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Object: Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) is a promising technique for invasively probing biological tissue structures. However, DTI is known to suffer from much longer acquisition time with respect to conventional MRI and the problem is worsened when dealing with in vivo acquisitions. Therefore, faster DTI for both ex vivo and in vivo scans is highly desired.

Materials and Methods:

This paper proposes a new compressed sensing (CS) reconstruction method that employs local low-rank (LLR) model and three-dimensional (3D) total variation (TV) constraint to reconstruct cardiac diffusion-weighted (DW) images from highly undersampled k-space data. The LLR model takes the set of DW images corresponding to different diffusion gradient directions as a 3D image volume and decomposes the latter into overlapping 3D blocks. Then, the 3D blocks are stacked as two-dimensional (2D) matrix. Finally, low-rank property is applied to each block matrix and the 3D TV constraint to the 3D image volume. The underlying constrained optimization problem is finally solved using the first-order fast method. The proposed method is evaluated on real ex vivo cardiac DTI data as a prerequisite to in vivo cardiac DTI applications.

Results:

The results on real human ex vivo cardiac DTI images demonstrate that the proposed method exhibits lower reconstruction errors for DTI indices, including fractional anisotropy (FA), mean diffusivities (MD), transverse angle (TA) and helix angle (HA), compared to existing CS-based DTI image reconstruction techniques.

Conclusion:

The proposed method provides better reconstruction quality and more accurate DTI indices in comparison with the state-of-the-art CS-based DW image reconstruction methods.

Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI, or DTI) is an MRI technique that allows for investigating noninvasively the fiber architectures of the human heart [START_REF] Froeling | Diffusion Tensor MRI of the Heart -In Vivo Imaging of Myocardial Fiber Architecture[END_REF][START_REF] Naumova | Assessment of Heart Microstructure From Mouse to Man[END_REF][START_REF] Tournier | Diffusion Tensor Imaging and Beyond[END_REF][START_REF] Yang | Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI[END_REF][START_REF] Basser | a) MR diffusion tensor spectroscopy and imaging[END_REF][START_REF] Basser | Estimation of the Effective Self-Diffusion Tensor from the NMR Spin-Echo[END_REF][START_REF] Scollan | Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging[END_REF][START_REF] Holmes | Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium[END_REF][START_REF] Mekkaoui | Diffusion MRI in the heart[END_REF][START_REF] Pravdin | Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart[END_REF][START_REF] Lopez-Perez | Three-dimensional cardiac computational modelling: methods, features and applications[END_REF]. However, cardiac DTI is known to suffer from long acquisition time to obtain high quality images (in terms of temporal resolution, spatial resolution, and signal-to-noise-ratio-SNR) for both ex vivo [START_REF] Helm | Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure[END_REF][START_REF] Geerts | Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging[END_REF][START_REF] Wu | MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model[END_REF][START_REF] Strijkers | Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse[END_REF][START_REF] Yang | Interpolation of vector fields from human cardiac DT-MRI[END_REF] and in vivo [START_REF] Dou | Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo[END_REF][START_REF] Wu | Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction -Correlation with viability and wall motion[END_REF][START_REF] Nielles-Vallespin | In vivo diffusion tensor MRI of the human heart: Reproducibility of breath-hold and navigator-based approaches[END_REF] hearts. This is because DTI requires, with respect to conventional MRI, supplementary acquisitions at different (at least six) diffusion gradient directions. The problem is worsened when dealing with in vivo DTI acquisitions since patient movement and cardiac motion often cause image quality degradation and motion artifacts [START_REF] Nguyen | In Vivo Three-Dimensional High Resolution Cardiac Diffusion-Weighted MRI: A Motion Compensated Diffusion-Prepared Balanced Steady-State Free Precession Approach[END_REF][START_REF] Welsh | Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats[END_REF][START_REF] Dou | Cardiac diffusion MRI without motion effects[END_REF][START_REF] Wei | Assessment of Cardiac Motion Effects on the Fiber Architecture of the Human Heart In Vivo[END_REF][START_REF] Wei | Free-Breathing Diffusion Tensor Imaging and Tractography of the Human Heart in Healthy Volunteers Using Wavelet-Based Image Fusion[END_REF]. Therefore, shortening acquisition time is highly desired for both ex vivo and in vivo DTI. It becomes indispensable in reducing motion artifacts and improving image quality for clinical cardiac DTI. Many attempts have been made to shorten the acquisition time by reducing the amount of acquisition data, such as parallel imaging [START_REF] Holdsworth | Robust GRAPPA-Accelerated Diffusion-Weighted Readout-Segmented (RS)-EPI[END_REF][START_REF] Bammer | Diffusion tensor imaging using single-shot SENSE-EPI[END_REF][START_REF] Bammer | Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using Sensitivity Encoding (SENSE)[END_REF][START_REF] Jaermann | SENSE-DTI at 3 T[END_REF][START_REF] Larkman | Parallel magnetic resonance imaging[END_REF], partial k-space imaging [START_REF] Hsu | Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging[END_REF][START_REF] Jiang | Accelerating MR diffusion tensor imaging via filtered reduced-encoding projection-reconstruction[END_REF], and simultaneous multi-slice (SMS) imaging [START_REF] Lau | Accelerated Human Cardiac Diffusion Tensor Imaging Using Simultaneous Multislice Imaging[END_REF][START_REF] Taron | Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes[END_REF].

