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We present an experimental demonstration as well as a theoretical model of an integrated circuit
designed for the manipulation of a microwave field down to the single-photon level. The device is
made of a superconducting resonator coupled to a transmission line via a second frequency-tunable
resonator. The tunable resonator can be used as a tunable coupler between the fixed resonator
and the transmission line. Moreover, the manipulation of the microwave field between the two
resonators is possible. In particular, we demonstrate the swapping of the field from one resonator
to the other by pulsing the frequency detuning between the two resonators. The behavior of the
system, which determines how the device can be operated, is analyzed as a function of one key
parameter of the system, the damping ratio of the coupled resonators. We show a good agreement
between experiments and simulations, realized by solving a set of coupled differential equations.

In quantum technology the interaction between quan-
tum states of light and various degrees of freedom of mat-
ter can be controlled in a variety of systems. Among
them, macroscopic superconducting circuits cooled to
millikelvin temperatures are developing as a platform
to manipulate microwave photons and artificial atoms.
They are easy to engineer because they are integrated
electrical circuits. This forms the field of circuit quan-
tum electrodynamics (circuit-QED)1,2.

Using electrical circuits for building quantum systems
allows for a precise design of Hamiltonian parameters
within a wide range3. Furthermore, some parameters can
also be made tunable in situ, for instance, the resonance
frequencies of resonators and the transition frequency of
artificial atoms, also known as quantum bits4–7.

It is also essential for many experiments and appli-
cations to have tunable couplings, or equivalently, life-
times or linewidths. Tunable couplings have already been
demonstrated between qubits8–13, between qubits and
resonators14–18, and between resonators19–21.

In this work we focus on the tunable coupling between
a resonator and a transmission line. This function is re-
quired in several types of applications. First, in quantum
communication22, it is envisioned that “flying” qubits are
sent over long distances in the form of photons23 propa-
gating between nodes acting as quantum memories and
processors. These nodes could be implemented as mi-
crowave resonators coupled to qubits or other types of
quantum systems. It has been shown that the trans-
fer efficiency can be increased if one can adjust the cou-
plings at both ends of the transmission chain24,25. Ad-
justing the coupling between the transmission line and
the terminating resonator to the temporal and spectral
properties of the incoming wave packet can result in
full absorption26, which can be viewed as an impedance
matching condition for the resonator27. Inversely, a res-
onator with tunable coupling can also be used to emit mi-
crowave photons contained in an arbitrary wave packet.
This has only been achieved with more complex schemes

so far28. Furthermore, it is becoming possible to simulate
complex quantum systems, such as many-body states of
condensed matter, using arrays of superconducting res-
onators and qubits. For this purpose, tunable couplings
are essential to implement arbitrary Hamiltonians. Even
more interestingly, dynamic processes can be studied if
the couplings can be tuned fast enough, on the timescale
of the processes under study.

Since resonators are either capacitively or inductively
coupled to transmission lines, a first approach to make
the coupling tunable is to use a tunable circuit element,
such as a tunable inductance, for instance a supercon-
ducting quantum interference device (SQUID)29. To al-
low for more complex manipulations of the microwave
signals, a second approach is based on a dual resonator
architecture. A high quality factor resonator, dedicated
to the storage of microwave radiation, which can be
viewed as a quantum node, is connected to a transmis-
sion line via a low quality factor resonator. This low-Q
resonator permits the fast transfer, storage or retrieval,
of the quantum information encoded in the microwave ra-
diation. It has already been shown how parametric pro-
cesses can be used for the coherent manipulation of the
microwave signals, either by coupling the two resonators
with a Josephson ring modulator30, a flux-driven Joseph-
son junction circuit31, or with a superconducting qubit32.
In our work, we use a similar dual resonator architecture,
but our approach for the coherent control is different. We
made the low-Q resonator frequency-tunable, and the res-
onators are simply capacitively coupled.

