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 

Abstract— Objective: The purpose of this study is to increase 

the accuracy of human cardiac diffusion tensor (DT) estimation in 

diffusion magnetic resonance imaging (dMRI) with a few 

diffusion gradient directions. Methods: A structure prior 

constrained (SPC) method is proposed. The method consists in 

introducing two regularizers in the conventional nonlinear least 

squares estimator. The two regularizers penalize the dissimilarity 

between neighboring DTs and the difference between estimated 

and prior fiber orientations, respectively. A novel numerical 

solution is presented to ensure the positive definite estimation. 

Results: Experiments on ex vivo human cardiac data show that the 

SPC method is able to well estimate DTs at most voxels and is 

superiors to the state-of-art methods in terms of the mean errors 

of principal eigenvector, second eigenvector, helix angle, 

transverse angle, fractional anisotropy, and mean diffusivity. 

Conclusion: The SPC method is a practical and reliable 

alternative to current denoising- or regularization-based methods 

for the estimation of human cardiac DT. Significance: The SPC 

method is able to accurately estimate human cardiac DTs in 

dMRI with a few diffusion gradient directions.  

 
Index Terms—Diffusion tensor estimation, diffusion tensor 

imaging, fiber orientation constraint, human cardiac, tensor 

smoothing.  

 

I. INTRODUCTION 

ardiovascular diseases are the leading cause of death in the 

world, accounting for more than 17.3 million deaths per 

year in 2013 [1], a number that is expected to grow to more than 

23.6 million by 2030. The understanding of the cardiac fiber 

structure and its link to cardiovascular diseases is essential for 

the diagnosis and the treatment of heart pathologies.  

Diffusion magnetic resonance imaging (dMRI) is currently 

the only technique for the measurement of water diffusion in 

biological tissues, and allows noninvasive assessment of the 
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microstructures of the tissues. Diffusion tensor imaging (DTI) 

[2] is a dMRI technique proposed to describe quantitatively the 

diffusion information and fiber features of tissues. It has been 

largely used for the microstructure investigation of tissues or 

organs such as brain [3], [4] and heart  [5]–[14]. 

In DTI, accurate and reliable estimation of diffusion tensor 

(DT) is a major prerequisite for fiber tracking or DT-derived 

metrics calculation and analysis. A number of DT estimation 

methods were proposed in recent literature. Among them, the 

linear least squares (LLS) estimator [15] is widely used in 

dMRI due to its usability and high computational efficiency. Its 

weighted variants (WLLS) [15]–[18] with well-defined weights 

usually produce more reliable results compared to the LLS 

(unweighted). Nonlinear methods include nonlinear least 

squares (NLS) [15], [19] and least median/trimmed squares 

(LMS/LTS) [20] are also used in DT estimation, in which the 

solution requires an iterative numerical algorithm (such as 

Levenberg-Marquardt) suffering computational complexity. 

Their corresponding constrained counterparts, which will be 

denoted respectively as cLLS, cWLLS, cNLS, and cLMS/cLTS 

[15]–[17], [19]–[21], employ the positive definite constraint to 

ensure the every eigenvalue of estimated DT be positive. In 

[22] and [23], robust estimators, called RESTORE and 

iRESTORE, were proposed to reduce the sensitivity to the 

presence of outliers. All of the above methods are voxel-based 

estimators that make minimal assumptions and constraints on 

diffusion data acquisitions. They are however highly sensitive 

to noise and commonly require a higher number (>30) of 

diffusion gradient directions (DGDs) to achieve robust 

estimation.  

In vivo cardiac DTI acquisitions are often severely hampered 

by cardiac and respiratory motion. To minimize the effect of the 

motions, respiratory gated [24], [25] and/or breath-holding 

[25]–[27] techniques were used, and longer acquisition time 

was needed. Despite several advanced acquisition strategies 

proposed under free-breathing condition [28], [29], the number 

of DGDs in in vivo acquisitions can rarely be more than 12. 

