation [1], tissue characterization [2], or classification [3]. Let x ∈ Rn and y ∈ Rn be the vectorized

TRF and radio-frequency (RF) image, respectively. The following simplified model is used [4], [5]

y = Hx+ ω, (1)

where H ∈ Rn×n is a linear operator that models the convolution with the point spread function (PSF) of the probe, and
ω ∼ N (0, σ2In), with N the normal distribution, and In the identity matrix in Rn×n. This paper assumes that the PSF is
known, while σ2 > 0 is an unknown parameter to be estimated. The TRF is comprised of K different tissues, which are
identified by a hidden label field z = (zi)1≤i≤n ∈ {1, . . . ,K}n. For every k ∈ {1, . . . ,K}, the kth region is modeled by a
generalized Gaussian distribution (GGD) [3], [6], which is parametrized by a shape parameter αk ∈ [0, 3], related to the scatterer
concentration, and a scale parameter βk > 0, linked to the signal energy. Given y and H , the aim is to estimate a deblurred
image x [7], [8], as well as σ2, α = (αk)1≤k≤K , β = (βk)1≤k≤K , and the label field z. Due to the interdependence of these
unknowns, it is beneficial to perform the deconvolution and segmentation tasks in a joint manner [9], [10]. This is achieved in
[6] by considering a hierarchical Bayesian model, which is used within a Markov chain Monte Carlo (MCMC) method [11]
to sample x, σ2, α, β, and z according to the full conditional distributions. Despite promising results in image restoration
and segmentation, the method in [6] is of significant computational complexity, in particular due to the adjusted Hamiltonian
Monte Carlo (HMC) method [12], [13] used to sample the TRF. Recently, efficient and reliable stochastic sampling strategies
have been devised [14], [15], [16] using the proximity operator [17], which is known as a useful tool for large-scale nonsmooth
optimization [18]. In this work, we investigate an MCMC algorithm to perform the joint deconvolution and segmentation of US
images, where the TRF is sampled with a scheme inspired from the proximal unadjusted Langevin algorithm (P-ULA) [15].
The latter generates samples according to an approximation of the target distribution without acceptance test, while being
geometrically ergodic whereas classical unadjusted Langevin algorithms may have convergence issues.

A. Main contributions

Our contributions include i) the proposition of an original accelerated preconditioned version of P-ULA (PP-ULA), which
relies on the use of a variable metric forward-backward strategy [19], [20], ii) an efficient solver based on the majorization-
minimization (MM) principle to tackle the involved nonconvex priors, and iii) a new hybrid Gibbs sampler yielding a substantial
reduction of the computational time needed to perform joint high-quality deconvolution and segmentation of both simulated
and in vivo US images.
This article is organized as follows: Section II describes the investigated Bayesian model and sampling strategy. Section III
focuses on the proposed TRF sampling method. Numerical experiments are finally presented in Section IV.
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Fig. 1. Hierarchical Bayesian model. Parameters in boxes are fixed in advance.

II. BAYESIAN MODEL

A. Priors

Fig. 1 illustrates the hierarchical model used to perform a joint deconvolution-segmentation of ultrasound images. The
following likelihood function is derived from (1)

p(y|x, σ2) =
1

(2πσ2)n/2
exp

(
−‖y −Hx‖

2

2σ2

)
. (2)

The TRF is a mixture of GGDs which, under the assumption that the pixel values are independent given z, leads to

p(x|α, β, z) =

n∏
i=1

1

2β
1/αzi
zi Γ(1 + 1/αzi)

exp

(
−|xi|

αzi

βzi

)
. (3)

Uninformative Jeffreys priors are assigned to the noise variance and scale parameters, while the shape parameters are assumed
to be uniformly distributed between 0 and 3. The labels z are modeled by a Potts Markov random field with prior

p(z) =
1

C(θ)
exp

(∑n

i=1

∑
j∈V(i)

θδ(zi − zj)
)
, (4)

with δ the Kronecker function, C(θ) > 0 a normalizing constant, θ > 0 a granularity coefficient, and V(i) the set of four
closest neighbours of the ith pixel.

