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Purpose: Segmentation of pulmonary nodules is critical for the analysis of nodules

and lung cancer diagnosis. We present a novel framework of segmentation for various10

types of nodules using convolutional neural networks (CNNs).

15

20

Methods: The proposed framework is composed of two major parts. The first part is 

to increase the variety of samples and build a more balanced dataset. A conditional 

generative adversarial network (cGAN) is employed to produce synthetic CT images. 

Semantic labels are generated to impart spatial contextual knowledge to the network. 

Nine attribute scoring labels are combined as well to preserve nodule features. To 

refine the realism of synthesized samples, reconstruction error loss is introduced into 

cGAN. The second part is to train a nodule segmentation network on the extended 

dataset. We build a 3D CNN model that exploits heterogeneous maps including edge 

maps and local binary pattern maps. The incorporation of these maps informs the 

model of texture patterns and boundary information of nodules, which assists high-

level feature learning for segmentation. Residual unit, which learns to reduce residual 

error, is adopted to accelerate training and improve accuracy.

Results: Validation on LIDC-IDRI dataset demonstrates that the generated sam-

ples are realistic. The mean squared error and average cosine similarity be-25

tween real and synthesized samples are 1.55 × 10−2 and 0.9534, respectively. The

Dice coefficient, positive predicted value, sensitivity, and accuracy are respectively

0.8483, 0.8895, 0.8511, 0.9904 for the segmentation results.

Conclusions: The proposed 3D CNN segmentation framework, based on the use of

synthesized samples and multiple maps with residual learning, achieves more accurate30

nodule segmentation compared to existing state-of-the-art methods. The proposed

CT image synthesis method can not only output samples close to real images but

also allow for stochastic variation in image diversity.

Keywords: pulmonary nodule segmentation, computer-aided diagnosis, generative

adversarial networks, convolutional neural networks.35
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I. INTRODUCTION

Pulmonary cancer has been one of the leading cancers in both men and women and

annually causes 1.3 million deaths worldwide1. Although the overall 5-year survival rate is

only 18%, if early diagnosis and treatment are put into effect timely, the patients’ chances

of survival can be greatly increased2. Pulmonary nodules are small masses in lung and often40

viewed as an early indication of cancer. The wide-spread use of computer tomography (CT)

helps radiologists make accurate diagnosis of nodules. However, due to the high demand for

CT scanning and similarity of nodules to lung tissue (e.g., blood vessels and bronchi), it may

take radiologists long reading time to analyze suspicious lesions. Therefore, computer-aided

diagnosis (CAD) systems are developed to improve doctors’ reading efficiency.45

Many current CAD systems focus on the detection of pulmonary nodules in CT3–9. These

CAD systems process CT images and predict the coordinates of bounding boxes that contain

suspicious nodules. However, bounding box alone is not sufficient. In clinical practice,

radiologists need to measure volumetric changes of nodules to estimate their malignancy

likelihood effectively10–13, which requires manual delineation of nodules’ boundaries. The50

pixel-level manual segmentation by radiologists is time-consuming since nodules differ in

size (diameter ranging from 3 to 30 mm), shape, brightness, and compactness6. Therefore,

it is imperative to develop CAD systems for accurate and robust nodule segmentation.

The main difficulty in nodule segmentation is to design an algorithm that adapts to both

internal texture and external surroundings of pulmonary nodules. According to the variation55

in internal texture characteristics, lung nodules can be classified into the categories: solid,

part-solid, and ground glass opacity (GGO). The solid nodules exhibit explicit shapes and

margins while GGO nodules are of low contrast and have fuzzy boundaries. The part-solid

nodules fall in between. Pulmonary nodules can also be classified into the categories: well-

circumscribed, juxta-vascular, and juxta-pleural. The well-circumscribed nodules stay inside60

the lung alone. The juxta-vascular nodules and the juxta-pleural nodules connect vascular

structures and pleural surfaces, respectively. Typical cases for each category are shown in

Fig. 1.

In the past, several methods have been proposed to mainly segment on solid nodules14–17.

65 Dehmeshki et al.14 employed a 3D region growing method for user-interactive segmentation. 

Their method performs a sphericity-oriented contrast region growing on the fuzzy connec-
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Fig. 1 Typical cases for each nodule type. First row: Nodules are classified by internal texture.

(a) GGO; (b) part-solid; (c) solid. Second row: Nodules are classified by external surroundings.

(d) well-circumscribed; (e) juxta-vascular; (f) juxta-pleural.

tivity map of the target object. It combines distance and intensity information as growing

conditions. Diciotti et al.15 developed an automated method to refine initial rough segmen-

tation results of small juxta-vascular solid nodules. The rough segmentation is corrected

by 3D local shape analysis, which removes vessel attachments with nodule boundaries pre-70

served. GGO nodules are not considered in their work. Reeves et al.16 designed an iterative

method to separate a nodule from the pleural surface using plane fitting technique. Adaptive

thresholding is then applied to adjust segmentation. Wang, Engelmann, and Li17 proposed

a segmentation method that transforms 3D volume of interest (VOI) into 2D images using

a spiral-scanning technique. The optimal outlines of nodules in 2D images are delineated by75

dynamic programming method. Then, they are transformed back to 3D images for surface

reconstruction.

Few methods were developed for segmentation of all solid, part-solid, and GGO nodules18–20.

Kubota et al.18 proposed a general segmentation method. It combines morphological opera-

tion and convexity models to segment on juxta-vascular and juxta-pleural nodules without80

separating lung walls. Qiang et al.19 employed a scheme that utilizes freehand sketch analy-

sis. Nodules are automatically segmented with an improved shape break-and-repair strategy. 