In recent years, compressed sensing (CS) has emerged as a new framework for reconstructing signals with high quality from less measurements than the traditional Shannon-Nyquist sampling theorem [START_REF] Candes | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Candes | Near optimal signal recovery from random projections: Universal encoding strategies[END_REF]. CS exploits sparsity or compressibility of signals in certain domain (pixel or transform domain) and combines sampling and compression into a unified framework. To date, CS has been successfully applied to biomedical imaging [START_REF] Graff | Compressive sensing in medical imaging[END_REF][START_REF] Wang | Compressive Sensing for Biomedical Imaging[END_REF], and has shown great potential for MRI [START_REF] Lustig | Compressed sensing MRI[END_REF][START_REF] Hollingsworth | Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[END_REF][START_REF] Chen | Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers[END_REF] and computed tomography (CT) [START_REF] Ritschl | Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior[END_REF][START_REF] Hu | Improved total variation minimization method for few-view computed tomography image reconstruction[END_REF][START_REF] Rigie | Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization[END_REF].

In light of the time-reducing potential of CS and considering that the diffusion-weighted (DW) images obtained along different diffusion gradient directions of DTI are often correlated, a constrained image reconstruction technique for cardiac DTI based on a regularization framework was proposed [START_REF] Adluru | Constrained reconstruction of sparse cardiac MR DTI data[END_REF], in which the total variation (TV) constraint was chosen in both spatial domain and diffusion direction to accelerate DTI acquisitions. Both sparsity prior and intra-and inter-correlation of DW images were also embedded in a single constraint term in the CS extensions (distributed CS) to further reduce DTI acquisition time [START_REF] Wu | Accelerated MR Diffusion Tensor Imaging Using Distributed Compressed Sensing[END_REF]. Utilizing the inter-image correlation of DW images, the combination of CS and parallel imaging further improved acquisition efficiency [START_REF] Shi | Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation[END_REF]. By stacking the DW images as column vectors of a matrix, the resulting matrix is then rank-deficient, which allowed the authors of [48,49] to formulate the CS-based DTI image reconstruction from undersampled k-space as a low-rank matrix approximation problem. Observing that phase changes drastically across diffusion gradient directions, a phase-constrained low-rank (PCLR) approach was developed [START_REF] Gao | PCLR: Phase-Constrained Low-Rank Model for Compressive Diffusion-Weighted MRI[END_REF]. In [START_REF] Welsh | Model-based reconstruction of undersampled diffusion tensor k-space data[END_REF][START_REF] Zhu | A model-based method with joint sparsity constraint for direct diffusion tensor estimation[END_REF][START_REF] Dong | Model-based reconstruction for simultaneous multislice and parallel imaging accelerated multishot diffusion tensor imaging[END_REF], model-based CS methods for DTI were proposed, which use the signal intensity model to directly estimate diffusion tensor fields from undersampled k-space data.

