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Preconditioned P-ULA for Joint
Deconvolution-Segmentation of Ultrasound Images

Marie-Caroline Corbineau, Denis Kouamé, Senior Member, IEEE, Emilie Chouzenoux, Member, IEEE,
Jean-Yves Tourneret, Fellow, IEEE, Jean-Christophe Pesquet, Fellow, IEEE

Abstract—Joint deconvolution and segmentation of ultrasound
images is a challenging problem in medical imaging. By adopt-
ing a hierarchical Bayesian model, we propose an accelerated
Markov chain Monte Carlo scheme where the tissue reflectivity
function is sampled thanks to a recently introduced proximal
unadjusted Langevin algorithm. This new approach is combined
with a forward-backward step and a preconditioning strategy
to accelerate the convergence, and with a method based on
the majorization-minimization principle to solve the inner non-
convex minimization problems. As demonstrated in numerical
experiments conducted on both simulated and in vivo ultrasound
images, the proposed method provides high-quality restoration
and segmentation results and is up to six times faster than an
existing Hamiltonian Monte Carlo method.

Index Terms—Ultrasound, Markov chain Monte Carlo method,
proximity operator, deconvolution, segmentation.

I. INTRODUCTION

CATTERING frequently occurs during the acquisition of
medical ultrasound images, which produces speckle in the
resulting radio-frequency (RF) data. Useful information can
be drawn from the statistics of the echo envelope to perform
segmentation [1], tissue characterization [2], or classification
[3]. The vectorized RF image y € R™ is modeled as follows

y=Hxr+w, (D

where H € R"™™ is a linear operator that models the
convolution with the point spread function (PSF) of the probe,
x € R" is the vectorized tissue reflectivity function (TRF),
and w ~ N(0,0%I,), with N the normal distribution, and
I,, the identity matrix in R™*"™. This paper assumes that the
PSF is known, while ¢2 > 0 is an unknown parameter to
be estimated. The TRF is comprised of K different tissues,
which are identified by a hidden label field z = (2;)1<i<n €
{1,...,K}"™. For every k € {1,...,K}, the k*® region is
modeled by a generalized Gaussian distribution (GGD) [3],
[4], which is parametrized by a shape parameter oy € [0, 3],
related to the scatterer concentration, and a scale parameter
Br > 0, linked to the signal energy. Given y and H, the aim
is to estimate a deblurred image x [5], [6], as well as o2,
o= (ak)lgkgK, b= (ﬂkhgkgK, and the label field z. Due
to the interdependence of these unknowns, it is beneficial to
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perform the deconvolution and segmentation tasks in a joint
manner [7], [8]. This is achieved in [4] by considering a
hierarchical Bayesian model, which is used within a Markov
chain Monte Carlo (MCMC) method [9] to sample =z, o2, «a,
B, and z according to the full conditional distributions. Despite
promising results in image restoration and segmentation, the
method in [4] is of significant computational complexity,
in particular due to the adjusted Hamiltonian Monte Carlo
(HMC) method [10], [11] used to sample the TRF. Recently,
efficient and reliable stochastic sampling strategies have been
devised [12], [13], [14] using the proximity operator [15],
which is known as a useful tool for large-scale nonsmooth
optimization [16].

In this work, we propose to accelerate the MCMC algorithm
of [4] by replacing the HMC step used to sample the TREF,
with a proximal unadjusted Langevin algorithm (P-ULA)
proposed in [13]. P-ULA generates samples according to an
approximation of the target distribution. One advantage is that
P-ULA is geometrically ergodic whereas classical unadjusted
Langevin algorithms may have convergence issues. We pro-
pose the introduction of a preconditioning matrix in P-ULA
for acceleration purposes [17], [18], as well as an efficient
solver based on the majorization-minimization (MM) principle
to solve the involved nonconvex subproblems. As shown in
numerical experiments conducted on simulated and in vivo
ultrasound images, the proposed preconditioned P-ULA (PP-
ULA) yields a substantially lower computational time than P-
ULA and HMC while achieving similar, and sometimes better,
image restoration and segmentation quality.

This article is organized as follows: Section II describes the
investigated Bayesian model and sampling strategy. Section III
focuses on the proposed TRF sampling method PP-ULA.
Numerical experiments are finally presented in Section IV.