B. Conditional distributions

The different variables are sampled according to their conditional distributions, which are provided in this section. The
conditional distribution of the noise variance is derived from the Bayes theorem as follows

p(σ2|y, x) ∝ IG
(
n

2
,
‖y −Hx‖2

2

)
, (5)

where IG denotes the inverse gamma distribution. Assuming that the different regions have independent shape and scale
parameters for every k ∈ {1, . . . ,K}, we obtain

p(αk|x, β, z) ∝
∏
i∈Ik

1[0,3](αk)

2β
1/αk
k Γ (1 + 1/αk)

exp

(
−|xi|

αk

βk

)
, (6)

p(βk|x, α, z) ∝ IG
(
nk
αk
,
∑

i∈Ik
|xi|αk

)
, (7)

with Ik = {i ∈ {1, . . . , n} | zi = k}, nk the number of elements in Ik, and 1[0,3] the characteristic function of [0, 3]. Samples
for αk are drawn from (6) by using a Metropolis-Hastings (MH) random walk. For every pixel i ∈ {1, . . . , n} and every region
k ∈ {1, . . . ,K}, the Bayes rule applied to the segmentation labels leads to

p(zi = k|x, α, β, zV(i)) ∝
exp

(∑
j∈V(i) θδ(zj − k)− |xi|

αk

βk

)
2β

1/αk
k Γ(1 + 1/αk)

(8)

where zV(i) denotes the label values in the neighborhood of i. As a consequence, the label zi is drawn from {1, . . . ,K} using
the above probabilities (suitably normalized).
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III. PRECONDITIONED P-ULA

A. Notation

Let I<1 = {i ∈ {1, . . . , n} | αzi < 1} and I≥1 = {1, . . . , n} \ I<1. Let Sn denote the set of symmetric positive definite
matrices in Rn×n, and let |||·||| denote the spectral norm. For every Q ∈ Sn, let ‖ · ‖Q = 〈·, Q·〉1/2. For every function
f : Rn → R ∪ {+∞}, the proximity operator of f at x ∈ Rn with respect to the norm induced by Q−1 ∈ Sn is defined as
follows [17],

proxQf (x) ∈ Argminu∈Rn
1

2
‖x− u‖2Q−1 + f(u). (9)

If Q is not specified, then Q = In. If proxf is simple to compute, then the solution to (9) for an arbitrary Q ∈ Sn can
be obtained by using the dual forward-backward (DFB) algorithm [21], summarized in Algorithm 1. If f is proper, lower
semicontinuous, and convex, then the sequence (u(p))p∈N generated by Algorithm 1 converges to proxQf (x).

Algorithm 1: DFB algorithm to compute proxQf (x)

Initialize dual variable w(1) ∈ RN ;
Set ρ = |||Q|||−1, ε ∈]0,min{1, ρ}[, η ∈ [ε, 2ρ− ε];
for p = 1, ... do

u(p) = x−Qw(p);
w(p+1) = w(p) + ηu(p) − ηproxη−1f (η−1w(p) + u(p))

end

B. Sampling the TRF

The conditional distribution of the TRF is

π(x) = p(x|y, σ2, α, β, z) ∝ exp

(
−‖y −Hx‖

2

2σ2
− g(x)

)
, (10)

where (∀x ∈ Rn) g(x) =
∑n
i=1 β

−1
zi |xi|

αzi . Let γ > 0 and let Q ∈ Sn be a preconditioning matrix used to accelerate the
sampler [22]. Following [15], π(x) is approximated by

πγ(x) ∝ sup
u∈Rn

π(u) exp

(
−
‖u− x‖2Q−1

2γ

)
. (11)

As shown in Appendix, the Euler discretization of the Langevin diffusion equation [23] applied to πγ with stepsize 2γ and
preconditioning matrix Q leads to

x(t+1) = proxQγg(x̃
t) +

√
2γQ

1
2ω(t+1), (12)

where ω(t+1) ∼ N (0, In) and
x̃(t) = x(t) − γ

σ2
QH>(Hx(t) − y). (13)

Since the proposed sampling strategy is unadjusted, (12) is not followed by an acceptance test. The bias with respect to π
increases with γ, as the speed of convergence of the algorithm. A compromise must be found when setting γ.