In a previous article, we demonstrated the storage of
microwaves in a superconducting resonator by switch-
ing on and off this tunable coupler33. We showed that
microwaves can be released from the storage resonator
through the frequency-tunable low-Q coupling resonator
at a varying rate. We presented a sample that was en-
gineered to show a high on/off coupling ratio. The goal
of the current article is to extend this work by present-
ing a generic model for this coupled-resonator circuit,
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valid in a large range of parameters and supported by
experimental data in good agreement with the theory.
We show that the behavior of each sample is governed
by a single parameter, a ratio between coupling rates,
which corresponds to the damping ratio of the coupled
resonator system. We present an experimental compar-
ison of two samples operating in two distinct regimes.
One of the sample corresponds to the results already pre-
sented in our previous work33. It is optimized for direct
addressing of the storage resonator, which is done in the
off-resonant coupling of the two resonators. For the sec-
ond sample, we show that the storage resonator can be
addressed through a swapping procedure exploiting the
resonant coupling of the two resonators.

I. SYSTEM AND MODEL

A. The measured system

The system under study is composed of two microwave
resonators (see Fig. 1). The resonators are coupled
through a coupling capacitance Cc, permitting the trans-
fer of energy between them. One of the resonators fea-
tures a tunable resonance frequency. This allows to con-
trol the energy exchange between the two resonators,
by changing their detuning. The frequency tunability
is based on a superconducting quantum interference de-
vice (SQUID). It behaves as a tunable, nonlinear, and
nondissipative inductance embedded in the resonator4,5.

The tunable resonator has been engineered so that its
range of reachable resonance frequency crosses the res-
onance frequency of the second resonator, which is con-
stant. In addition, the tunable resonator is also coupled
to a transmission line, which allows us to excite the sys-
tem and probe it through microwave reflectometry. It
will therefore be referred to as the coupling resonator,
or resonator B. The other resonator contains no SQUID
and thus has a fixed resonance frequency and a long life-
time. It is therefore suitable for microwave storage for
instance33, and will be referred to as the storage res-
onator, or resonator A.

B. Theoretical model

The theoretical model of the system is depicted in
Fig. 1(a). In the rotating wave approximation, valid be-
cause the coupling rate g between the resonators is much
smaller than the resonator resonance frequencies ωa and
ωb, the Hamiltonian of the coupled resonators is

Ĥ =h̄ωaâ
†â+ h̄ωbb̂

†b̂+ h̄g(âb̂† + â†b̂)

+ ih̄
√
κ
(
V ∗in(t)b̂− Vin(t)b̂†

)
, (1)

where â and b̂ are the field ladder operators for resonators
A and B, respectively, and Vin(t) the input field driving

κ g κiaκib
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Vout

ωb(Φ)

b†, b

ωa

a†, a
Cout Cc

Coupling resonator Storage resonator
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FIG. 1. (a) Model of the system under study. A storage res-
onator with frequency ωa/(2π) is coupled to a transmission
line via a coupling resonator with tunable frequency ωb/(2π).
(b) Optical microscope image of the corresponding supercon-
ducting integrated circuit (sample I).

the system. Note that the Hamiltonian may be time
dependent, as, in addition to the time-dependent drive,
the resonance frequency of resonator B ωb can be rapidly
tuned in the experiment.

The coupling resonator is capacitively coupled to a
transmission line, which makes the system open and dis-
sipative. In addition, both resonators have finite intrinsic
lifetimes, 1/κia and 1/κib. To describe the evolution of
the quantum state of the system, we use the Lindblad
master equation34–36, which gives the time evolution of
the density matrix ρ = ρa ⊗ ρb:

ρ̇ = − i
h̄

[
Ĥ, ρ

]
+ κD[b̂]ρ+ κiaD[â]ρ+ κibD[b̂]ρ, (2)

where D denotes the Lindblad superoperator, defined as
D[x̂]ρ = x̂ρx̂† − 1

2

{
x̂†x̂, ρ

}
. Solving this equation gives

the time evolution of the average photon number in each
resonator, which cannot be measured directly in the ex-
periment. For instance, for the storage resonator,

〈na〉 = 〈â†â〉 = Tr(â†âρ). (3)
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The classical response of the system to the input field
Vin is given by the equations of motion for the expectation

values of the resonator fields A = 〈â〉 and B = 〈b̂〉. They

are derived using Ȧ = Tr(âρ̇) and Ḃ = Tr(b̂ρ̇).

dA

dt
= −iωaA− igB −

κia
2
A, (4)

dB

dt
= −iωbB − igA−

κ

2
B − κib

2
B −√κVin. (5)

The output voltage, which can be measured on the trans-
mission line, is computed using the input-output relation