Mukhopadhyay20 adopted a two-step segmentation method. It first categorizes nodules by 

internal texture. Then, vascular structures and pleural surfaces are removed. The method

was evaluated on LIDC-IDRI public database21.85

With the development of convolutional neural networks (CNNs)22–24, researchers tended

to employ CNNs for segmentation in an end-to-end manner25–27. However, only one method

is reported on adopting CNNs for nodule segmentation. Wu et al.28 developed a 3D CNN
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model for segmentation of pulmonary nodules from VOI. They evaluated the method on

LIDC-IDRI dataset and achieved Dice coefficient of 0.7405.90

Despite the fact that there exists an interest in designing CAD systems based on deep

learning techniques, the performance of these systems is limited by the availability of large

labeled datasets. Medical data are not easy to access due to privacy issues. In addition, it is

laboursome for doctors to collect, organize, and annotate them, making the size of dataset

restricted. Motivated by recent development of generative adversarial networks (GAN)29–34,95

we believe synthetic image generation may be a good choice in the face of the underlying 

problem of imbalanced and limited data. In order to build a more balanced and diverse 

dataset, we capitalize on generating nodule CT images through adversarial networks, which 

is not considered in previously reported works.

In this paper, we propose a CNN-based framework for pulmonary nodule segmentation.100

By adopting adversarial networks, synthetic samples are generated to achieve a more bal-

anced training dataset. With interpretable feature maps incorporated and residual learning 

strategy introduced, the segmentation model performs robustly on all kinds of nodules with-out 

radiologists’ manual intervention. The main contributions are as follows: (1) We employ

105 a conditional GAN that generates nodule CT images to extend the LIDC-IDRI dataset. 

Since original annotation is only the boundary of each nodule, we design a method to obtain 

ten-channel semantic labels of nodule patches. These labels not only contain contextual 

information but also represent nodules’ semantic attributes. Based on semantic labels, syn-

thetic samples are generated through adversarial networks. The L2 reconstruction error

110 loss is introduced into cGAN to increase the realism of generated samples. The imbalanced data 

problem is alleviated by such expansion of dataset, which prevents overfitting for the training of 

segmentation model. Hence, the performance of our segmentation method gets improved. (2) We 

propose a 3D CNN model that accurately segments pulmonary nodules. To generate 

segmentation masks, a 3D U-Net35 similar network is exploited. Multiple hetero- 115 geneous maps, 

including edge maps and texture feature maps, are introduced as inputs and leveraged by the 

CNN model to learn high-level features. For edge maps, we apply Canny operator36 and Sobel 

operator37 to detect the edges of nodule images, which lay a foundation for the task of 

segmentation. Local binary patterns (LBP)38 are chosen to capture spatial structure of nodules’ 

textures. Since there exists a great difference in textures between

120 solid, part-solid, and GGO nodules, these texture feature maps are considered informative
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for the network to generate accurate segmentation results for each kind of nodule. The 3D 

architecture of our model aims at better utilizing volumetric knowledge of 3D CT images. 

Besides, residual learning is employed to resolve vanishing gradient problem. It promotes 

effective feature learning and accelerates training process. (3) The proposed CNN-based

segmentation framework is evaluated on the public LIDC-IDRI dataset.125

II. MATERIALS

The public LIDC-IDRI dataset is used to generate synthetic nodule images and validate

the proposed segmentation method. The dataset contains 1010 patients’ CT scans. Each CT

scan was reviewed by four experienced radiologists through a two-stage process: blinded and

130 unblinded reading. In the blinded phase, each radiologist reviewed and marked each CT scan 

independently. In the unblinded phase, with three other radiologists’ marks provided, each 

radiologist modified the original annotations to improve the quality of ground-truth labels. 

Nodules, of which the diameters are larger than 3 mm, are annotated with the boundaries 

and nine semantic attributes of subtlety, internal structure, margin, calcification, sphericity,

lobulation, spiculation, texture, and malignancy. In our experiments, we exclude CT scans135

whose slice thickness is greater than 2.5 mm in consideration of image quality. Hence, there

are 888 CT scans with 1182 nodules in total. The distributions of these nodules are listed in

Table I in terms of texture and size. For each nodule, the rating scores of its attributes are

computed as the average of ratings from the four radiologists. The definition of attributes’

scoring can be found in Table II. The scores of internal structure and calcification reflect140

corresponding classes while other feature scores represent sequential degrees. First, the 

internal area inside each nodule’s boundary is filled to obtain its ground-truth label. For each 

CT slice, the Hounsfield unit (HU) is clipped in the range of [-1200 HU, 600 HU]. Then, all 

slices are normalized to [0, 255] and resampled to the same spacing of 1 × 1 × 1 mm.

VOI cubes containing nodules are cropped from slices based on their coordinates and the145

cropped size is 64× 64× 64 pixels.
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Table I Distributions of the 1182 pulmonary nodules for experiments.

Category No. of nodules

Texture

Solid 927

Part-solid 188

GGO 67

Diameter

< 6 mm 38

6 ∼ 10 mm 424

> 10 mm 720

In total 1182

Table II Definition of scoring for each nodule attribute.

Attribute
Scoring

1 2 3 4 5 6

Subtlety Extreme subtlety Obvious \
Internal Structure Soft Fluid Fat Air \ \

Calcification Popcorn Luminated Solid Non-central Central Absent

Sphericity Linear Ovoid Round \
Margin Poorly defined Sharp \

Lobulation None Marked \
Spiculation None Marked \

Texture GGO Part-solid Solid \

Malignancy
Highly

unlikely

Moderately

unlikely

Indeter-

minate

Moderately

suspicious

Highly

suspicious
\

III. METHODS

The developed pulmonary nodule segmentation framework is composed of two parts (Fig.