Hence, accurate and robust estimation of DTs from resulting 

raw diffusion-weighted (DW) data becomes an important issue 

and constitutes a challenging work in cardiac DTI.  

Since these DT estimators are sensitive to noise, it is often 

convenient to adopt denoising techniques for improving the DT 

estimation. Recently, a number of denoising methods [30], 

[31], [40], [41], [32]–[39] have been proposed to remove noise 

from DW images. Some of them have already been used for 

cardiac DW image filtering, such as nonstationarity adaptive 
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filtering [31] and sparse denoising [32], [33] methods. 

Additionally, a principal component analysis based method 

[42] was also used to process in vivo cardiac DW images [28]. 

Alternatively, regularization techniques, which regularize 

DT fields after estimation [7], [43], [44] or introduce a 

regularizer in the procedure of estimation [45]–[47], were also 

used to enhance noise immunity. These regularization 

approaches involve some kind of weighted averaging over 

corresponding local or non-local voxels, where smoothing 

operators are defined in terms of variational principles, total 

Kullback-Leibler divergence, or other prior information of 

images. 

In this paper, we propose a structure prior constrained (SPC) 

method to estimate human cardiac DTs in dMRI with a few 

DGDs. The method consists in introducing two regularizers in 

the conventional nonlinear least squares estimator. The two 

regularizers penalize respectively the dissimilarity between 

neighboring DTs and the difference between estimated and 

prior fiber orientations, which allows for more accurate 

estimation of DTs with a few DGDs. 

II. METHODOLOGY  

A. Regularized DT Model 

In classical DT model, the diffusion-weighted signal 
iS  in 

the ith DGD is given by 

  T

0 expi i iS S b  g Dg ,  (1) 

where 
0S  is the nondiffusion-weighted signal, b  the diffusion 

sensitization factor, ig  the ith DGD, and D  the second-order 

symmetric diffusion tensor. The six independent components 

of the DT can be calculated using non-linear least squares 

method with the minimizing objective function f  expressed 

as 

  
2

0

1

exp
N

i i

i

f S S


     H d ,  (2) 

where N  is the number of DGDs, 

, , , , ,xx xy xz yy yz zzD D D D D D   d  is a vector representation of 

DT D , and 
iH  is the ith row of an encoding gradient design 

matrix H  and can be derived from the gradient components 

ixg , 
iyg , and izg ,  

 
2 2 22 2 2i ix ix iy ix iz iy iy iz izbg bg g bg g bg bg g bg   H . (3) 

In the present study, we introduce two regularizers in (2), and 

rewrite the objective function as 

     
2

T

1 2

1 0

exp
N

i

c i i m

i

S
f b REG REG

S
 



 
     

 
 g Dg d V ,  (4) 

where 
mV  is the principal eigenvector (which corresponds to 

the greatest eigenvalue) of diffusion tensor D , 
1REG  the 

smoothness constraint on tensor d , 
2REG  the orientation 

constraint on 
mV ,   and   the regularization parameters 

which provide a tradeoff among the precision of model fitting, 

tensor smoothness, and main orientation constraint.  

B. Constraint of Tensor Smoothness 

Inheriting the idea of test statistic between two tensors in 

[41], we define the tensor smoothness constraint 
1REG  at a 

voxel p  as  

        
1T

T

1

1

U

REG w
Z





  
p

p pq p q p q

q

d d d H H d d ,  (5) 

where the weighting factor 
1

2
w


 pq p q  is the inverse of the 

Euclidean distance between p  and q , U
p  is the 

neighborhood of p  with radius r  (1.5mm was used in this 

study), and 
U

Z w


 
p

pq

q

 is the sum of weighting factors. The 

item      
1T

T


 
p q p q

d d H H d d  represents the dissimilarity 

between DTs p
d  and q

d  at voxels p  and q .  