Vout = Vin +
√
κB. (6)

In practice, the system is driven at an angular fre-
quency ωd close to the resonator resonance frequencies.
It is therefore relevant to study its dynamics in a ro-
tating frame. Natural choices for the rotating frame
reference frequency are, for instance, the resonance fre-
quency of the storage resonator ωa, which is constant,
or the frequency of the drive field. Redefining the res-
onator and output fields with respect to a reference fre-
quency ωref by taking A = ae−iωreft, B = be−iωreft and
Vout = voute

−iωreft, and writing the driving field with re-
spect to the driving frequency Vin = vine

−iωdt, the equa-
tions of motion become

da

dt
= −i(ωa − ωref)a− igb−

κia
2
a, (7)

db

dt
= −i(ωb − ωref)b− iga−

κ

2
b− κib

2
b

−√κvine
−i(ωd−ωref)t. (8)

We performed simulations of the system by numeri-
cally solving either the differential equations of motion,
Eq. (7) and (8), or the Lindblad master equation, Eq. (2),
using the Python package QuTIP37,38 dedicated to the
study of open quantum systems. In practice, the complex
output voltage is measured through heterodyne demod-
ulation of the output signal, which gives its quadrature
components I and Q. They are defined as vout = I + iQ.
In order to directly reproduce the experimental data, the
reference frequency of the rotating frame ωref has to be
set to the frequency of the local oscillator (LO) used to
perform the demodulation (see Fig. 2). The calculated
output voltage is subsequently low-pass filtered, to ac-
count for the finite bandwidth of the antialiasing filter
preceding the sampling step in the digitizer. We used a
digital Butterworth filter with a cutoff at 90 MHz.

C. Microwave field oscillation

In order to get an insight to the free evolution of the
system, i.e., in absence of a driving field, it is useful
to separate the variables a and b in Eqs. (7) and (8).
We choose ωref = ωa. Neglecting the intrinsic losses

(κia, κib � κ, see Table I), this yields, for the storage
resonator field,

d2a

dt2
+ (

κ

2
+ i∆)

da

dt
+ g2a = 0. (9)

When the resonators are set on resonance, i.e., ∆ =
ωb − ωa = 0, the system behaves as a damped harmonic
oscillator characterized by the angular frequency g and
the damping ratio ξ = κ/(4g). The field in the storage
resonator oscillates in time, as the energy is periodically
transferred back and forth between the two resonators.
It also decays to the transmission line. The decay regime
depends on ξ. Note that ξ cannot be tuned in situ in the
experiment; it is a fixed property of each sample.

For an underdamped system (ξ < 1), which corre-
sponds to the experiments shown in this article, the decay
is slower than the oscillation, and

a(t) = e−
κ
4 t
(
α1e

ig
√

1−ξ2t + α2e
−ig
√

1−ξ2t
)
, (10)

where α1,2 are determined by the initial conditions. The
energy, which scales as |a|2, oscillates between the res-

onators at an angular frequency of 2g
√

1− ξ2. In this
strong coupling regime of the two resonators39, the effec-
tive coupling rate of the storage resonator to the trans-
mission line is κeff = κ/2. It is half of that of the coupling
resonator, because, due to the oscillation, the energy is
on average only half of the time in the coupling resonator
from which it is released to the transmission line. It is
only for a critically damped system (ξ = 1) that the en-
ergy is directly released from the storage resonator to
the transmission line at the rate κ/2 without oscillation.
For an overdamped system (ξ > 1), corresponding to a
weak coupling of the two resonators, the decay is more
complex, but it is eventually limited by the coupling rate

κeff = κ
2

(
1−

√
1− 1/ξ2

)
. For a given g, the fastest

release of the energy stored in the storage resonator is
achieved at the critical damping.

At nonzero detuning, the general solution of Eq. (9) is

a(t) = α1e
λ+t + α2e

λ−t. (11)

Again, α1,2 are determined from the initial conditions,
and

λ± = −1

2

(
1

2
κ+ i∆

)
± 1

2

√(
1

2
κ+ i∆

)2

− 4g2. (12)

The two resonance modes of the system are involved in
the release process, hence the two terms in the general
solution. The real part of λ± indicates the decay of the
field whereas their imaginary part corresponds to the field
oscillation.