Meanwhile, local low-rank (LLR) model has been recently proposed in various medical imaging applications such as quantitative water-fat MRI [START_REF] Lugauer | Accelerating multi-echo water-fat MRI with a joint locally low-rank and spatial sparsity-promoting reconstruction[END_REF], dynamic MRI image reconstruction [START_REF] Trzasko | Local versus global low-rank promotion in dynamic MRI series reconstruction[END_REF] and MRI parameter mapping [56]. Compared to global low-rank (GLR) methods that capture global correlation among whole images, the LLR model is more suitable for accounting for local information. The present study proposes a new CS reconstruction method that employs both LLR model and three-dimensional (3D) TV constraint to reconstruct cardiac DTI images. The LLR model takes the set of DW images corresponding to different diffusion gradient directions as a 3D volume and decomposes the latter into overlapping 3D blocks. Then, the 3D blocks are stacked as two-dimensional (2D) matrix. Finally, low-rank property is applied to each block matrix and the 3D TV constraint to the 3D image volume. The underlying constrained optimization problem is finally solved using the first-order fast method. The proposed method is evaluated on real ex vivo cardiac DTI data as a prerequisite to in vivo cardiac DTI applications.

The rest of the paper is organized as follows. In Section 2, the mathematical formulation of the proposed method and experimental settings are given. Then, in Section 3, the proposed method is evaluated on human ex vivo heart DW images and compared to the state-of-the-art methods. Finally, the discussion and conclusion are given in Sections 4 and 5, respectively.

Materials and methods

Proposed method

Assuming that x l is a vectorised DW image and u l F is a partial Fourier transform for th l diffusion direction. The undersampled k-space data y l of the DW image for each direction in k-space can then be formulated as:

yx u l l l l F   , (1) 
where l  is the observed noise and l = 1, 2,…, L the diffusion direction, and

u l F P F  with F
denoting Fourier transform and P the undersampling pattern (mask). Note that in practical acquisitions, raw k-space data are always complex and non-Hermitian symmetric. As a result, the corresponding spatial DW image x l is always complex and contains a spatial phase.

All the undersampled k-space data Y of the DW images in all the diffusion gradient directions can be written as: F is a partial Fourier transform for all the diffusion directions and is defined as:

u Y F X     , (2) where  
1 0 0 u u u L F F F        . ( 3 
)
The DW images are sparse/compressible in certain domain such as wavelet domain. In addition, since the DW images acquired in different diffusion gradient directions have similar anatomical structures, they are somewhat correlated. Consequently, by stacking these images as column vectors of a matrix X , the latter will be low rank. Then, the reconstruction of DW images from undersampled k-space data is performed by solving the following optimization problem (i.e. GLR model, as illustrated in figure 1(a)): Using the above-described LLR method, the reconstruction then becomes the following optimization problem:

2 1 2 1 arg min 2 u X X F X Y X T X            (4)
  2 * 2 1 arg min 3 2 u b X b X F X Y R X TV D X            , ( 5 
)
where u F is the partial Fourier transform for all diffusion directions as defined in 

        2 2 2 , , , , 1, , , , , 1, , , , , 1 2 , , , , 3 
i j k i j k i j k i j k i j k i j k i j k i j k i j k TV D X D X X X X X X X          



, where ,, i j k D means the forward finite-difference operators along the horizontal, vertical, and diffusion gradient directions of DW images, respectively. This problem can be effectively solved using the Fast Composite Splitting Algorithm (FCSA) introduced in [START_REF] Huang | Efficient MR image reconstruction for compressed MR imaging[END_REF]. This method is based on the combination of both variable and operator splitting techniques, which decompose the regularization problem (5) into two simpler regularization subproblems. The main steps of this method is as follows: (a) splitting variable x into two variables