C. Constraint of Cardiac Fiber Orientation  

The myocardium is a complex tissue composed mainly of 

myocytes having approximately 25 µm in diameter and 100 µm 

in length. Current MRI systems do not allow us to image the 

   
(a) (b) (c) 

 

Fig. 1.  The calculation of prior fiber orientation. (a) Fitting an ellipse (red) to the points (green) having an absolute helix angle (AHA) less than 10 degrees. (b) 

Fitting a line (red) to the helix angles (blue) along transmural depth. (c) Fitted fiber orientations (prior fiber orientations). The color-coding represents the direction 

of the principal eigenvector (Green: left-right direction in the image. Red: up-down direction in the image. Blue: direction perpendicular to the image plane). 
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individual myocytes. Instead, only an aggregate of individual 

myocytes is observed in an image voxel. Nevertheless, the 

myocyte aggregate is highly structured and oriented. When 

tracking the orientation of the myocyte aggregate at each voxel, 

the voxels form preferential patterns in three-dimensional (3D) 

space and give rise to the so-called myocardial fibers. Such 

fibers however should not be understood in the same sense as in 

brain or musculo-skeletal tissue, because they are actually the 

image representation of mean myocyte orientations within a 

voxel in 3D space and the term “fiber” is employed just for 

simplicity. The statistical study of the human cardiac fiber 

architecture [48] has shown that the helix angle of human 

cardiac fibers in left ventricle (LV) varies approximately 

linearly along transmural depth and the transverse angle is 

approximately parallel to the epicardium. In this study, the 

helix angle is defined as the angle between the projection of the 

fiber onto the epicardium and the short-axis plane.  

Based on this prior information of the human heart, we 

derive the prior cardiac fiber orientation of the LV’s short-axis 

slices as follows (Fig. 1): 

1) For each voxel p  of the slice, we estimate the diffusion 

tensor using Iterative Reweighted Linear Least Squares 

(IRLLS) [21] method in a voxel-by-voxel way, and then extract 

their main fiber orientations by eigen decomposition.  

2) Compute the helix angle of these fiber orientations, and fit 

an ellipse to the points having the absolute helix angle less than 

10 degrees.  

3) Compute the distance d
p  from p  to the ellipse. 

Specifically, we define the distance as negative value if the 

voxel located outside of the ellipse. 

4) Fit a line to the helix angles of all voxels, and achieve the 

fitted helix angles. At the same time, we set the fitted transverse 

angles equal to zero.  

5) Convert the fitted helix angle and fitted transverse angle to 

the fitted fiber orientation fV  (prior fiber orientation).  

Based on the prior fiber orientation, we define the orientation 

regularizer 
2REG  as 

    T

2

1
arccosm m fREG


V V V .  (6) 

D. Numerical Solution 

Using eigen decomposition, the diffusion tensor can be 

expressed as 

 
TD RΛR ,  (7) 

where  1 2 3, ,R V V V  is a rotation matrix whose columns, 1V

, 2V  and 3V  ( 1V  may not always be the principal eigenvector), 

are the eigenvectors of D , and Λ  is a diagonal matrix whose 

diagonal elements 1 , 2  and 3  are the corresponding 

eigenvalues.  

In spherical coordinates, we can express the eigenvector 1V  

as 

  
T

1 sin cos ,sin sin ,cos    V ,  (8) 

where   is the polar angle and   the azimuth angle.  