In underdamped systems, the field oscillation between
the two resonators becomes faster when the detuning is
increased, but only a decreasing fraction of the energy is
transferred back and forth, so that the storage resonator
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is less and less coupled to the transmission line. The first
term of the solution is the most relevant when ∆ � g.
The effective coupling rate can be approximated to

κeff = −2 Re(λ+) ≈ κ g2

∆2 + 2g2
. (13)

II. DEVICES AND EXPERIMENTAL SETUP

A. Samples

The devices under study are superconducting copla-
nar waveguide resonators fabricated on the surface of a
silicon wafer. The microwave circuit is primarily made
of niobium. Only the SQUID, which is located in the
middle of the coupling resonator and enables it to be
tunable, is made of aluminum. The fabrication process,
which has already been described elsewhere33, was spe-
cially designed to obtain the longest possible intrinsic
lifetime for the resonators, with only two electron-beam
lithography steps.

Two samples with two distinct ξ have been studied.
The parameters of the model described in the previous
section corresponding to these samples are shown in Ta-
ble I. They have been extracted from the different exper-
iments we performed. Note that some results on sample
II have already been presented33.

B. Measurement setup

The measurement setup is displayed in Fig. 2. The
sample is kept below 25 mK in a dilution refrigerator,
wired with coaxial lines. The one-port setup at the sam-
ple input is transformed into a two-port measurement
setup using a circulator to route the microwave signals.
This allows one to properly attenuate the input signal,
which is necessary for keeping the sample cold and reach-
ing the few-photon level. The reflected signal is amplified
with a cold 4-8 GHz low-noise amplifier from Low Noise
Factory.

The input signal, with an RF frequency up to 6 GHz,
can be arbitrarily modulated both in phase and mag-
nitude with a vector signal generator. The output sig-
nal undergoes heterodyne demodulation. The resulting
quadratures I and Q are sampled at a maximum rate
of 200 Msample/s using a vector signal analyzer. Both
equipments are from Aeroflex and can be synchronously
triggered.

The flux in the SQUID loop, which determines the fre-
quency of the coupling resonator, is controlled both by a
coil located close to the chip for static biasing and by cur-
rent pulses applied on-chip. The stability of the system is
ensured by magnetic field shielding at low temperature.

FIG. 2. Schematics of the cryogenic microwave measurement
setup. The chip is located at the coldest stage of a dilution
refrigerator equipped with coaxial lines. The input of the de-
vice is probed with a reflectometry setup: a microwave signal
is routed to the device via a circulator and the reflected sig-
nal is amplified with low noise amplifiers, both at 4 K and
room temperature. The output signal is down-converted and
then numerically demodulated and sampled with a vector sig-
nal analyzer. The control port of the chip is driven with
an arbitrary waveform generator (AWG). The input lines are
equipped with attenuators and filters in order to prevent room
temperature thermal noise from heating the device. The out-
put line is equipped with a circulator acting as an isolator.

C. Characterization of the devices with continuous
wave spectroscopy

The resonance modes of the system are probed by an-
alyzing the reflection coefficient of the devices. Its mag-
nitude is shown for sample I in Fig. 3(b) as a function of
frequency and the magnetic flux, Φ, in the SQUID loop.
This experiment is done by measuring the transmission of
a signal between the two ports of the setup with a vector
network analyzer (VNA, not shown in the experimental
setup in Fig. 2). The reflection coefficient at the input
of the device is obtained from the raw measurement by
subtracting the part of the signal which comes from the
transmission of the coaxial lines and the microwave com-
ponents. This background is directly measured for half-
integer values of the flux quantum, for which the coupling
resonator is detuned away from the measurement band
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Sample ωa/2π ω0
b/2π γ EJ g/2π κ ξ κia κib

GHz GHz % meV MHz MHz MHz MHz

I 5.416 5.844 4.8 3.1 21.2 5.0 0.0094 0.40 0.125

II 5.186 5.810 8.4 2.0 18.3 280 0.61 0.054 1.8

TABLE I. Parameters for the two samples under study: ωa resonance frequency of the storage resonator, ω0
b bare resonance

frequency of the coupling resonator, γ inductive ratio for the coupling resonator, EJ maximum Josephson energy of the SQUID,
g coupling between the resonators, κ coupling rate of the coupling resonator to the transmission line, ξ damping ratio, κia

dissipation rate of the storage resonator, and κib dissipation rate of the coupling resonator.

and the storage resonator is strongly undercoupled and
therefore not seen in the measurement.