2): (1) Synthetic image generation and (2) 3D CNN-based segmentation. For the first part,

adversarial networks are adopted to enhance the diversity of nodule samples and mitigate150

the problem of imbalanced and limited data. The second part is designed to segment all

kinds of nodules from VOI using a 3D CNN model. The details of the proposed framework

is presented as follows.

Nodule
CT

VOI

Synthetic
image

generation

3D CNN-based 
segmentation 

3D binary 
mask of 
nodule

Fig. 2 An overview of the proposed pulmonary nodule segmentation framework. Synthetic nodule

images are first generated. Then, both the original and synthesized images are used to train the

segmentation model. The segmentation results are 3D binary masks of nodule VOI.
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III.A. Synthetic image generation

As can be observed in Table I, the LIDC dataset is imbalanced in terms of nodule’s155

texture and size. The number of solid nodules is three times as many as that of the rest. Large 

nodules constitute a great proportion of all nodules. Besides, GGO nodules and small nodules 

are so limited in quantity that they are easily overwhelmed by other nodules. Con-sequently, 

the segmentation model may suffer poor performance on the minority categories

160 of nodules if trained on such dataset. To tackle this problem, synthetic image generation

then appears as an interesting solution. To do that, slices that contain nodules are first 

selected from all cropped VOI cubes. A technique of transforming ground-truth labels into 

ten-channel semantic labels is then designed to introduce abundant contextual information 

about nodules. Finally, a conditional generative model is employed to translate semantic

labels into realistic images.165

III.A.1. Semantic label generation

The ground-truth labels from LIDC-IDRI dataset only describe shape, size, and attributes

of nodules. These labels are sufficient for the task of nodule segmentation, but not for sam-

ple synthesis. It is difficult for generative adversarial networks to produce authentic images

if only information about nodules is provided. The semantic knowledge of nodules’ sur-170

roundings is of great importance since it depicts external attachments and nodules’ relative

position in thoracic cavity. For example, two nodules may have similar boundaries but one is

attached to pleural surface and the other stays alone. Hence, in order to enable the network

to learn from nodules’ contextual information, semantic labels are generated as stated in

the following. First, slices are thresholded to extract all components with high intensity.175

The thresholding value is determined by the category of nodule’s internal texture. For GGO

nodules whose scoring of texture is lower than three, the grayscale value of 60 is chosen. For

part-solid and solid nodules, 70 is set as threshold value. These two values are calculated

based on the studies of nodule’s density distribution in CT39,40 and our clipping window of

Hounsfield unit. Secondly, a disk-shape structuring element with radius of one is adopted180

for morphological opening. Each slice is opened to remove tiny objects and smooth image

since only obvious parenchymal structures, including large vessels and pleural surfaces, are
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considered for labeling. Then, connect component analysis is employed to differentiate be-

tween vascular structures and pleural surfaces. For each connected component, if its area is

larger than 640 or if it intersects at least two borders of image with a minimum area of 32,185

it is labeled as pleural surface with a value of 3. Other components are labeled as vascular

structures with a value of 2. The ground-truth label of nodule is set as 1. This generated

label is not accurate enough to directly train a semantic segmentation model, but it provides

adequate nodule’s surrounding knowledge for image synthesis.

In addition, nine semantic attributes are introduced to describe nodules in more details.190

These features represent nodule’s internal variation of intensity and shape, and are closely

related to diagnosis. For each nodule, nine original binary ground-truth labels are multiplied

with its nine attribute scorings respectively. Each label corresponds to one attribute scoring.

Then, all nine attribute labels and one semantic label are concatenated together to form a

ten-channel image as the input of cGAN. The input size is 10× 64× 64 and the process of195

label generation is shown in Fig. 3.

10x64x64

Scoring

value

(a) (b) (c) (d)

Fig. 3 The process of generating ten-channel labels. (a) CT image of nodule; (b) Generated

semantic label containing a nodule, pleural surfaces, and vascular structures; (c) Each attribute’s

scoring value is multiplied with a binary ground-truth label; (d) The semantic label and nine

attribute labels are concatenated as an input image with ten channels.

III.A.2. Conditional generative adversarial network

The initially proposed GAN29 learns to generate samples from the random noise vector.

The noise z is passed explicitly into the generator as input. Different from the original

200 GAN, the random noise z of cGAN30 is introduced into the generator during the process

of generating samples. The cGAN maps z to the realistic CT image y in the conditional setting 

of a ten-channel semantic label x. The training of cGAN involves gaming between the 

generator model G and the discriminator model D. The objective function of the original 

cGAN30 is defined as:
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LcGAN = Ex,y∼pdata(x,y)[logD(y|x)] + Ex∼pdata(x),z∼pz(z)[log(1−D(G(z|x)|x))],

G,D = arg min
G

max
D
LcGAN ,

(1)

where pz and pdata here denote the prior noise distribution and the real nodule data distri-205

bution, respectively. G tries to capture the nodule images’ distribution with the condition of

label x and its generated sample is G(z|x). D estimates the probability that the current pair

is real nodule data pair (x, y) rather than synthetic data pair (x,G(z|x)). G is trained by

minimizing such adversarial loss while D by maximizing it. It is noted that G is optimized

to output images that are difficult for D to distinguish from real ones. To directly guide210

G to produce samples that are similar to realistic images, we introduce L2 reconstruction

error loss to the training of generator as the following:

LG = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(z|x)‖22], (2)

where the real nodule data y serve as the ground-truth for G(z|x). Such L2 loss function

penalizes the model to explicitly reduce the difference between real CT images and synthetic

images. The modified objective function is given by:215

G,D = arg min
G

max
D
LcGAN + λLG, (3)

where λ is a weight balancing these two terms. We set λ = 100 in the present study. The 

adversarial training process is illustrated in Fig. 4. Note that the noise here, to a certain 

degree, can be viewed as an implicit input.