Constructing a unit vector 
tV  satisfying 

T

1 0t V V , the 

eigenvector 
2V  can then be expressed as  

  2 1, tV T V V ,  (9) 

where  1,T V  is a rotation matrix by an angle of   about 

an axis in the direction of 
1V . Given a unit vector 

T

1 , ,x y zv v v   V , the matrix T  can be described as  

       T

1 1 1 1, cos sin 1 cos   


   T V I V V V ,  (10) 

with I  indicating the identity matrix and  1 
V  the cross 

product matrix of 
1V  given by  

  1

0

0

0

z y

z x

y x

v v

v v

v v


 
 

  
  

V .  (11) 

According to the orthogonality of matrix R , we get  

 3 1 2  V V V .  (12) 

Introducing (7)-(12) in (4), 
cf  can be expressed as a 

function of six variables  ,  ,  , 
1 , 

2 , and 
3 . Their 

values can be estimated by solving the following constrained 

nonlinear optimization problem 

   1 2 3 1,2,3arg min , , , , t. 0, s.cf         ,  (13) 

where 1,2,3 0   ensures the positive definite of the diffusion 

tensor. In the present study, we solve the optimization problem 

(13) using the interior-point method. 

The proposed method was implemented using in-house 

program written in Matlab 2016a (Mathworks) and freely 

available at https://www.creatis.insa-lyon.fr/MOSIFAH/chu/. 

III. EXPERIMENTS AND RESULTS 

The proposed SPC method was evaluated on synthetic and 

real human cardiac DW data. The real human cardiac DW data 

corresponds to ex vivo human hearts, which come from the 

Grenoble University Teaching Hospital, Grenoble, France. 

They relate to infants who died after birth up to 14 months of 

life. The hearts were obtained and processed in compliance 

with French legal and ethical guidelines. The investigations are 

conformed to the principles outlined in the declaration of 

Helsinki [49]. More precisely, after medically pronounced 

death, cadavers are conserved for a minimum of 24 h at the 

mortuary at 4°c, in order to give time to the administration to 

verify there are no contra-indications to the necropsy and to the 

heirs of the deceased to give the authorization for the autopsy. 

Those legal formalities being done, the autopsy is performed; 

the heart are extracted and fixed in a formalin solution to ensure 

good preservation of cells and tissue as close as possible as 

living structure. 

The proposed method was compared with LLS [15], IRLLS 

[21], local principal component analysis (LPCA) [34], and 

variational framework (VF) based method [45]. 
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A. Synthetic DW Data 

 

 

The DW data was synthesized from the DT model with 

b-value = 700s/mm
2
 and 12 DGDs. The DT eigenvalues were 

 
Fig. 2  E1 and FA maps derived from DTs estimated using different methods at the SNR of 5 in the case of simulated pathological DW data. The red circle indicates 

the pathological region. The color-coding represents the direction of the principal eigenvector (Green: left-right direction in the image. Red: up-down direction in 

the image. Blue: direction perpendicular to the image plane). 

     
 (a) (b) (c) 

    
 (d) (e) (f) 

Fig. 3  Impacts of the parameters alpha (a-b) and beta (c-d) on DT estimation in the normal cardiac region in terms of mean principal eigenvector (E1) error and FA 

error. (e-f) Comparison of different approaches at different SNRs.  
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set to (1.2, 0.3, 0.3) × 10
−3

 mm
2
/s. The fiber orientation of the 

simulated data (noise free, Fig. 2, left-up panel) was configured 

according to the polarized light imaging of an ex-vivo human 

heart. Usually, in normal hearts, the helix angle varies linearly 

along the transmural direction and the diffusion tensor varies 

smoothly in space. However, that may not be true in 

pathological hearts [50], [51]. To evaluate how the proposed 

SPC method behaves in this case, we also simulated a 

pathological region (marked with red circle in Fig. 2, left-up 

panel) by introducing a patch with random fiber orientations 

and DT eigenvalues of (1.2, 0.6, 0.6) × 10
−3

 mm
2
/s. This would 

simulate the situation where the helix angle varies no longer 

with transmural depth or the diffusion tensor varies no longer 

slowly in space. Three level Rician noises were added to the 

simulated data to generate noisy data with different 

signal-to-noise ratios (SNRs). In this study, the SNR of the DW 

data was defined as the ratio of mean signal intensity to noise 

standard deviation.  