1. Resonance mode frequency tuning

Two resonance modes can be seen for each value of the
flux. The resonance frequency of the coupling resonator
evolves periodically with the flux, because of the peri-
odic modulation of the SQUID inductance and critical
current. It follows that6

ωb(Φ) =
ω0
b

1 + γ∣∣∣cos
(
π Φ

Φ0

)∣∣∣
, (14)

where Φ0 = h/2e denotes the flux quantum, ω0
b is its bare

resonance frequency (i.e., without the SQUID), and γ is
the inductive participation ratio, defined as the ratio of
the SQUID inductance at zero flux over the inductance
of the coupling resonator. The eigenvalues of the Hamil-
tonian of the system give the resonance frequencies of the
two observed resonance modes:

ω±(Φ) =
1

2
(ωa + ωb(Φ))±

√
g2 +

(
∆(Φ)

2

)2

. (15)

They differ from the uncoupled resonance frequencies of
the two resonators when they are tuned in resonance,
at around ±0.3 Φ0 in sample I for instance. A positive
detuning is obtained for fluxes around integer number
of flux quanta, whereas a negative detuning is obtained
around half-integer multiples of flux quanta.

In underdamped samples, the splitting between the
two modes (2g) is larger than their widths, which is of the
order of κ/2 when the two resonators are on resonance.
Therefore, the two modes can be treated separately, as if
each mode corresponds to a single resonator mode, with
a resonance angular frequency ωr, an effective coupling
rate κe, and an effective loss rate κi. The equations of
motion (Eqs. (4) and (5)) and the input-output relation
(Eq. (6)) can be adapted for such a single resonator, and
their resolution in the frequency domain gives the reflec-
tion coefficient

Γ =
Vout

Vin
=
κi − κe − 2i(ω − ωr)
κi + κe − 2i(ω − ωr)

. (16)
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FIG. 3. Spectroscopy measurements on sample I. (a) Mag-
nitude and phase of the reflection coefficient for Φ = 0.3 Φ0,
i.e., when the two resonators are on resonance. Two reso-
nance lines are observed, corresponding to the coupled modes
of the two resonators. They are fitted separately with the
model given by Eq. (16). (b) Magnitude of the reflection co-
efficient as a function of the frequency and the flux in the
SQUID loop. The frequency of the two resonance lines evolve
periodically with the flux. The dashed line indicates the cut
shown in panel (a).

Figure 3(a) shows the magnitude and the phase of the re-
flection coefficient at zero detuning. The two resonance
modes are fitted separately with Eq. (16). Note that the
phase measured with the VNA follows the electrical en-
gineering rather than the physics convention, thus the
substitution i ↔ −j had to be done in Eq. (16). Re-
peating the fitting procedure for every value of the flux
allowed us to determine the evolution of the mode reso-
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FIG. 4. Effective coupling time of the storage resonator as a
function of the detuning for both samples. The data points
come from the fit with Eq. (16) of the reflection coefficient.
The plain lines show the model given by Eq. (13) without
adjustable parameters. The horizontal dashed lines indicate
the intrinsic lifetime 1/κia of the storage resonators. In both
samples the storage resonator can be set to the over- or under-
coupled regimes.

nance frequencies with the flux, as well as their effective
coupling rate and loss rate.

The evolution of the extracted resonance frequencies
is fitted with Eqs. (14) and (15). This gave us ωa, ω0

b ,
γ, and g for both samples. These values are shown in
Table I. This also gave the evolution of the detuning ∆
with the flux.

2. Resonance mode linewidth tuning

In addition, the fit of the reflection coefficient gives
access to the intrinsic dissipation rate and the coupling
rate to the transmission line for each of the resonance
modes. Figure 4 shows that the effective coupling rate
of the storage resonator, plotted against the detuning
for every value of the flux, can be varied over several
orders of magnitude for both samples. Furthermore, this
modulation allows to put the storage resonator in the
overcoupled (κeff > κia) or undercoupled (κeff < κia)
regime at will. For both samples, the evolution of the
effective coupling rate with the detuning is well fitted by
Eq. (13), at least when the detuning is not too negative.
The model is less accurate at large negative detuning.