The architecture of our cGAN is depicted in Fig. 5. The 2D U-Net structure is used as

a backbone to build a generative model, which generates synthetic images in an encoder-220

decoder fashion with skip paths. For the contracting path, instead of max-pooling layer

used in the original U-Net26, strided convolution layer is adopted to downsample the im-

age, followed by a batch normalization (BN) layer and a leaky rectified linear unit (ReLU)

layer. For the expansive path, we employ transposed convolution to upsample feature maps
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G

D 0/1

Synthetic pair
or

real pairNoise

Real

Synthetic

Label

Label

G: Generator

D: Discriminator

Fig. 4 The training of cGAN proceeds by alternatively training G and D. Given a label image

and a noise vector, G is trained to obtain a realistic image. The synthetic pair and real pair refer

to the ten-channel label concatenated with synthetic image and real image, respectively. D learns

to distinguish real pairs from synthetic fake pairs.

to increase resolution and concatenate them with features from skip path. The BN layer,225

ReLU layer and dropout layer are also introduced. Then, a fully convolutional net (FCN) is 

designed as a discriminator model. Except the first layer, all strided convolution layers are 

followed by a BN layer and a leaky ReLU layer. The pooling layer in both generator 

model and discriminator model is replaced by strided convolution because the latter learns

230 to summarize the pixels within its kernel by a weighted element-wise multiplication. Dif-

ferent from max-pooling or avg-pooling, the way that strided convolution reduces feature 

dimensionality is not determined in advance but learnable during training.

As shown in Fig. 5, the noise z is implicitly taken as input to the generator. We use

dropout layer on the expansive path to introduce noise33 by randomly deactivating neurons 

235 with a probability of 0.5. Previous study on dropout layer41 proves that such layer adds

noise to the output features and thus improves robustness to the variation of input images. 

Furthermore, the dropout layer provides regularization to prevent over-fitting by reducing 

co-dependency among neurons. It randomly deactivates neurons during the training process, 

thereby preventing the model from learning interdependent set of feature weights42.

III.B. Pulmonary nodule segmentation240

The overall nodule segmentation architecture is given in Fig. 6. As pulmonary nodules

have different internal textures and segmentation method should adapt to such variety,

we introduce texture maps to implicitly impart to the network the ability of apprehending

whether current nodule is GGO, part-solid, or solid. In addition, edge maps are concatenated
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Fig. 5 The network architecture of the proposed cGAN.

as inputs since they provide rich knowledge about margins and boundaries of nodule images,245

thereby assisting the task of segmentation. The 3D CNN segmentation model is an end-to-

end model that exploits a 3D U-Net35 similar structure. Residual learning is brought into

the network to improve the performance of segmentation.

III.B.1. Heterogeneous maps

Local Binary Pattern (LBP)38 characterizes the spatial structure of local image texture250

by encoding the difference between a center pixel and its neighboring pixels. We use LBP

maps as the representation of nodule’s texture to describe different types of nodules for the

network. For each pixel in the original image, its LBP encoding is computed by thresholding

neighboring pixels with its intensity:

LBPP,R =
P−1∑
p=0

s(gp − gc)2P , s(x) =

1, if x ≥ 0

0, if x < 0
, (4)
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Fig. 6 The network architecture of the proposed segmentation framework.

where gc and gp are grayscale values of the center pixel and its surrounding pixels inside a255

circle with radius of R, respectively. The total number of neighboring pixels is P .

The LBP operator only considers the relative intensity of neighboring pixels with respect

to the center pixel. Its value changes if rotation operation is implemented on the image.

Since rotation is used for data augmentation, rotation-invariant LBP is preferred in order

to extract essential characteristics of nodule’s texture. Hence, we use the new type of LBP:260

LBP ri
P,R = min{ROR(LBPP,R, i)|i = 0, 1, .., P − 1}, (5)

where ROR(x, i) performs a circular bit-wise right shift on the encoded value x, i times.

It can be viewed as texture feature detector to capture micro-features that are invariant to

rotation. Furthermore, with rotation-invariant LBP texture maps fed into the network, the

learned high-level CNN features are rotation-invariant as well. In the experiments, we set

P = 24 and R = 3 and compute LBP maps slice by slice.265

In the segmentation task, accurate detection of meaningful edges is fundamental. The

edge map reflects the discontinuity of an image. Especially for the solid nodule that has a
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clear margin, there exists an abrupt change in intensity around nodule’s border. Edge maps

are used to filter out useless information and only preserve structure properties of images.

For well-circumscribed nodules, the edge maps directly detect their boundaries. For nodules270

that connect pleural surface or vascular structures, their edge maps also provide the outlines

of their attachment. These maps can be viewed as initial segmentation results, which are

then polished up by our network for final precise results.