To evaluate the impact of parameters   and   on DT 

estimation, simulation experiments were carried out. At 

different SNRs, we firstly set 0   and varied   to make 

the SPC method achieve best results, then fixed 0   and 

varied   to further reduce the error of results.  

B. Ex-vivo Human Cardiac DW Data 

The real cardiac DW data was taken from five ex-vivo 

human hearts. The data was acquired on a Siemens Avanto 

1.5T MR scanner, using echo planar imaging sequence with 

one image without diffusion weighting and three different 

numbers (12, 30, and 64) of DGDs. Specially, the acquisition 

with 64 DGDs was repeated 20 times. Each DW volume 

consists of 32 contiguous axial slices of size 140×140, and the 

spatial resolution is 1.4mm×1.4mm×1.4mm. The main 

acquisition parameters were: TE = 70 ms, TR = 5100 ms, 

diffusion sensitivity factor b = 700 s/mm
2
. The SNR of the heart 

data is about 18.  

C. Evaluation 

To evaluate quantitatively the proposed method, we perform 

the average of the 20-times repeatedly acquired data (with 64 

DGDs) using a conventional estimator [52] 

 

220
2

1

2
20

ik

i

k

S
S 



  ,  (14) 

where 
ikS  is the diffusion signal acquired at the kth acquisition 

in the ith DGD, and   is the standard deviation of Rician 

noise, which can be estimated from the non-signal region data 

in the background corresponding to the air outside the organ 

[32], [53]. Then we estimate the DT using cNLS method on the 

averaged data, and regard it as the ground-truth (GT). Six 

DT-derived indices, principal eigenvector (E1), secondary 

eigenvector (E2), helix angle (HA), transverse angle (TA), 

fractional anisotropy (FA), and mean diffusivity (MD), were 

used for the quantitative comparison between different 

methods. In this work, the E1 error is calculated using  

 arccos( )es gte V V  ,  (15) 

where esV  is the estimated E1, and gtV  the ground-truth.  

A LV mask excluding apex was defined manually to extract 

the region of interest (ROI) as shown in Fig. 5 (red-colored). 

We evaluated the SPC method on the ROI of the data acquired 

with different numbers of DGDs, and compared it with IRLLS 

[21], local principal component analysis (LPCA) [34], and 

variational framework (VF) based method [45]. For the LPCA, 

we used the cNLS method to estimate DT from the denoised 

data. To ensure fairness, we tuned all the parameters of each 

method for the experiment, and chose the set of parameters 

yielding the best results. For the proposed SPC method, we set 

100  ,   0.15, 0.1, and 0.05 for the experiments on the 

data acquired with 12, 30, and 64 DGDs, respectively. The 

parameters   and   were empirically determined by trying a 

series of values. The criterion for selecting the best value was 

that the mean E1 error be as small as possible. The six indices 

(E1, E2, HA, TA, FA, and MD) were calculated from the DTs 

estimated using the four different methods (IRLLS, LPCA, VF, 

       
 (a) (b) 

Fig. 4  Error maps of E1 and FA with different methods at the SNR of 5. (a) E1 error maps. (b) FA error maps. 
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and SPC) on the human cardiac data acquired with different 

numbers (12, 30, and 64) of DGDs, and compared to the GT.  

We also evaluated the interest of the two regularizers in the 

proposed SPC method by setting respectively  and   to 

zero. 0   means the discarding of the regularization on DT (

1REG ), while 0   means the removal of the regularization 

on cardiac fiber orientation (
2REG ). 

D. Results 

The experiments on simulated DW data showed that the SPC 

method produced better results with bigger   and  values 

in the low SNR case or smaller values in the high SNR case 

(Fig. 3(a) to (d)).  

At different SNRs, the mean E1 and FA errors of DT 

estimation using the five methods (LLS, IRLLS, VF, LPCA, 

and SPC) are plotted in Fig. 3(e) and (f). It is observed that the 

proposed SPC method always produces smaller mean E1 errors 

with respect to the other four methods. 