Clearly, much larger coupling rates can be achieved
with sample II because of a larger κ, while the same
decoupling as in sample I can be obtained, which makes
it very suitable for storage and release applications33.

D. Comparison of the behavior of the devices in
the resonant coupling regime with time domain

spectroscopy

The continuous wave spectroscopy measurements
shown in Fig. 4 suggest that the release rate of mi-

crowaves stored in the storage resonator can be con-
trolled. To study this, we performed a free decay ex-
periment. In this experiment, the digitizer performing
the output signal heterodyne demodulation is set to the
frequency of the storage resonator.

Figure 5 shows a comparison of the behavior of samples
I (Fig. 5(a)) and II (Fig. 5(b)). Initially, in both cases,
the storage resonator is loaded and the coupling resonator
is detuned. At t = 0, the detuning is suddenly reduced.
The traces shown corresponds to different final detunings.
Overall, both samples show similar behavior: the smaller
the detuning the faster the release of the stored energy is.
A noticeable difference is that a much faster release can
be achieved with sample II, which simply comes from its
larger coupling κ between the coupling resonator and the
transmission line. This can also be seen in Fig. 4 through
the larger range of the effective coupling κeff.

The interesting difference lies in the beating that ap-
pears for sample I when the detuning is decreased to
values of the order of g or smaller. This occurs because
ξ � 1 for this sample. Many oscillations of the field take
place during the release, thus both coupled modes of the
system get populated and decay to the transmission line.
The beating of the magnitude of the output signal origi-
nates from the interference of their two frequencies. The
faster beating is observed at zero detuning, where the
difference between the frequency of the coupled modes is
the smallest. The beating is not observed at too large
detunings because one of the two modes is out of the
bandwidth of the digitizer. In other words, in the time
domain, the beating is faster than the sampling time in
this case.

This effect is better seen on the quadratures of the
output signal, which clearly show the superposition of
two oscillations at two different frequencies. This can be
proven by fitting the quadratures with a two-component
model,

Vout(t) = I(t) + iQ(t)

= A1e
−t/τ1e−i(ω1t+ϕ1) +A2e

−t/τ2e−i(ω2t+ϕ2),
(17)

as suggested by Eq. (11). This has been done for all
traces, and the excellent agreement is shown in Fig. 5(c)
for ∆ = 41 MHz.

III. MICROWAVE SWAPPING

A. Principle

The two-resonator configuration under consideration
allows to tune the effective coupling of the storage res-
onator to the transmission line. This gives the ability
to excite the storage resonator from a resonant incom-
ing wave, at a tunable rate. This can be done only at a
moderate detuning between the two resonators. The de-
tuning must be larger than g so that the field builds up
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FIG. 5. Direct release of microwaves from the storage resonator. (a) Output voltage measured for sample I at several detunings.
As the detuning is reduced, the decay becomes faster. Beating is observed for low detunings. (b) Same experiment for sample
II. (c) Magnitude and quadrature signals for sample I for a detuning of 41 MHz at −0.266 Φ0. Blue line: fit; black line and
dots: measurement. The model contains two decaying and oscillating components (see text).

only in the storage resonator. It should not be too large,
especially when it is negative, as the resonator should
be in the overcoupled regime for the energy transfer to
be efficient (see Fig. 4). The range of suitable detun-
ing is nevertheless rather large, in particular for sample
II. However, in this mode, the coupling rate can only be
smaller than κ/2, which limits the energy transfer speed.

We now present a different scheme, which utilizes the
coupling resonator for transferring microwaves to the
storage resonator. Whereas this scheme is only possible
in samples with ξ � 1, typically sample I, it allows both
faster energy transfer times and incoming waves with var-
ious frequencies (detuned from the storage resonator).

The transfer is realized in two steps (see Fig. 6). Start-
ing with a large detuning, the coupling resonator is first
excited by a resonant incoming microwave pulse with
a square envelope. Then, when the incoming pulse is
turned off, we apply a quick swap operation to transfer
the field from the coupling resonator to the storage res-
onator. This operation is orders of magnitude faster than
the decay rate of the coupling resonator, thus a negligible
amount of energy is lost instead of being transferred.