II. BAYESIAN MODEL
A. Priors

Fig. 1 illustrates the hierarchical model used to perform a
joint deconvolution-segmentation of ultrasound images. The
following likelihood function is derived from (1)

1 — Hz|?
p(ylz, o) = (@ro)nrz P (—Hy202|) )

The TRF is a mixture of GGDs, which, under the assumption
that the pixel values are independent given z, leads to
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Fig. 1. Hierarchical Bayesian model. Parameters in boxes are fixed in advance.

Uninformative Jeffreys priors are assigned to the noise vari-
ance and scale parameters, while the shape parameters are
assumed to be uniformly distributed between O and 3. The
labels z are modeled by a Potts Markov random field with
prior

p(z) = co exp <Zj_1 Zjev(i) 06(zi — Zg)) )

with ¢ the Kronecker function, C'(#) > 0 a normalizing
constant, ¢ > 0 a granularity coefficient and V(i) the set of
four closest neighbours of the ‘" pixel.

B. Conditional distributions

The different variables are sampled according to their con-
ditional distributions, which are provided in this section. The
conditional distribution of the noise variance is derived from
the Bayes theorem as follows

p(e?ly, >o<:rg<

where ZG(-,) denotes the inverse gamma distribution. As-
suming that the different regions have independent shape and
scale parameters, for every k € {1,..., K} we obtain

> , (6)
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with 7 {i € {1,...,n}|zi = k}, np the number
of elements in Zy, and 13 the characteristic function of
[0, 3]. Samples for oy, are drawn from (6) using a Metropolis-
Hastings (MH) random walk. For every pixel ¢ € {1,...,n}
and every region k € {1,..., K}, the Bayes rule applied to
the segmentation labels leads to
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where 2y ;) denotes the label values in the neighborhood of

i. As a consequence, the label z; is drawn from {1,..., K}
using the above probabilities (suitably normalized).

ITIT. PRECONDITIONED P-ULA
A. Notation
Let Zoy = {i € {1,...,n} | ap, < 1} and Z», =
{1,...,n}\Z<1. Let S,, denote the set of symmetric positive
definite matrices in R™*™, and let ||-|| denote the spectral

norm. For every Q € Sy, let || - [|o = (-.Q)**. For every
function f : R® — R U {400}, the proximity operator of f

at x € R™ with respect to the norm induced by Q~! € S, is
defined as follows [15],
. 1

prox?(x) € ArgmlnueRnEHm - u||2Q,1 + f(u). O
If @ is not specified, then @) = L,. If prox; is simple to
compute, then the solution to (9) for an arbitrary @) € S,, can
be obtained by using the dual forward-backward (DFB) algo-
rithm [19], summarized in Algorithm 1. If f is proper, lower
semicontinuous, and convex, then the sequence (u(p))peN
generated by Algorithm 1 converges to prox?(at).

Algorithm 1: DFB algorithm to compute prox?(x)

Initialize dual variable w®) € R
Set p = [|QII ™", ¢ €]0, min{1, p}[, n € [¢,2p — ¢];
for p=1,... do

u(p) = — Qw(p)’

w®tD) = @) 4 (P) —nproxn_lf(n_lw(p)+u(p))

end

B. Sampling the TRF
The conditional distribution of the TRF is
ly — Hz|?

p— 2 —
m(z) = p(zly,0°, @, B, z) x exp ( 557

~4@) 10)

where (Vo € R") g(z) = Y1 | B2 |ai|*. Let v > 0 and
let @ € S,, be a preconditioning matrix used to accelerate the
sampler [20]. Following [13], 7(x) is approximated by

l[u—zl|3) -
TQ .an

The Euler discretization of the Langevin diffusion equa-
tion [21] applied to 7., with stepsize 2 leads to

7y (x) o< sup 7(u)exp <—
u€R™

2D = prox§, (#) + vV2yQWY, (12)
where w1 ~ N(0,1,,) and
&t = 2™ QHT(Hw“) -y). (13)

Since the proposed samphng strategy is unadjusted, (12) is
not followed by an acceptance test. The bias with respect to 7
increases with -, as the speed of convergence of the algorithm.
A compromise must be found when setting . When Z is not
empty, we use the MM principle [22] to replace the nonconvex
minimization problem involved in the computation of prox?
with a sequence of convex surrogate problems. Let J C Z.1.
We define h s at every (u,v) € R" x R}, by
-1
i | =i |us]