  1,2 i i
x  ; (b) performing operator splitting to minimize total variation regularization and nuclear norm regularization subproblems over   1,2 i i

x  respectively, and (c) obtaining the solution x by linear

combination of   1,2 i i x  . Let   2 2 1 2 u f X F X Y 
that is a convex and smooth function with the

Lipschitz constant L f ,   1 * b b g X R X    
that is a convex but non-smooth function and

    2 3 g X TV D X   . Then, the       12 g X g X g X 
problem can be divided into two subproblems: nuclear norm regularization and TV-norm regularization. Each subproblem is actually a convex function that can be solved by a proximal mapping operation [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF]:

     12 3 * and 2 kk b g g TV D b X prox R X x X prox X x         .
According to [START_REF] Beck | A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[END_REF], given a continuous convex function g(x) and any scalar q > 0, the proximal map associated with function g is defined as: tol : the tolerance parameter.

     2 2 1 arg min 2 u prox x u u x          , where  is the inverse of the Lipschitz constant L f having     ' 2 2 1 2 T u u u f F X Y F F X Y         with  
INIT:

1 0 1 1 , 1, 0, 0; t X r k L       REPEAT: 1; kk    ; kk g x r f r          1 * 2 3 12 ; 2; ; 2 k bg b k g TV D kk k X prox R X x X prox X x XX X                ; kk X abs X    2 1 1 1 4 ; 2 k k t t      1 11 1 ; k k k k k k t r X X X t       UNTIL kK  OR 1 2 2 kk k XX tol X    . OUTPUT:   k X

abs X 

: the reconstructed DW images.

Experimental data

The real DW data correspond to ex vivo samples of the human hearts [START_REF] Helm | Evidence of structural remodeling in the dyssynchronous failing heart[END_REF][START_REF] Helm | Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure[END_REF][START_REF] Helm | Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging[END_REF] from the website http://cvrgrid.org/data/ex-vivo. The corresponding acquisition parameters are the following: image size=256×256×134, image spatial resolution=0.43×0.43×1.0 mm 3 , and number of diffusion gradient directions 21. In the present study, seven slices of the image volume have been used to evaluate the proposed method (the b 0 image of the 5 th slice was shown in figure 2(a)). We used the same k-space sampling patterns as those used in [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Tsai | Reduced aliasing artifacts using variable-density k-space sampling trajectories[END_REF], which concern Cartesian undersampling patterns with one-dimensional (1D) variable density phase-encode random undersampling (i.e. in k y direction) and 2D variable density random undersampling pattern. An example of the 1D and 2D random k-space undersampling patterns is shown in figure 2(b) and figure 2(c), in which the sampling ratio (R) was set to 15%.

The above initial DW data are in fact spatial magnitude data (so, their corresponding k-space data are complex but Hermitian symmetric) while in practice DW data are always spatial complex because the acquired raw k-space data are always complex and non-Hermitian symmetric. To mimic actual acquisitions, we have rendered the magnitude DW data complex in the following manner: a) take the Fourier transform of spatial magnitude DW data, providing complex but Hermitian-symmetric k-space data; b) undersample the complex k-space data, thus making the k-space data asymmetric; c) add complex Gaussian white noise to the asymmetric k-space data, rendering them even more asymmetric; d) take the inverse Fourier transform of the undersampled noisy k-space data, leading to complex spatial DW data containing phase information. 

Evaluation

To evaluate the performance of the proposed method (LLR+TV3D), comparison was performed with zero-filling (replace the non-acquired k-space data by zeros and then inverse Fourier transform the zero-filled k-space data), joint sparsity (JS) [START_REF] Wu | Accelerated MR Diffusion Tensor Imaging Using Distributed Compressed Sensing[END_REF], JS with TV3D (JS+TV3D), global low-rank (GLR) [48], GLR with TV3D (GLR+TV3D) and, local low-rank without TV3D (LLR) methods.

In addition to qualitative assessment consisting of visually comparing reconstruction results, several quantitative indices were calculated for the DW images reconstructed with different methods.