There are many methods for edge detection. In our experiments, two most widely used

methods, Sobel37 and Canny36 edge detectors, are employed together for each slice since275

their performance varies depending on the categories of nodules and the integrated use of

both the methods is better than using one. For Sobel edge detection, two 3× 3 kernels are

convoluted with images to estimate the gradient in x and y directions. After convolution

with horizontal and vertical kernels, two images of the approximated gradient of intensity

are obtained as Gx and Gy. Then, the magnitude of gradient is computed as edge map.280

For Canny edge detection, we first smooth the image using a 3 × 3 Gaussian filter to 

reduce noise. Gaussian filter is adopted because it is faster than other non-linear filters

such as Median filter. Then, horizontal and vertical Sobel operators are applied to compute

the magnitude and orientation of the gradient. After that, non-maximum suppression is

performed on the magnitude map to suppress all gradient values except local maxima.285

Finally, two thresholding values t1 and t2, determined respectively as 10% and 20% of

the maximum magnitude’s value, are applied to threshold the edge map. All pixels with

magnitude value higher than t2 are labeled as edges. Pixels with value higher than t1, which

are also 8-connected to the labeled edge pixels, are recursively labeled as edges.

III.B.2. Segmentation network290

The input of the network is a four-channel 3D cube, which consists of four different cubes: 

cropped CT volume cubes, LBP maps, and two edge maps. The full 3D CNN architecture is 

developed to exploit spatial contextual knowledge for high-level feature extraction. Residual 

units, which consist of a few stacked layers, are introduced into the network. Given the input

295 x of the residual unit, the underlying mapping to be fit by the layers is denoted as H(x). Rather 

than directly approximating H(x), these layers approximate a residual function

F (x) = H(x) − x. By reducing such residual, it is easier to learn the underlying mapping.
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This learning strategy is known as residual learning. Specifically, we define a residual unit as:

y = F(x, {Wi}) + x, (6)

where x and y are the input and output of residual unit, respectively. F(x, {Wi}) is a 3D300

mapping to high-level features, which includes two convolution layers, two BN layers, and

one ReLU layer. {Wi} contains all learned parameters. Such residual unit allows gradient

to propagate directly through a shortcut and thus avoids vanishing gradient problem. The

introduction of residual learning benefits optimization process of deep network and improves

the accuracy of segmentation. The schematic representation of residual unit is illustrated in305

Fig. 7.

Conv (3 x 3 x 3, padding = 1, n_out)

+

n_out

Batch Normalization & ReLU

n_in

Conv (3 x 3 x 3, padding = 1, n_out)

Batch Normalization

nnnn ououououtttttttt
ReLU

Fig. 7 Residual unit. n in and n out denote the number of channels of input cube and output

cube, respectively.

For the contracting (forward) path, three blocks of residual units are adopted and each

block is followed by a max-pooling layer to reduce the dimension of cube. The residual block

contains multiple residual units and only the first unit increases the feature channel to the

desired size. For the expansive (backward) path, we first use transposed convolution, BN,310

and ReLU to upsample cube. Secondly, we concatenate it with the corresponding shallow

features that propagate via the skip path. Then, the concatenated features are fed into a

residual block. At the end of the last residual block, a post block is attached in order to map

the 64-channel feature cube to the size of 1×64×64×64. It is composed of two convolution

layers and two BN layers as shown in Fig. 8. In total, the network has 57 convolution layers.315

For each voxel in the final cube, the probability of being nodule is calculated via a sigmoid

function.
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Conv (3 x 3 x 3, padding = 1, 64out)

Batch Normalization

Conv (3 x 3 x 3, padding = 1, 1out)

Batch Normalization

Fig. 8 Post-block.

The loss function of our segmentation network is based on Dice coefficient, which measures

the similarity between segmentation results and ground-truth labels. Given two binary

volumes P and T , the Dice similarity coefficient (DSC) is defined as:320

DSC =
2
∑N

i piti∑N
i p

2
i +

∑N
i t

2
i

, pi ∈ P, ti ∈ T, (7)

where pi and ti are voxels in the predicted segmentation result and ground-truth target,

respectively. N is the total number of voxels. The value of DSC ranges from 0 to 1 and if P

is exactly equivalent to T , the DSC achieves the maximum value of 1. In our implementation,

the goal being to minimize the loss function, we define the Dice loss as:

Lseg = 1− 2
∑N

i piti + ε∑N
i p

2
i +

∑N
i t

2
i + ε

, pi ∈ P, ti ∈ T, (8)

where ε is a smoothing coefficient that not only prevents division by zero but also avoids325

overfitting. We set ε = 1 here in consideration of Laplace’s rule of succession43,44.

IV. EXPERIMENTS AND RESULTS

IV.A. Synthetic image generation

IV.A.1. Experimental settings

We use the cropped VOI cubes from LIDC dataset to train our cGAN. All slices containing330

nodules are chosen to generate their semantic labels and the total number of real CT pairs is

4694. Then, we split the dataset into ten subsets and perform ten-fold cross-validation. Each

time, nine subsets are used for training. The remaining subset is left for validation, which
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generates new synthetic images. Thus, a new synthetic dataset of 4694 slices is obtained.

The cGAN model is initialized from a Gaussian distribution N (0, 0.02) and optimized335

using Adam45 with β1 = 0.5 and β2 = 0.999. The initial learning rate for the first 200 epochs

is set to 0.0002 and then decreases to 0 linearly after 200 epochs. The model is implemented

in PyTorch46 using 4 NVIDIA GTX 1080Ti GPUs.

IV.A.2. Evaluation metrics and results

It is an open and difficult problem to find suitable metrics for evaluating the quality of340

synthesized images33. In the loss function of our cGAN model, LG is explicitly optimized.