When I<1 is not empty, we use the MM principle [24] to replace the nonconvex minimization problem involved in the
computation of proxQγg with a sequence of convex surrogate problems. Let J ⊂ I<1. We define hJ at every (u, v) ∈ Rn×Rn+∗
by

hJ (u, v) =
∑
i∈I≥1

|ui|αzi
βzi

+
∑
j∈J

(1− αzj )v
αzj
j + αzjv

αzj−1
j |uj |

βzj
.

From concavity, we deduce that, for every v ∈ Rn+∗ and u ∈ Rn such that J ⊂ {i ∈ I<1 | |ui| > 0}, the following majoration
property holds

hJ (u, v) ≥
∑

i∈I≥1∪J

|ui|αzi
βzi

= hJ (u, (|ui|)1≤i≤n).

Since hJ (·, v) is convex and separable, its proximity operator in the Euclidean metric is straightforward to compute. More
precisely, for every i ∈ I≥1, η > 0 and s ∈ R, proxη−1|·|αzi (s) has either a closed form [25] or can be found using a bisection
search in [0, |s|]. Algorithm 1 can then be called, in order to compute the proximity operator of hJ (·, v) in any metric Q ∈ Sn.
This leads to Algorithm 2 which generates a sequence (u(q))q∈N estimating proxQγg(x̃

(t)).
The resulting Gibbs sampler is summarized in Algorithm 3.
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Algorithm 2: MM principle to compute proxQγg .

Initialize u(1) ∈ Rn;
for q = 1, ... do
J (q) = {i ∈ I<1 | |u(q)i | > 0};
v(q) = (|u(q)i |)1≤i≤n;
u(q+1) = proxQ

γhJ (q) (·,v(q))
(x̃(t)) (using Alg. 1)

end

Algorithm 3: Hybrid Gibbs sampler

1 Sample the noise variance σ2 according to (5);
2 Sample the shape parameter α using MH with (6);
3 Sample the scale parameter β according to (7);
4 Sample the hidden label field z using (8) ;
5 Sample the TRF x using PP-ULA (12)-(13).

IV. NUMERICAL EXPERIMENTS

A. Experimental settings

Six experiments are presented. Simu1 and Simu2 refer to simulated images with two and three regions, respectively. Kidney
denotes the tissue-mimicking phantom produced from 106 scatterers uniformly distributed over a digital image of human
kidney tissue provided with the Field II ultrasound simulator [26]. The amplitude of each scatterer is produced using a zero-
mean Gaussian distribution whose variance is linked to the amplitude of the point on the digital image. The PSF for the
aforementioned simulations is obtained with Field II and corresponds to a 3.5 MHz linear probe. We also perform tests on
three real ultrasound images. Thyroid denotes a real RF image of thyroidal flux obtained in vivo with a 7.8 MHz probe. The
unknown PSF is identified using the RF image of a wire cross-section which was acquired with the same probe. Since the
diameter of the wire is of the order of a few µm, its cross-section can almost be viewed as a point. Thus, its RF image provides
a good approximation of the PSF. Finally, Bladder and KidneyReal refer to the RF images of a mouse bladder and mouse
kidney, respectively. Both images were obtained in vivo with a 20 MHz probe. The PSF for these two real images is estimated
using the same method as for Thyroid. The number of regions K is set to 2 for Simu1 and KidneyReal, and it is set to 3 for
Simu2, Kidney, Thyroid and Bladder. The test settings and images can be found in Table I and Figs. 4 and 6 (first column),
respectively.