They are the fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA) and transverse angle (TA) [START_REF] Streeter | Fiber orientation in the canine left ventricle during diastole and systole[END_REF][START_REF] Scollan | Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging[END_REF].

The MD characterizes the mean diffusivity of the tissue:

1 2 3 MD 3      . ( 6 
)
The FA is used to describe the diffusion anisotropy of the tissue:

        2 2 2 1 2 3 222 1 2 3 3 MD MD MD FA 2                 . ( 7 
)
The HA is defined as the angle between the projection of the primary eigenvector onto the tangent plane and the imaging plane, and the TA is defined as the angle between the projection of the primary eigenvector onto the imaging plane and the tangent plane [START_REF] Streeter | Fiber orientation in the canine left ventricle during diastole and systole[END_REF][START_REF] Scollan | Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging[END_REF]. The pair (HA, TA)

describes completely fiber orientation.

To quantitatively compare different reconstruction methods, the root mean square errors (RMSE)

was first calculated for each slice according to: 

    2 2 - RMSE rec ref vec x vec x N  , (8) 

Parameter setting

In the following experiments, 1D variable density phase-encode random undersampling was used.

The ISNR was set to 20 dB. The Daubechies wavelets with four decomposition levels were used.

The threshold parameter  in soft-thresholding operator for each 3D block was set in an adaptive manner using Stein's unbiased risk estimate (SURE) thresholding [START_REF] Lagae | A comparison of methods for generating Poisson disk distributions[END_REF]. The regularization parameter  was set to 0.1 and the 3D block size Reconstructions from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=15.0506), (b) JS method (RMSE =14.1850), (c) JS+TV3D method (RMSE=12.9166), (d) GLR method (RMSE=12.9376), (e) GLR+TV3D method (RMSE=12.5925), (f) LLR method (RMSE=13.0880) and (g) the proposed method (RMSE=11.9483). 

Results

Visual comparison

Sampling ratios

Robustness to noise

The performance of reconstruction from undersampled DTI data using the proposed method for 

Sampling patterns

Figure 9 shows the reconstruction performance of the proposed method on two different sampling patterns, namely the 1D variable density random undersampling in phase-encoding direction and 2D variable density random undersampling pattern [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Marseille | Nonuniform phase-encode distributions for MRI scan time reduction[END_REF], in terms of FA, MD, TA and HA (with sampling ratios from 10% to 50% and without noise). As observed, for the same sampling ratio, the 

Choice of patch size

The choice of patch size [ , , ] 

Discussion

Combination of local low-rank and 3D TV constraints

The comparison of the reconstructions with and without 3D TV constraints shows that the proposed method (with 3D TV) always generated the smallest mRMSE regardless of sampling ratios (figure 7), which means that the reconstruction using the combination of local low-rank penalty and 3D TV penalties clearly reduces reconstruction artifacts and preserves image edges and fine structures. This can be explained as follows. Since the proposed method operates on image blocks, the matrix is more rank-deficient from local image blocks than from 3D image volume. As a result, the use of the LLR allows better reconstructing local image structure information, but may produce excessive edge blurring in the case of high undersampling ratios (e.g. undersamplng ratio of 0.1).

Meanwhile, the 3D TV constraint is particularly suitable for reconstructing edges, but tends to over-smooth image details at high undersampling ratios. Hence, the combination of the two constraints has enabled us to achieve better reconstruction quality.

Determination of regularization parameter

The regularization parameter  was empirically determined. It also impacts on reconstruction quality. Figure 11 

Effect of sampling patterns

As observed (figure 9), the 2D variable density random undersampling pattern gives better performance than the 1D variable density random undersampling pattern. This can be explained as follows. It is well known that when k-space is undersampled, the zero-filled inverse Fourier reconstruction exhibits aliasing artifacts since the Nyquist criterion is violated. The appearance of the aliasing artifacts depends on the undersampling pattern. Equispaced sampling results in coherent folding effects; as a result, image structure overlapping is very visible. In contrast, random or pseudo-random undersampling leads to incoherent interferences [START_REF] Lustig | Compressed sensing MRI[END_REF][START_REF] Marseille | Nonuniform phase-encode distributions for MRI scan time reduction[END_REF]; the final effect of the interferences appears much like additive random noise and consequently, the reconstructed image preserves more initial information. Figure 12 shows an example where the sampling patterns and the corresponding images reconstructed using zero-filling method are given.