Hence, it is reasonable and natural to use mean squared error (MSE) and cosine similarity

(SC) to evaluate our model. The two metrics are aimed at measuring the similarity between

real nodule images and synthetic images. Given a trained generator G and a set of ten-

channel semantic labels {xi|i = 1, 2, ...,m}, the metrics are defined as:345

MSE =
1

m

m∑
i=1

‖yi −G(z|xi)‖22,

SC =
1

m

m∑
i=1

yi ·G(z|xi)
‖yi‖2‖G(z|xi)‖2

,

(9)

where yi and G(z|xi) here are the vectorized real nodule image and synthetic sample, respec-

tively. The evaluation results inside different categories are given in Table III. The MSE and

cosine similarity for all nodules are 1.55× 10−2 and 0.9534, respectively. The MSE of GGO

nodules is 1.70× 10−2, which exceeds solid and part-solid nodules. The cosine similarity of

solid nodules is higher than that of part-solid and GGO nodules. In terms of nodule’s size,350

small nodules achieve the highest cosine similarity of 0.9556 and medium-sized nodules have

the lowest MSE of 1.52× 10−2. All MSE and cosine similarity results are computed on 4694

nodule images of size 64× 64.

Besides, visual examination of generated images is also employed to evaluate our cGAN

model. Such evaluation metric is one of the most simple, intuitive yet effective methods to355

estimate sample’s quality. Fig. 9 offers qualitative results of some generated samples. It

shows that nodules and their surroundings are well reconstructed through our cGAN model.
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Table III Quantitative results of synthetic image generation for different nodule categories.

Category MSE (×10−2) SC

Texture

Solid 1.55 0.9538

Part-solid 1.47 0.9529

GGO 1.70 0.9491

Diameter

<6 mm 1.65 0.9556

6∼10 mm 1.52 0.9524

>10 mm 1.55 0.9539

All nodules 1.55 0.9534

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Fig. 9 Examples of generated synthetic images. (a) Input labels; (b) Real images; (c) Generated

images. Out of simplicity, ten-channel inputs are briefly displayed as semantic labels.

To corroborate the effectiveness of nine attributes’ labels in sample synthesis, we provide a 

comparison of samples generated with and without the nine attributes in Fig. 10. It shows

that if only semantic labels are provided, the synthetic samples resemble real CT images with360

limited variety. In contrast, with additional nine attributes’ labels incorporated as inputs, the 

cGAN can produce various images according to different configurations of attributes’ 

scorings. By setting the value of texture as 1, 3, and 5, the output nodules indeed exhibit the 

characteristics of GGO, part-solid, and solid nodules, respectively. The 10-channel inputs

365 (see Fig. 3) allow the cGAN to generate a large variety of nodule images that do not exist

in the original LIDC-IDRI dataset, thereby enriching the training data greatly.
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(a) (b) (c) (d) (e) (f)

Fig. 10 Comparison of five synthetic samples generated with and without the nine attributes labels. 
(a) Real CT images; (b) Semantic labels; (c) Images generated without nine attributes.(d), (e), and 
(f) stand for the images generated with nine attributes and their texture scores are set to 1, 3, and 5, 
respectively.

IV.B. Pulmonary nodule segmentation

IV.B.1. Experimental settings

In segmentation experiments, we first replace the original slices in the 1182 nodule cubes

with the generated slices to form new VOI. In total, 2364 nodule CT cubes are used, with370

half from the LIDC-IDRI dataset and half from our generated images. All cubes are of the

same size: 64×64×64. Ten-fold cross validation is adopted to evaluate our model. It should

be noted that each time we use nine subsets of LIDC-IDRI dataset and their corresponding

synthesized samples to train our model. Then we evaluate the model on the remaining one

LIDC-IDRI subset. The validation set has no overlap with the training set.375

The segmentation model is initialized from a Gaussian distribution N (0, 0.01) and trained 

using Adam45 with β1 = 0.9 and β2 = 0.999 for 150 epochs. The data augmentation method

includes random rotation between [0◦, 180◦], random flipping, and random axis swapping.

The initial learning rate is set to 0.05 and decreases by half after every 20 epochs. The

validation time for each nodule VOI is within 0.1 second and the segmentation model is also380

implemented in PyTorch.
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IV.B.2. Evaluation metrics and results

The performance of the proposed segmentation model is measured by four metrics: DSC,

positive predicted value (PPV), sensitivity and accuracy. The DSC, defined in Eq. 7, is one

of the most commonly used evaluation criteria. The PPV and sensitivity are respectively385

defined by:

PPV =

∑N
i piti∑N
i p

2
i

, pi ∈ P, ti ∈ T,

Sensitivity =

∑N
i piti∑N
i t

2
i

, pi ∈ P, ti ∈ T,
(10)

where P is the predicted result and T is the ground-truth label. N is the total number of

voxels of VOI cubes. All numerators of DSC, PPV and sensitivity are the intersection voxels

between P and T . For DSC, its denominator is the average union voxels of P and T while

for PPV and sensitivity, their denominators are the voxels predicted as positive for nodule390

region and true lesion voxels, respectively.

In addition, hard thresholding is applied on the probability map to obtain the binary

segmentation result. Voxels having probability higher than 0.5 are considered as foreground

objects. Then, accuracy is computed as:

Accuracy =

∑N
i 1(pi == ti)

N
, pi ∈ P, ti ∈ T,

1(statement) =

1, if statement is True

0, otherwise
,

(11)

where 1(·) is an indicator function.395

Table IV summarizes the segmentation results in terms of four metrics. The average DSC,

PPV, sensitivity and accuracy of all nodules are 0.8483, 0.8895, 0.8511, 0.9904, respectively.