The TRF is initialized using a pre-deconvolved image obtained with a Wiener filter, while the segmentation is initialized
by applying a 7× 7 median filter and the Otsu method [27] to the B-mode of the initial TRF. Shape and scale parameters are
randomly selected in [0.5, 1.5], and [1, 200], respectively. The granularity parameter θ for the Potts model (4) is adjusted to
ensure that the percentage of isolated points in the segmentation, obtained with a 3× 3 median filter, is close to 0.05, 0.1, 0.8,
0.08, 0.08 and 0.08 for Simu1, Simu2, Kidney, Thyroid, Bladder and KidneyReal, respectively.

B. Comparisons and evaluation metrics

All computational times are given for simulations run on Matlab 2018b on an Intel Xeon CPU E5-1650 3.20GHz. The
code for the proposed method is available online1. In addition to comparing Algorithm 3 with HMC [6], the quality of the
deconvolution is compared with the one obtained with a Wiener filter, where the noise level has been estimated as in [28],
and with the solution to the Lasso problem, where the regularization weight is set i) manually when the ground-truth is not

1https://github.com/mccorbineau/PP-ULA

Simu1 Simu2 Kidney Thyroid Bladder KidneyReal

Size 256×256 256×256 294×354 870×140 370×256 350×200
Data type Simulated Simulated Tissue-mimicking Real in vivo Real in vivo Real in vivo

Ground-truth
TRF X X X - - -

GGD parameters X X - - - -
Segmentation X X - - - -

TABLE I
TEST SETTINGS: SIZE OF TEST IMAGES, DATA TYPE, AND AVAILABILITY OF THE GROUND-TRUTH.
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available, or ii) using a golden-section search to maximize the peak signal-to-noise ratio (PSNR) defined as (with xtr the true
TRF and xes the estimated one)

PSNR = 10 log10(n maxi(x
tr
i , x

es
i )2/‖xtr − xes‖2). (14)

We also compare our results with the segmentation given by Otsu’s method [27] applied to the Wiener-deconvolved image, and
with the SLaT method [29] applied to the Lasso-deconvolved image. PP-ULA is used with γ = 0.09 and Q an approximation
of the inverse of the Hessian of the differentiable term in (10) [30], Q = σ2(H>H + λIn)−1, with λ = 0.1 so that Q is well-
defined. We have also computed the structural similarity measure (SSIM) [31] of the restored TRF and the contrast-to-noise
ratio (CNR) [32] between two windows from different regions of the B-mode TRF images. The segmentation is evaluated
according to the percentage of correctly predicted labels, or overall accuracy (OA). The minimum mean square error (MMSE)
estimators of all parameters in HMC and PP-ULA are computed after the burn-in regime. Moreover, to evaluate the mixing
property of the Markov chain after convergence, we compute the mean square jump (MSJ) per second, which is the ratio of
the MSJ to the time per iteration. The MSJ is obtained using T samples of the TRF (xt0+1, . . . , xt0+T ) generated after the

burn-in period, i.e. MSJ =
(

1
T−1

∑T−1
t=1 ‖x(t0+t) − x(t0+t+1)‖2

)1/2
.

C. Results on simulated data

The convergence speed of Algorithm 3 is empirically observed for Simu1 and Simu2, as illustrated in Fig. 2, where we
also display the results of the non-preconditioned P-ULA, for which Q = In and γ = 1.99σ2/|||H|||2. Comparing P-ULA and
PP-ULA on these simulated data allows us to study the effect of adding a preconditioner in the proposed sampling scheme.
As reported in Table II, P-ULA needs more iterations and more time to converge than PP-ULA: the proposed method is 12.2
and 4.8 times faster than P-ULA on Simu1 and Simu2, respectively. In addition, from Table III and Fig. 3, we deduce that
P-ULA is more biased than PP-ULA, which samples correctly the target distributions. Finally, as one can see in Fig. 2 and
Table IV, P-ULA leads to lower PSNR, SSIM and OA values than PP-ULA. These results clearly emphasize the benefits of
preconditioning in this example.