Bz

>

1€L>q

hJ(u7U):
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3 o
J

i€d
From concavity, we deduce that, for every v € R%}, and

u € R™ such that J C {i € Z1 | |u;| > 0}, the following
majoration property holds

h(u,v) > Z

ieIZluj

o
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Since hy(-,v) is convex and separable, its proximity oper-
ator in the Euclidean metric is straightforward to compute.
More precisely, for every ¢ € Z>1, 7 > 0 and s € R,
ProX, —1|.|oz; (s) has either a closed form [23] or can be found
using a bisection search in [0, |s|]. Algorithm 1 can then be
called, in order to compute the proximity operator of h 7 (-, v)
in any metric ) € &,. This leads to Algorithm 2 which
generates a sequence (u(?)),cy estimating prong (™).

Algorithm 2: MM principle to compute proxg?.

Initialize v € R";

for g =1,... do
J@ = {i € Zoy | [u®] >0}
v @ = ([ul?)1<izn:

w(@tD) = prox®

Whj(q)(‘7v(q))(x ) (using Alg. 1)

end

The resulting Gibbs sampler is summarized in Algorithm 3.

Algorithm 3: Hybrid Gibbs sampler

1 Sample the noise variance o2 according to (5);

2 Sample the shape parameter o using MH with (6);
3 Sample the scale parameter 3 according to (7);

4 Sample the hidden label field z using (8) ;

5 Sample the TRF x using PP-ULA (12)-(13).

IV. NUMERICAL EXPERIMENTS
A. Experimental settings

Four experiments are implemented in Matlab. Simul and
Simu2 refer to simulated images with two and three regions,
respectively. Kidney denotes the tissue-mimicking phantom
from the Field II simulator [24]. The PSF for these simulations
is obtained with Field II using a 3.5 MHz linear probe. Finally,
Thyroid denotes a real RF image of thyroidal flux obtained in
vivo with a 7.8 MHz probe. The unknown PSF is identified
using the RF image of the cross section of a wire acquired
with the same probe. K is set to 3 for Kidney and Thyroid.

The test settings can be found in Table I. The TRF is
initialized using a pre-deconvolved image obtained with a
Wiener filter, while the segmentation is initialized by applying
a 7 x 7 median filter and the Otsu method [25] to the B-mode
of the initial TRF. Shape and scale parameters are randomly
selected in [0.5, 1.5], and [1, 200], respectively. The granularity
parameter 6 for the Potts model (4) is adjusted to ensure that
the percentage of isolated points in the segmentation, obtained
with a 3 x 3 median filter, is close to 0.05, 0.1, 0.8 and 0.2
for Simul, Simu2, Kidney and Thyroid, respectively.

B. Comparisons and evaluation metrics

We compare the proposed Algorithm 3 with the HMC
approach from [4]. We also provide the deconvolution results
obtained by a Wiener filter (Wnr), where the noise level
is estimated as in [26], and the segmentation results given
by the Otsu method [25] applied to Wnr (Otsu). PP-ULA

is used with v = 0.09 and ) an approximation to the
inverse of the Hessian of the differentiable term in (10) [27],
Q = o?(H"H + M,,)~', with A = 0.1 so that Q is well-
defined. When the true TRF z'* is available, the estimate z°
is evaluated by using the peak signal-to-noise ratio

PSNR = 10log,,(n max;(zt", 28%)?/||z™ — (?).

[

(14)

We also compute the contrast-to-noise ratio CNR = |y —
pal/(v1 + 12)Y/?, with the means (u,u2) and variances
(v1,v2) in two windows from different regions of the B-
mode image. The segmentation is evaluated according to the
percentage of correctly predicted labels, or overall accuracy
(OA). The minimum mean square error (MMSE) estimators
of all parameters in HMC and PP-ULA are computed after
the burn-in regime. Moreover, to evaluate the mixing property
of the Markov chain after convergence , we compute the mean
square jump (MSJ) per second, which is the ratio of the MSJ to
the time per iteration. The MSJ is obtained using 7" samples of
the TRF (zfo+!, ... zto+T) generated after the burn-in period,

1 T-1

st = (75 X

1/2
IIx“”t’—x““”“)II?) . (15

Simul Simu2 Kidney  Thyroid
Size 256X256 256x256 294x354 880x 196
lterations BUMin 4000 10000 7000 3000
Crations - mrotal 8000 20000 14000 6000
HMC 1h19min 4h32min 4h41min 2h50min
Time PP-ULA 13min 41min 46min 48min
Speed gain 6.2 6.7 6.1 3.5
HMC 140 22 155 0.5
MSJ (per ) pp_ypa 915 762 599 137
TABLE I

TEST SETTINGS, COMPUTATIONAL TIME AND MSJ PER S.