The performance of the proposed method on GGO nodules is the worst in terms of DSC,

sensitivity, and accuracy. It is noted that nodules with larger diameter or solid texture have

the highest segmentation scores in any evaluation metric.400

The comparison of segmentation results with state-of-the-art methods20,28,35 is given in
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Table IV The segmentation results of the proposed model for different nodule categories.

Category DSC PPV Sensitivity Accuracy

Texture

Solid 0.8605 0.8927 0.8681 0.9909

Part-solid 0.8096 0.8755 0.8023 0.9891

GGO 0.7865 0.8850 0.7515 0.9871

Diameter

< 6mm 0.7776 0.8748 0.7719 0.9849

6 ∼ 10mm 0.8382 0.8788 0.8494 0.9897

> 10mm 0.8578 0.8966 0.8560 0.9911

All nodules 0.8483 0.8895 0.8511 0.9904

Table V. All the methods are evaluated on LIDC-IDRI dataset and the commonly used

metric is Dice coefficient. Our model achieves the highest DSC score of 0.8483 and it

outperforms existing methods. The traditional segmentation techniques by Mukhopadhyay20

can not adapt to large variation of nodules such as size, shape and texture. Although both405

methods by Çiçek et al.35 and Wu et al.28 adopt 3D CNNs for segmentation task, our method

surpasses them over 10% on average.

Table V Comparison of segmentation results in DSC.

Approach DSC

Mukhopadhyay20 0.3900

Çiçek et al.35 0.7197

Wu et al.28 0.7405

Proposed method 0.8483

Table VI summarizes the results of quantitative comparison between different configu-

rations having different inputs. A control group of four methods is constituted to evaluate

our proposed method. Seg-NMaps refers to the proposed method without taking any map410

as input to the segmentation network. Seg-NEdge and Seg-NLBP denote the proposed

method that does not use edge maps and LBP maps, respectively. For Seg-NSynthetic, gen-

erated synthetic samples are not added into the dataset to train our model. The Seg-NMaps

method has the lowest DSC of 0.7993. Both LBP and edge maps contribute to better re-

sults, increasing DSC to 0.8176 and 0.8101, respectively. Without the extension of dataset,415

the Seg-NSynthetic method achieves the lowest accuracy of 0.9876. Except sensitivity, the

proposed method enjoys the highest scores on other three metrics, which demonstrates the

pertinence of each component of the proposed method. The accuracy of all methods is over

0.98.
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More visually, qualitative results of different validation samples are shown in Fig. 11.420

Table VI Quantitative comparison results of the control group.

Approach DSC PPV Sensitivity Accuracy

Seg-NMaps 0.7993 0.8523 0.8121 0.9881

Seg-NEdge 0.8176 0.8233 0.8610 0.9891

Seg-NLBP 0.8101 0.8559 0.8261 0.9890

Seg-NSynthetic 0.8104 0.8431 0.8596 0.9876

Proposed method 0.8483 0.8895 0.8511 0.9904

0.91 0.90 0.90 0.89

0.89 0.89 0.84 0.84

0.78 0.76 0.75 0.75

0.68 0.67 0.65 0.65
(a) (b) (a) (b) (a) (b) (a) (b)

Fig. 11 Qualitative segmentation results of validation samples. (a) Ground-truth labels are in

green; (b) Predicted nodules are in red. The score beneath each pair is Dice coefficient of the

result. Central slice of each VOI cube is displayed for simplicity.

V. DISCUSSION

We have shown that the proposed method can achieve accurate segmentation on pul-

monary nodules. Its most distinctive characteristics include (1) the adoption of adversarial

networks to promote samples’ diversity for a more balanced training dataset and (2) the 3D

segmentation network that takes advantage of interpretable heterogenous maps and residual425

learning. The results on synthetic image generation show that the cGAN simulates well

the real nodule images to generate satisfactory samples and that each component of the

segmentation network is instrumental in improving accuracy.
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There are mainly two elements contributing to the realistic synthetic image generation.

One is the preprocessing technique designed to obtain the ten-channel label that is rich in430

semantic information about nodule’s attributes and surroundings. In conventional synthetic

image generation32–34, only ordinary geometry images are viewed as conditions of adversarial

networks. Such type of images is in lack of depiction of context and characteristics of nodules.

The other is the modification on the objective function of the original cGAN. The objective

function defined in the original cGAN30 only considers producing images that can deceive435

the discriminator, which is not sufficient in our medical setting. In contrast, the introduced

L2 reconstruction error loss [Eq. (2)] explicitly minimizes the difference between generated

images and real nodule images.

During the semantic label generation process, all nine channels were employed to repre- 

440 sent nodules attributes. No selection or weighted combination of the nine attributes was

conducted in advance because all these attributes are important for describing nodules. Each 

attribute is annotated and corrected meticulously by radiologists. If without nine channels, 

the diversity of synthetic images is substantially reduced. Given a one-channel label of a 

nodule such as a disk mask, the cGAN will produce a geometrically similar sample that only

445 differs from the original data in grayscale value. While with the attributes provided, various

nodule images can be generated by changing the rating scores of each attribute.

Although the patterns or styles of synthetic samples are kept similar to real ones, the

generated images differ from the existing dataset in specific details. Firstly, in fact, given any 

artificial 10-channel semantic label, the cGAN can generate realistic CT samples that

450 are missing in the original dataset. In accordance with different scorings of attribute labels, 

diverse types of synthetic images can be generated to improve the variety of training samples. 