Iterations Time Mixing property

Burn-in Total Duration PP-ULA speed gain MSJ (per s)

Simu1
P-ULA 70000 140000 2 h 27 min 12.2 665

HMC 4000 8000 1 h 08 min 5.7 173
PP-ULA 4000 8000 12 min 1 970

Simu2
P-ULA 70000 140000 3 h 06 min 4.8 590

HMC 10000 20000 4 h 14 min 6.6 22
PP-ULA 10000 20000 39 min 1 793

TABLE II
NUMBER OF ITERATIONS, COMPUTATIONAL TIME AND MSJ PER S FOR EXPERIMENTS SIMU1 AND SIMU2.

Simu1 Simu2

σ2 α1 β1 α2 β2 σ2 α1 β1 α2 β2 α3 β3

True 0.013 1.5 1.0 0.60 1.0 33 1.5 100 1.0 50 0.50 4.0
P-ULA 0.041 2.0 0.5 0.59 1.0 122 2.0 330 2.0 3186 0.48 3.4

HMC 0.013 1.8 1.2 0.61 1.0 34 1.4 66 1.1 111 0.54 5.2
PP-ULA 0.013 1.4 0.9 0.62 1.1 35 2.3 2676 1.2 122 0.55 5.8

TABLE III
MMSE ESTIMATES OF THE NOISE VARIANCE AND GGD PARAMETERS.

Fig. 2. PSNR along time for Simu1. Dotted lines indicate the PSNR of the MMSE estimator of the TRF after the burn-in regime.
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Fig. 3. Simu1, GGD distributions (3) of regions 1 (left) and 2 (right).

Simu1 Simu2

PSNR SSIM CNR OA PSNR SSIM CNR OA

Wiener - Otsu 37.1 0.57 1.26 99.5 35.4 0.63 0.97 96.0
Lasso - SLaT [29] 39.2 0.60 1.15 99.6 37.8 0.70 0.99 98.3

P-ULA 38.9 0.45 1.82 98.7 37.1 0.57 1.59 94.9
HMC 40.0 0.62 1.47 99.7 36.4 0.64 1.59 98.5

PP-ULA 40.3 0.62 1.51 99.7 38.6 0.71 1.64 98.7

TABLE IV
PSNR, SSIM, CNR AND SEGMENTATION OVERALL ACCURACY (OA) FOR SIMULATED DATA.

From Table II, PP-ULA is 5.7 and 6.6 times faster than HMC for Simu1 and Simu2 and has better mixing properties, as
shown by the MSJ per second. Visual results from Fig. 4 and CNR values in Table IV show that the contrast obtained with
PP-ULA is better than with competitors on Simu2, and is second best after P-ULA on Simu1. However, it should be noted that
the PSNR and SSIM obtained on Simu1 with P-ULA are much lower than with the other methods. In addition, the PSNR and
SSIM values from Table IV obtained with PP-ULA are equivalent or higher than all competitors for these two experiments.
Visual segmentation results are shown in Fig. 5, and OA values can be found in Table IV. For these simulated images, more
pixels are correctly labeled with PP-ULA than with competitors.

Fig. 4. B-mode visualization on simulated images. Top: Simu1. Bottom: Simu2. Left to right: RF image, TRF: ground-truth, Wiener, Lasso, P-ULA, HMC,
PP-ULA. Blue boxes indicate regions used for the CNR.

Fig. 5. Segmentation. Top: Simu1, bottom: Simu2. Left to right: ground-truth, Ostu, SLaT, P-ULA, HMC, PP-ULA. Main differences are circled in green.