The swap operation is realized by bringing the two res-
onators on resonance. The theory developed in Sec. I C
predicts that a periodic energy transfer between the two
resonators should occur. Letting the resonators on reso-
nance for a half integer number of transfer cycles results
in a net energy transfer from one resonator to the other.

B. Experimental demonstration

In practice, a 5-µs-long square microwave pulse at
5.580 GHz is applied at the input of the experimental
setup. The power at the input capacitor of sample I is
estimated to be -139 dBm, which corresponds to 17 pho-

tons in the pulse. This power has been chosen low enough
to ensure a linear response of the coupling resonator. At
the end of the pulse, the detuning is quickly decreased,
kept at zero for 12 ns, and then brought back to its initial
value. After a delay of 2µs (storage time), the same de-
tuning pulse is repeated. The output signal, measured af-
ter heterodyne demodulation and sampling at 200 MS/s,
is shown in Fig. 6(c). Its magnitude, its phase, and its
quadratures are shown. In this experiment, the digitizer
performing the output signal heterodyne demodulation is
set to the frequency of the coupling resonator, in contrast
with the time domain spectroscopy experiment described
in the previous section, where it was set to the frequency
of the storage resonator.

The initial rising pattern corresponds to the re-
sponse of the coupling resonator to the input microwave
pulse. Since only a rising exponential pulse can be fully
absorbed26, a part of the pulse is reflected. Its exact
shape depends on the coupling regime (κ/κib) of this res-
onator. At t = 5µs, the signal goes quickly towards zero,
which proves that most of the energy is removed from
the coupling resonator after the detuning pulse. The
low-amplitude exponential decay corresponds to the re-
lease to the transmission line of energy swapped from
the storage resonator, which got excited due to an insuf-
ficient detuning during the loading step. What happens
when the detuning pulse is applied cannot be probed with
the experiment, first because it is too quick to be seen
with the detection sampling rate, and more importantly
because both resonators are detuned away from the de-
tection bandwidth during the pulse. When the second
detuning pulse is applied, the signal shows a fast rise fol-
lowed by an exponential decay, which proves that this
pulse transfers back some energy stored in the storage
resonator to the coupling resonator.

The red line in Fig. 6(c) corresponds to a simulation of
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FIG. 6. Capture and release through field swapping for sample I. (a) Principle of the experiment. A microwave pulse on
resonance with the initially detuned (zero flux) coupling resonator is sent to the input port. The detuning is then quickly
reduced to zero, leading to a transfer (swapping) of the energy to the storage resonator. After a delay, the swap is repeated,
such that the energy is transferred to the coupling resonator from which the microwaves can leak out to the transmission line.
(b) Measurement sequence showing the RF input and the detuning. Note that the detuning pulses are 10 times shorter than
sketched, for clarity reasons. (c) Magnitude, phase and quadratures of the measured output voltage for an excitation at the
input of the resonator of -139 dBm. Red lines: simulation. The phase of the measured trace, which has a random reference, has
been compensated to match the phase obtained with the simulation. (d) Same experiment and simulation for an excitation of
-119 dBm, driving the coupling resonator to a nonlinear regime. The signal power is a hundred times higher, hence the reduced
noise. (e) Color map of the output voltage traces for different duration of the swapping pulses. The swap is effective only for
certain pulse widths, where the signal is minimum after the first swap pulse, and maximum after the second pulse. For other
values, the energy transfer is only partial.

the experiment. Equations (7) and (8) are solved using
the parameters given in Table I, which were extracted
from the continuous wave measurement. The result is
superimposed on the measured traces. Only the ampli-
tude of the traces has manually been adjusted, without
any physical significance since the system is in the linear
regime. The intrinsic loss rate of the coupling resonator,
which is difficult to probe in a spectroscopic experiment

because it is much lower than its coupling rate, has also
been adjusted to obtain the right shape for the output
signal in the loading step. The good agreement of the
recovered amplitude (after the second detuning pulse)
means that the losses, in particular in the storage res-
onator, are well described by our model. The recovered
signal phase is extremely sensitive to the delay between
the two pulses, which therefore has been adjusted to ob-



9

tain the proper distribution of the signal on I and Q. The
good agreement of the simulation gives us access to new
information which cannot be probed in the experiment,
for instance the resonator populations.