Fig. 2. First row: B-mode of RF image. Second to last row: B-mode of the
TRF: Wnr, HMC, PP-ULA. Left to right: Simul, Simu2, Kidney (blue boxes
indicate regions used to compute the CNR).



Fig. 3. B-mode of Thyroid. Left to right, top to bottom: RF image (blue boxes
indicate regions used to compute the CNR), TRF: Wnr, HMC, PP-ULA.

C. Results and discussion

The convergence speed of Algorithm 3 is empirically ob-
served in all experiments, as illustrated in Fig. 4. We also
display the results of the non-preconditioned P-ULA, for
which Q = I, and v = 1.9902/||H||*. P-ULA needs
more iterations and more time to converge than PP-ULA, and
it is also more biased, clearly emphasizing the benefits of
preconditioning in this example. From Table I, PP-ULA is up
to 6.7 times faster than HMC and has better mixing properties
as shown by the MSJ per second, while sampling correctly the
target distributions. As shown in Table II and Fig. 5, the model
parameters given by PP-ULA are close to the true ones. Visual
results from Figs. 2 and 3, and CNR values in Table III show
that the contrast obtained with HMC and PP-ULA is better
than with Wnr.

W0F 7 .
e
38F i, ;
36 ( P-ULA
——PP-ULA
34 ——HMC
0 2000 4000 6000 8000
Time (s)
8L
P-ULA
34f —PP-ULA
——HMC
32k ‘ ‘ :
0 5000 10000 15000
Time (s)

Fig. 4. PSNR along time. Dotted lines indicate the PSNR of the MMSE
estimator of the TRF after the burn-in regime. Top: Simul. Bottom: Simu2.

0.6 ——PP-
A 0.3 i PP-ULA

0.4

0.2

0.2 0.1

0 0

-2 -1 0 1 2 -10 0 10
Fig. 5. Simul, GGD distributions of regions 1 (left) and 2 (right).

Fig. 6. Segmentation. Top to bottom: Simul, Simu2, Kidney, Thyroid. Rows
1 and 2 left to right: ground-truth, Ostu, HMC, PP-ULA. Rows 3 and 4 left
to right: Ostu, HMC, PP-ULA. Main differences are circled in green.

The PSNR and CNR values obtained with PP-ULA are
equivalent or higher than both competitors on almost all test
images. Visual segmentation results are shown in Fig. 6, and
OA values can be found in Table III. For the simulated images,
more pixels are correctly labeled with PP-ULA than with
HMC or Otsu. Regarding Kidney and Thyroid, the segmenta-
tion based on the Potts model gives more homogeneous areas
than the one based on pixel intensities.

Simul Simu2

02 a1 B1 az B2 0% a1 B

True 0.013 1.5 1.0 0.60 1.0 33
HMC 0013 1.7 1.1 0.60 1.0 34
PP-ULA 0.013 1.4 09 062 1.1 35

az P2 az P

1.5 100 1.0 50 0.50 4.0
2.5 3642 1.1 100 0.54 5.2
2.1 1068 1.2 118 0.55 5.7

TABLE II
MMSE ESTIMATES OF THE NOISE VARIANCE AND GGD PARAMETERS.

Simul Simu2 Kidney Thyroid

PSNR OA CNR PSNR OA CNR PSNR CNR CNR

Wnr-Otsu ~ 37.1 994 126 354 938 097 27.6 0.66 0.80

HMC 40.0 99.7 149 364 98.6 159 295 1.11 1.20

PP-ULA  40.3 99.7 1.52 38.6 98.7 1.66 293 1.14 1.43
TABLE III

DECONVOLUTION AND SEGMENTATION RESULTS: PSNR, CNR AND OA.

V. CONCLUSION

This letter studied a new method based on a preconditioned
proximal unadjusted Langevin algorithm for the joint restora-
tion and segmentation of ultrasound images, which showed
faster convergence than an existing Hamiltonian Monte Carlo
algorithm. A direction for future work is to extend this
framework to a spatially variant, possibly unknown, PSF.
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