6

Iterations Time Mixing property

Burn-in Total Duration PP-ULA speed gain MSJ (per s)

Kidney HMC 7000 14000 4 h 23 min 6.3 167
PP-ULA 7000 14000 42 min 1 657

Thyroid HMC 3000 6000 2 h 09 min 3.7 175
PP-ULA 3000 6000 35 min 1 950

Bladder HMC 5000 10000 2 h 45 min 5.2 13
PP-ULA 5000 10000 32 min 1 1396

KidneyReal HMC 5000 10000 1 h 49 min 5.8 11
PP-ULA 5000 10000 19 min 1 1361

TABLE V
NUMBER OF ITERATIONS, COMPUTATIONAL TIME AND MSJ PER S FOR EXPERIMENTS ON THE TISSUE-MIMICKING PHANTOM AND ON REAL DATA.

D. Results on a tissue-mimicking phantom and on real data

The convergence of Algorithm 3 is also empirically observed for the experiments on the tissue-mimicking phantom and on
real data, i.e. Kidney, Thyroid, Bladder and KidneyReal. As mentioned in Table V, the proposed method leads to a significant
acceleration since it is between 3.7 and 6.3 times faster than HMC on these experiments. Visual results from Fig. 6 and CNR
values in Table VI show that the contrast obtained with PP-ULA is better than with competitors on all these test images. In
addition, the PSNR and SSIM values from Table VI obtained with PP-ULA on the Kidney experiment are equivalent or higher
than all competitors. Although the ground-truth of the segmentation is not available for these experiments, one can see from
the visual segmentation results shown in Figs. 7, that the segmentation based on the Potts model (PP-ULA and HMC) gives
more homogeneous areas than Otsu, and recovers more details than SLaT.

(a)

(b)
Fig. 6. B-mode visualization. (a) Kidney; left to right: RF image, TRF: ground-truth, Wiener, Lasso, HMC, PP-ULA. (b) Real in vivo images; top to bottom:
Thyroid, Bladder, KidneyReal; left to right: RF image, TRF: Wiener, Lasso, HMC, PP-ULA. Blue boxes indicate regions used for the CNR.
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Fig. 7. Segmentation. Top to bottom: Kidney, Thyroid, Bladder, KidneyReal. Left to right: Ostu, SLaT, HMC, PP-ULA. Main differences are circled in green.

Kidney Thyroid Bladder KidneyReal

PSNR SSIM CNR CNR CNR CNR

Wiener 27.6 0.58 0.66 0.56 1.66 1.61
Lasso 28.5 0.59 0.67 0.99 1.76 1.76
HMC 29.5 0.62 1.10 1.52 2.23 1.88

PP-ULA 29.3 0.62 1.14 1.56 2.48 1.93

TABLE VI
PSNR, SSIM AND CNR RESULTS.

V. CONCLUSION

We investigated a new method based on a preconditioned proximal unadjusted Langevin algorithm for the joint restoration
and segmentation of ultrasound images, which showed faster convergence than an existing Hamiltonian Monte Carlo algorithm.
Hence, the proposed method has the potential to speed-up the approach proposed in [1] for the segmentation of ultrasound
images. Another direction for future work is to extend this framework to a spatially variant, possibly unknown, PSF.

APPENDIX

In this section, after reminding results about the Langevin diffusion and its discretization using Euler’s scheme, we provide
details about the derivation of the proposed method (12) used to sample the TRF.

A. Discrete Langevin diffusion

An n-dimensional Langevin diffusion is a continuous time Markov process (x(t))t∈[0,+∞[ taking its values in Rn, which is
the solution to the following stochastic differential equation [23],

(∀t ∈ [0,+∞[) dx(t) = b(x(t))dt+ V (x(t))dB(t), (15)
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where (B(t))t∈[0,+∞[ is a Brownian motion with values in Rn, and for every x ∈ Rn, V (x) ∈ Rn×n is the volatility matrix
and b(x) = (bi(x))1≤i≤n ∈ Rn is the drift term defined as