Note however that, although ideal, the 2D variable density random undersampling pattern cannot be implemented on current MRI systems whereas the implementation of 1D variable density random undersampling (in phase-encoding direction) scheme is simpler and requires only minor modifications to existing pulse sequences [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF][START_REF] Marseille | Nonuniform phase-encode distributions for MRI scan time reduction[END_REF]. 

Influence of phase information

In the present study, image reconstruction is formulated as an optimization problem (Eq. 5), in which there are three terms. In each of the three terms, complex images (i.e. phase information) were used. However, we have not used the complex images all the time during the reconstruction process.

Indeed, after calculating the above three terms, we used the magnitude of complex image when computing

  2 1 1 1 4 2 k k t t    and   1 11 1 k k k k k k t r X X X t       , in which   kk X abs X 
. That aimed to simplify the calculation while focusing on the energy of images by taking the magnitude of complex image. It is however possible to use only the magnitude of complex image (by taking   gg x abs x 

) or simply take as such the complex image all the time during the reconstruction, which will then lead to respectively the so-called "Abs" method (no phase information is used) and "Complex" method (phase information is used). Of course, no matter what method we used, the last step is always to take the magnitude of complex image as the final desired image.

The results for ISNR=0 dB (noise-free) and ISNR=20 dB are respectively illustrated in Figure 13 and Figure 14.

These results show that, for highly undersampled k-space data (sampling ratio smaller than 15%), the proposed method gives rise to smaller errors with respect to the cases of using the magnitude of complex image or using purely complex image. After certain sampling ratio (saying greater than 20%), using the magnitude of complex image leads to the best results while using complex image during the whole reconstruction process yields the worst results. The difference in performance between the three methods can be explained as follows. The "Abs" method always works on the energy (magnitude) of complex image. Since in MRI, images are always produced in such a way that the imaginary part of the complex image is small with respect to the real part, the magnitude image always preserves such importance proportionality during all the calculations. In contrast, with the "Complex" method, the imaginary part has been left to freely and "arbitrarily" vary, which may amplify its weight and thus generate bigger errors. Our proposed method is situated between them with the imaginary part more or less confined. On the other hand, for a given acquisition, k-space data can be altered and highly asymmetric, or equivalently the formation of the phase can be very complicated. A number of factors, such as k-space sampling (random, irregular, etc.), noise, cardiac pulsations, respiratory motion, and multi-shot induced phase incoherence, can contribute to the formation of phase. Although the present study was also dealt with phase information, as shown in the above, but this phase stems from k-space undersampling and noise. In the future, it would be interesting to investigate multi-shot DWI reconstruction using explicit phase (by estimating for example low-resolution phase map from the fully sampled k-space data of each shot) or implicit phase (by using a structured low-rank matrix completion scheme [START_REF] Froeling | Diffusion Tensor MRI of the Heart -In Vivo Imaging of Myocardial Fiber Architecture[END_REF]) to recover artifact-free images. Also, it is possible to undersample multi shot acquisitions using compressed sensing, the estimation of phase from the data would however be more complex and effective correction of motion-induced ghosting artifacts would be more difficult.

More specifically for phase problems in cardiac DTI, there are phase changes not only in a given diffusion gradient direction (low variation) but also across diffusion gradient directions (drastic variation). It would then be interesting to study undersampled reconstruction based on phase correction [START_REF] Naumova | Assessment of Heart Microstructure From Mouse to Man[END_REF], phase-constrained [START_REF] Tournier | Diffusion Tensor Imaging and Beyond[END_REF] or phase regularized reconstruction [START_REF] Yang | Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI[END_REF].