Figure 6(d) shows the same experiment performed with
an input power of -119 dBm, corresponding to 1700 pho-
tons in the pulse. This much higher power drives the
coupling resonator to a nonlinear regime, of Duffing type,
which arises from the intrinsic nonlinearity of the Joseph-
son junctions of the SQUID. The response to the mi-
crowave pulse now shows an oscillating pattern. This
behavior can be simulated by adding a nonlinear, cubic
term −ib|b|2 to Eq. (8)40. The slight shift of the non-
linear resonator frequency has been accounted for in the
simulation, which explains the winding of the phase in
the release step.

Figure 6(e) shows that the duration of the detuning
pulse must be chosen very precisely. Each horizontal
trace corresponds to the output trace of an experiment
similar to the one shown in Fig. 6(d), but performed with
a variable detuning pulse width, ranging from 0 ns (no
detuning pulse) to 150 ns. Note that the delay between
the two pulses is only 1µs. We observe that the de-
tuning pulse alternatively succeeds and fails to transfer
the energy between the resonators. This proves that the
mechanism of the energy transfer is a coherent oscillation
of the field between the resonators. Therefore, when the
pulse duration is a full period of this oscillation, the en-
ergy simply ends up in the resonator where it was located
before the swap pulse. On the other hand, a half-integer
number of periods results in swapping the field between
the coupling resonator and the storage resonator. The
behavior of the output voltage at the second detuning
pulse is easily understood: when the first pulse keeps the
energy into the coupling resonator, it is released to the
transmission line directly after, and thus no output signal
is observed when the second pulse is applied.

This experiment allows us to determine the optimal
detuning pulse width, which is 12 ± 1 ns. This is in
excellent agreement with the predicted value, given by
2π/4g ≈ 11.8 ns.

IV. CONCLUSION

We designed, fabricated, and studied superconducting
microwave circuits in which we coupled a superconduct-
ing resonator to a transmission line through a frequency-
tunable resonator. The detuning between these two res-
onators can be controlled, which enables one to tune the
effective coupling of the fixed storage resonator to the
transmission line. Moreover, the additional resonance
mode introduced by the coupling resonator can get occu-
pied when the two resonators are brought close to reso-
nance. Controlling the detuning therefore also enables

the coherent manipulation of microwaves between the
two coupled resonators.

The behavior of the system results from the interplay
between the oscillation of the field between the coupled
resonators and its decay to the transmission line. It de-
pends on a single dimensionless parameter ξ which is the
damping ratio of the field oscillation. This parameter
can be easily engineered when the circuit is designed by
adjusting the coupling capacitances.

This microwave oscillation can be used for catching or
releasing microwaves to the transmission line, exploiting
the resonant coupling of the two resonators. For samples
where ξ � 1, we showed an efficient strategy for storing
microwaves in the system, first loading them into the cou-
pling resonator and then swapping them to the storage
resonator. The latter is done by accurately controlling
the detuning in time. This strategy allows to catch or re-
lease microwaves within a large range of frequencies since
the coupling resonator is tunable, while they are stored
at a fixed frequency.

In contrast, the off-resonant coupling of the two res-
onators allows to release (or catch) microwaves only at
the frequency of the storage resonator, but with an ef-
fective coupling rate which can be tuned. The tuning
range is especially large when ξ is not too small. For
ξ � 1, we showed that the two modes of the system are
involved in the release process. This could be useful for
creating states of the field with a quantum superposition
of frequencies.

Numerical simulations of the system showed excellent
agreement with the experimental data, demonstrating
proper modeling of the system. Whereas at low power,
close to the single photon level, linear equations could
be used, the modeling is also working at higher photon
level by introducing a nonlinear term to account for the
nonlinear behavior of the coupling resonator originating
from the nonlinearity of the SQUID.

Although we performed experiments with classical sig-
nals, it is known that superconducting circuits are suit-
able for the manipulation of non-classical states of the
field41. It is likely that the coherent microwaves manip-
ulation which we demonstrated can also be performed
with such non-classical states, for instance single pho-
tons. The devices described in this article could therefore
be implemented as a part of a larger quantum circuit.
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