(∀i ∈ {1, . . . , n}) bi(x) =
1

2

n∑
j=1

Ai,j(x)
∂ log π(x)

∂xj
+ det(A(x))

1
2

n∑
k=1

∂

∂xj

(
Ai,k(x)det(A(x))−

1
2

)
, (16)

where A(x) = V (x)V (x)> = (Ai,j(x))1≤i,j≤n is a symmetric positive definite matrix, det(A(x)) denotes its determinant,
and π is the density of the stationary distribution of the diffusion. Here, we take (∀x ∈ Rn) π(x) = p(x|y, σ2, α, β, z) defined
in (10). Euler’s discretization scheme applied to (15) leads to the following target posterior distribution, which can be used to
generate a Langevin Markov chain.

(∀t ∈ N) x(t+1) = x(t) + 2γb(x(t)) +
√

2γA
1
2 (x(t))ω(t). (17)

Hereabove, ω(t) ∼ N (0, In) and γ > 0 is the discretization stepsize that controls the length of the jumps, while the scale
matrix A(·) drives their direction. Instead of taking A(·) = In as in the standard Metropolis adjusted Langevin algorithm, we
follow [22], [19] and use a preconditioning matrix A to accelerate the Langevin scheme, which leads to

x(t+1) = x(t) + γA∇ log π(x) +
√

2γA
1
2ω(t+1). (18)

B. Approximation of the target diffusion

For every x ∈ Rn, let f(x) = ‖y −Hx‖2/(2σ2). From (10), the target distribution statisfies the following relation,

(∀x ∈ Rn) π(x) = p(x|y, σ2, α, β, z) ∝ exp(−(f + g)(x)), (19)

where (∀x ∈ Rn) g(x) =
∑n
i=1 β

−1
zi |xi|

αzi . Let γ > 0 and Q ∈ Sn. Following [15], we replace π by its Moreau approximation
πQγ defined in (11) and recalled below,

(∀x ∈ Rn) πQγ (x) = sup
u∈Rn

π(u) exp

(
−
‖u− x‖2Q−1

2γ

)
. (20)

Note that we dropped the normalization constant. Moreover, at the difference of [15], we introduce the preconditioning matrix
Q for convergence acceleration purposes. When Q is not specified, the identity matrix is used, i.e. Q = In. Hence, the
approximated version of (18) reads

x(t+1) = x(t) + γA∇ log πQγ (x) +
√

2γA
1
2ω(t+1). (21)

We can then deduce the following result when g is convex.
Proposition 1: For every γ > 0, Q ∈ Sn and x ∈ Rn, if (∀k ∈ {1, . . . ,K}) αk ≥ 1, then we have

∇ log πQγ (x) = Q−1
proxQγ(f+g)(x)− x

γ
. (22)

Proof. By definition of πQγ , we have

(∀x ∈ Rn) log πQγ (x) = proxQγ(f+g)(x). (23)

Hence, applying [33, Lemma 2.5] in the metric induced by Q−1 directly leads to the result. �

From Proposition 1, (21) becomes

x(t+1) = x(t) + γAQ−1
proxQγ(f+g)(x

(t))− x(t)

γ
+
√

2γA
1
2ω(t+1). (24)

It can be noted that, in Proposition 1, g is assumed to be convex, which is not necessarily satified in our case. However, for
simplicity, we take the discrete scheme (24) even in the nonconvex case. Finally, we take A = Q, which leads to

x(t+1) = proxQγ(f+g)(x
(t)) +

√
2γQ

1
2ω(t+1). (25)
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C. Forward-backward approximation

By definition, f is differentiable on Rn and its gradient ∇f = H>(H · −y)/σ2 is Lipschitz-continuous on Rn. It is worth
noting that the computation of the proximity operator of the sum of two functions is generally intractable [34]. Hence, as
suggested in [15], we use a first-order Taylor expansion to approximate the proximity operator of f+g and introduce a forward
step in PP-ULA iteration. Let o denotes Landau’s notation.2 Let x ∈ Rn, using (∀u ∈ Rn) f(u) = f(x) + (u− x)>∇f(x) +
o(‖u− x‖), we have