Application to in vivo cardiac DTI

The successful use of the proposed sampling-reconstruction method on in vivo cardiac DTI data would be conditioned by other two factors: motion correction and registration. Motion artifact may be due to cardiac and/or respiratory motion or any other phenomena such as arrhythmia. It is reflected by the presence of MRI signal loss. In in vivo DTI acquisitions, due to physical and technical limitations of MRI machines, all the images cannot be acquired at the same time point. Therefore, image registration is mandatory to correct for geometrical inconsistency among different scans. However, for a given in vivo DTI dataset, we are not able to determine the origin of errors in the calculated DTI indices if we do not separately consider sampling-reconstruction, motion and registration. In any case, if the sampling-reconstruction does not work, that will not make sense to investigate motion correction or image registration. However, motion correction and image registration in cardiac DTI still remain very challenging problems. Designing new imaging sequences less sensitive to motion artifacts, such as MUSE [START_REF] Chen N-K, Guidon | A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)[END_REF] and 3D-DISPENSE [START_REF] Zhang | Three-dimensional diffusion imaging with spiral encoded navigators from stimulated echoes (3D-DISPENSE)[END_REF] techniques, could be an interesting way to explore. Once the problems are resolved, in vivo data would be rather close to the situation of ex vivo data.

Another particularity of in vivo cardiac DTI is the mixture of noise and artifacts due for example to motions. Noise designates electronics noise and thermal noise from subject while artifacts represent degradations due to motions. Therefore, once appropriate motion correction (and image registration to some extent) is achieved, in vivo data would be rather close to the situation of ex vivo data.

Conclusion

This work has proposed an efficient method for reconstructing DW images in DTI from highly undersampled k-space data using the LLR model and 3D TV constraints. The LLR model exploits the fact that the block matrices constructed from the set of DW images corresponding to different diffusion gradient directions are more strongly rank-deficient than the global matrix formed of entire DW images. The reconstruction using the combination of local low-rank penalty and 3D TV penalties thus enables us to improve reconstruction performance. The results on real human ex vivo cardiac DW images showed that, for a large range of sampling ratios from 10% to 50%, the proposed method provides better reconstruction quality and more accurate DTI indices such as mean diffusivity, fractional anisotropy, helix angle and transverse angle, in comparison with the state-of-the-art CS-based DW image reconstruction methods. In the future work, we will apply the proposed method to in vivo cardiac DTI. To this end, phase correction, motion correction and image registration would have to be performed to obtain correct DTI indices.

  where

  term, X  is the nuclear norm or sum of singular values of the matrix X, 1 TX  is the l1-norm of X with sparsity transform T, and 0   and 0   are the regularization parameters. However, as mentioned before, GLR models involving entire images capture only globally correlated information in the image. We are then led to use the LLR model to account for local image information. As illustrated in figure 1(b), the LLR model-based method includes the following main steps: a) consider the set of DW images corresponding to different diffusion gradient directions as a 3D image volume; b) divide the 3D image volume into overlapping 3D image blocks of size size in the diffusion gradient direction; c) stack each 2D DW image block of size xy nn  as a column vector of a 2D matrix, thus forming a block matrix of size x y d n n n  ( i b matrix in figure 1(b)); d) apply low-rank property (singular values shrinkage operator) to the block matrix; e) reconstruct the DW images X by concatenating all the block matrices.

Fig. 1

 1 Fig.1Illustration of the principle of global low-rank (GLR) and local low-rank (LLR) methods. In the GLR matrix X, each column corresponds to an entire DW image and the number of its columns is equal to the number of diffusion gradient directions L.

  (3), b R is the operator that extracts the th b block,  designates the set of blocks,   3 TV D  is the TV regularization term, which can either be the anisotropic or the isotropic TV norm. In this paper,

  reconstruction problem[START_REF] Basser | a) MR diffusion tensor spectroscopy and imaging[END_REF] is outlined in the following algorithm. INPUT: K : the maximum number of iterations; , : the regularization parameters; ,, x y d n n n : the block sizes;

Fig. 2

 2 Fig. 2 Example of (a) the b 0 image of the 5 th slice, (b) 1D random k-space undersampling mask and (c) 2D variable density random k-space undersampling pattern with a sampling ratio of 15% (i.e. keeping 15% of the full k-space data).



  the calculated quantity and the reference quantity, and N the total number of signals. Then, the mean RMSE (mRMSE) values of FA, MD, TA and HA were calculated to evaluate and compare the reconstruction performance.The observation measurement Y is corrupted by complex Gaussian white noise  with standard deviation n  . The associated input SNR (ISNR)[START_REF] Carrillo | Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging[END_REF] is defined as denoting the standard deviation of the reference image.