Secondly, random noise is introduced into the generating process by dropout layer. Even with the 

same 10-channel semantic labels as inputs, the generated samples are different from their 

corresponding real CT images. Thirdly, tiny objects, such as small vessels and

455 parenchymal structures, are removed in the generation process of semantic labels. Hence,

conditioned on the resulting coarse-grained semantic labels, the synthetic images do possess

a high level of variety.

The MSEs of solid and part-solid nodules are smaller than those of GGO nodules (Table

III). This can be explained as follows. First, the boundaries of solid and part-solid nodules

are clearer and their intensity varies abruptly, which is easier for cGAN to learn the dis-460
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crepancy between nodules and their surroundings. The second reason is that the internal

distribution of GGO nodules is comparatively complex and scattered. The intensity inside

GGO is relatively low and not as constant as that of solid nodules. As shown in Fig. 9,

compared to real images, nodules on synthetic images tend to be more distinct because

they are generated from labels which have sharp margins and specific borders. Due to the465

introduction of stochastic noise, the background of generated samples has more vascular-like

structures than that of real nodule images.

Concerning the segmentation (Table IV), our method performs better on solid and part-

solid nodules than on GGO nodules. This is because the boundaries of GGO nodules are

fuzzier than other nodules, especially if there exist vascular structures in their vicinity.470

Furthermore, the number of GGO nodules in LIDC-IDRI dataset is far smaller than that

of solid and part-solid nodules and thus the diversity and quality of generated samples are

limited. Training on such dataset, the proposed model is difficult to capture strong feature

representations for segmentation of GGO nodules. In terms of nodule’s size, the larger the

nodule is, the better the result is due to the fact that for larger nodules, it is easier to detect475

their position inside VOI and determine accurate margins.

Table V provided comparison with state-of-the-art methods20,28,35. The performance of

the traditional method by Mukhopadhyay20 is poor because it requires careful tuning of

hyper-parameters (e.g., thresholding value of density for different nodules), which triggers

off weak generalization ability on large dataset. Although Çiçek et al.35 and Wu et al.28480

employed deep learning techniques as well, they did not regard the effect of multiple inter-

pretable maps on conveying useful information (e.g. portrayal of nodule’s texture by LBP 

maps and emphasis on nodule’s border by edge maps) to the network. Besides, they did 

not take residual learning into consideration, which is crucial for developing a deep model.

485 Examples in Fig. 11 demonstrate the performance on different kinds of nodules. Compared 

with well-circumscribed and solid nodules, juxta-vascular and GGO nodules are relatively 

harder to segment accurately due to their complex outer attachments and internal tex-

ture patterns, respectively. The results predicted by our model tend to provide conservative 

boundaries if the intensity drops sharply at margins. It may be because the inclusion of edge

490 maps makes the model sensitive to borders. In Table VI, a possible reason that Seg-NEdge 

has the highest sensitivity is that without edge maps, the segmentation is not sensitive to the 

contours of nodules. It may tend to predict more pixels outside the contour as nodules
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than true nodule pixels. According to Eq. (10), the sensitivity becomes high when the

numerator increases. If neither the maps nor the synthetic data are used, the proposed 495 

framework degenerates back to a normal 3D CNN-based segmentation model, which differs

from the existing 3D U-Net in two aspects: (1) the number of feature channels and (2) the 

introduction of residual learning strategy. Since in this case only real VOIs are fed into the 

3D CNN without their features included, the segmentation performance is worse than the 

proposed framework.

There exist some limitations associated with the proposed framework. First, for the500

semantic labels in synthetic image generation, we only consider vessels and pleural surfaces

and omit other structures such as bones and bronchi. To further improve the realism of

generated samples, all structures would need to be labeled, which requires more complicated

preprocessing techniques and parameter tuning. Since the quality of semantic labeling is

heavily dependent on prior knowledge, it is challenging to develop a method of automatic505

labeling at an expert level. Second, it is difficult to find the optimal form of introducing

random noises into cGAN. In the present study, dropout layer is applied as noise z to

generate stochastic output, which is consistent with Isola et al.33. It needs a different study

to determine the impact of noise on the generated samples. Third, the distribution of

training dataset is still not even. Although we extend LIDC-IDRI dataset via the cGAN510

model, the quantity and diversity of some nodules (e.g., GGO and juxta-vascular nodules)

are still in shortage. Future work may include designing new schemes to solve imbalanced

dataset problem. Finally, it is noted that the segmentation labels of nodules are obtained

from radiologists in LIDC. However, the annotation process is decided by each radiologist’s

subjective judgment19–21, leading to different ground-truth labels. Hence, the performance515

of the proposed method may be affected by such variation.

VI. CONCLUSION

We have proposed a two-part CNN-based framework for pulmonary nodule segmenta-

tion. In the first part, adversarial networks are employed to synthesize nodule samples. It

520 targets at building a more diverse and balanced dataset for the subsequent model train-

ing. Semantic labels, together with nine attribute scoring labels, are exploited to provide 

semantic and contextual knowledge. Reconstruction error loss is introduced to improve re-
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alism. Such method of extending dataset presents several advantages. The boundaries and

semantic attributes of nodules are preserved during generation process. Moreover, the ran-

dom noise produced by dropout layer allows for the variation of spatial surroundings and525

thus boosts image diversity. In the second part, multiple feature maps are incorporated as 

inputs into the 3D CNN model. With residual learning strategy, the segmentation model 

trained on the extended dataset enjoys a high level of generality. The results on LIDC-IDRI 

dataset demonstrate that our 3D CNN model achieves more accurate nodule segmentation

compared to existing state-of-the-art methods, which suggests its potential value for clinical530

applications.
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