(f + g)(u) +
1

2γ
‖u− x‖2Q−1 = f(x) + g(u) +

1

2γ
‖u− x‖2Q−1 + (u− x)>∇f(x) + o(‖u− x‖), (26)

which can be re-written as

(f + g)(u) +
1

2γ
‖u− x‖2Q−1 = f(x) + g(u) +

1

2γ
‖u− x+ γQ∇f(x)‖2Q−1 −

γ

2
‖Q 1

2∇f(x)‖2 + o(‖u− x‖). (27)

Hence, the proximity operator of f + g can be expressed as follows,

proxQγ(f+g)(x) = argmin
u∈Rn

(
(f + g)(u) +

1

2γ
‖u− x‖2Q−1

)
(28)

= argmin
u∈Rn

(
g(u) +

1

2γ
‖u− x+ γQ∇f(x)‖2Q−1 + o(‖u− x‖)

)
. (29)

In addition, we have

proxQγg(x− γQ∇f(x)) = argmin
u∈Rn

(
g(u) +

1

2γ
‖u− x+ γQ∇f(x)‖2Q−1

)
. (30)

Therefore, when γ is small, proxQγg(x− γQ∇f(x)) is a good approximation of proxQγ(f+g)(x). Plugging this preconditioned
forward-backward scheme [18] in (25) leads to the proposed sampling method

x(t+1) = proxQλg(x
(t) − λQ∇f(x(t))) +

√
2γQ

1
2ω(t+1). (31)
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[21] P. L. Combettes, D. Dũng, and B. C. Vũ, “Proximity for sums of composite functions,” Journal of Mathematical Analysis and applications, vol. 380,
no. 2, pp. 680–688, 2011.

[22] Y. Marnissi, E. Chouzenoux, A. Benazza-Benyahia, and J.-C. Pesquet, “Majorize-minimize adapted Metropolis-Hastings algorithm,” HAL preprint
HAL:01909153, 2018.

[23] G. O. Roberts and O. Stramer, “Langevin diffusions and Metropolis-Hastings algorithms,” Methodology and computing in applied probability, vol. 4,
no. 4, pp. 337–357, 2002.

[24] E. D. Schifano, R. L. Strawderman, and M. T. Wells, “Majorization-minimization algorithms for nonsmoothly penalized objective functions,” Electronic
Journal of Statistics, vol. 4, pp. 1258–1299, 2010.

[25] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A variational formulation for frame-based inverse problems,” Inverse Problems, vol. 23, no.
4, pp. 1495–1518, June 2007.

[26] J. A. Jensen, “Simulation of advanced ultrasound systems using Field II,” in 4th IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, 2004, pp. 636–639.

[27] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66,
1979.

[28] S. Mallat, A wavelet tour of signal processing, Elsevier, 1999.
[29] X. Cai, R. Chan, M. Nikolova, and T. Zeng, “A three-stage approach for segmenting degraded color images: Smoothing, lifting and thresholding (SLaT),”

Journal of Scientific Computing, vol. 72, no. 3, pp. 1313–1332, 2017.
[30] S. Becker and J. Fadili, “A quasi-Newton proximal splitting method,” in Advances in Neural Information Processing Systems, 2012, pp. 2618–2626.
[31] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions

on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[32] S. Krishnan, K. W. Rigby, and M. O’donnell, “Improved estimation of phase aberration profiles,” IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, vol. 44, no. 3, pp. 701–713, 1997.
[33] P. L. Combettes and V. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200,

2005.
[34] N. Pustelnik and L. Condat, “Proximity operator of a sum of functions; application to depth map estimation,” IEEE Signal Processing Letters, vol. 24,

no. 12, pp. 1827–1831, 2017.