Figures 3 to 6

 6 Figures 3 to 6 show the T-DWI, FA, MD, TA and HA maps of 5 th slice with the sampling ratio of 25%. In the calculations, the diffusion tensors corresponding to the complete k-space were taken as the references. As observed, the FA, MD, TA and HA maps generated by the proposed method are visually better than those obtained with the other methods.

Fig. 3 Fig. 4

 34 Fig. 3 FA maps of 5 th slice. Top row: FA reconstruction maps. Middle row: FA error maps. Bottom row: the ROIs marked by the red boxes in the error maps. The reference FA is shown in the first column of the top row. Reconstructions

Fig. 5

 5 Fig. 5 TA maps of 5 th slice. Top row: TA reconstruction maps. Middle row: TA error maps. Bottom row: the ROIs marked by the red boxes the in error maps. The reference TA is shown in the first column of the top row. Reconstructions from undersampled k-space (sampling ratio 25%) using (a) zero-filling method (RMSE=15.2867), (b) JS method (RMSE =14.7117), (c) JS+TV3D method (RMSE=13.4796), (d) GLR method (RMSE=13.3053), (e) GLR+TV3D method (RMSE=13.1900), (f) LLR method (RMSE=13.7366) and (g) the proposed method (RMSE=12.6375).

Fig. 6

 6 Fig. 6 HA maps of 5 th slice. Top row: HA reconstruction maps. Middle row: HA error maps. Bottom row: the ROIs marked by the red boxes in the error maps. The reference HA is shown in the first column of the top row.

Figure 7 Fig. 7

 77 Figure 7 compares the reconstruction performance (mRMSE of FA, MD, TA and HA) of different methods as a function of sampling ratios ranging from 10% to 50%. As observed, the proposed method resulted in clearly smaller errors than the other methods for all the quantitative indices.

Fig. 8

 8 Fig. 8 Reconstruction performance of the proposed method with various ISNRs and sampling ratios (Rs) on human heart data. (a) mRMSE of FA. (b) mRMSE of MD. (c) mRMSE of TA. (d) mRMSE of HA.

Fig. 9

 9 Fig. 9 Effect of sampling patterns on (a) mRMSE of FA, (b) mRMSE of MD, (c) mRMSE of TA, and (d) mRMSE of HA.

Fig. 10

 10 Fig. 10 Effect of block sizes on reconstruction quality. (a) mRMSE of FA. (b) mRMSE of MD. (c) mRMSE of TA. (d) mRMSE of HA.

Fig. 11

 11 Fig. 11 Effect of regularization parameters (DW image of 5 th slice, ISNR 20 dB). (a) RMSE of FA. (b) RMSE of MD.

Fig. 12 k

 12 Fig. 12 k-space undersampling patterns and the corresponding images reconstructed using zero-filling method. (a) DW image of 5 th slice in a given diffusion gradient direction; (b) Equispaced k-space undersampling; (c) 1D variable density random k-space undersampling in phase-encoding direction; (d) 2D variable density random undersampling.

  Comparison of reconstructions using or without using phase information for ISNR=0 dB (noise-free). (a) mRMSE of FA, (b) mRMSE of MD, (c) mRMSE of TA, and (d) mRMSE of HA. "Abs" no phase information is used. "Complex": phase information is used. Comparison of reconstructions using or without using phase information for ISNR=20 dB. (a) mRMSE of FA, (b) mRMSE of MD, (c) mRMSE of TA, and (d) mRMSE of HA. "Abs" no phase information is used. "Complex": phase information is used.
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