TABLE I 
MEAN ERRORS OF THE SIX INDICES DERIVED FROM DTS ESTIMATED USING DIFFERENT METHODS ON THE FIVE HEARTS ACQUIRED WITH 64 DGDS. 

Error LLS IRLLS LPCA VF SPC SPC ( 0  ) SPC ( 0  ) 

E1 (degree) 21.2  16.7 20.9 16.9 16.6  12.8 19.6 17.5 15.6 12.9 18.0 15.8 16.5 14.8 

E2 (degree) 32.8  21.9 32.4 21.9 25.7  22.2 29.0 21.5 25.2 20.8 30.3 22.4 26.2 21.8 

HA (degree) 13.1  8.2 12.8  8.0 12.8 7.3 12.9 7.8 11.3 6.1 12.7 7.4 12.1 6.5 

TA (degree) 21.0  11.6 20.7 11.5 16.6 9.9 16.5 8.6 16.9 9.5 18.9 11.0 17.9 10.3 

FA 0.18  0.14 0.18  0.14 0.07  0.06 0.06 0.05 0.07 0.05 0.17 0.14 0.07 0.05 

MD (10−3mm2/s) 0.18  0.14 0.18  0.14 0.07  0.07 0.09 0.08 0.07 0.08 0.09 0.09 0.08 0.08 

 

 
TABLE II 

MEAN ERRORS OF THE SIX INDICES DERIVED FROM DTS ESTIMATED USING DIFFERENT METHODS ON THE FIVE HEARTS ACQUIRED WITH 30 DGDS. 

Error LLS IRLLS LPCA VF SPC SPC ( 0  ) SPC ( 0  ) 

E1 (degree) 35.2  22.2 34.7 22.1 22.1  15.2 27.6 19.9 20.8 16.2 24.3 18.3 21.6 16.3 

E2 (degree) 46.2  22.9 45.8 22.9 30.5  22.7 37.7 22.3 30.3 22.5 38.4 24.0 31.3 22.7 

HA (degree) 23.1  12.5 22.7 12.4 16.8 9.7 16.3 9.3 16.0 8.9 17.7 9.6 15.9 8.9 

TA (degree) 31.3  15.9 31.6 15.9 19.0  11.3 23.5 12.1 19.2 11.0 21.4 12.0 19.8 10.6 

FA 0.20  0.14 0.19  0.13 0.07  0.06 0.09 0.07 0.07 0.05 0.15 0.13 0.07 0.05 

MD (10−3mm2/s) 0.16  0.12 0.19  0.12 0.10  0.09 0.10 0.09 0.09 0.09 0.11 0.10 0.08 0.10 

 

 
TABLE III 

MEAN ERRORS OF THE SIX INDICES DERIVED FROM DTS ESTIMATED USING DIFFERENT METHODS ON THE FIVE HEARTS ACQUIRED WITH 12 DGDS. 

Error LLS IRLLS LPCA VF SPC SPC ( 0  ) SPC ( 0  ) 

E1 (degree) 38.9  23.2 38.6+ 22.9 23.5  16.5 28.2 19.1 22.3 17.4 26.5 20.8 22.7 18.1 

E2 (degree) 48.9  23.6 48.7 23.2 29.4  20.6 42.1 23.1 34.5 22.8 36.9 24.4 34.5 23.6 

HA (degree) 27.0  13.2 26.6 13.1 16.4 9.8 20.5 10.6 16.3 9.0 19.5 10.2 17.7 9.4 

TA (degree) 32.9  15.9 32.8 15.9 18.0  11.4 23.8 12.8 20.6 11.2 20.9 11.4 20.0 11.2 

FA 0.22  0.15 0.20  0.15 0.08  0.06 0.11 0.10 0.08 0.06 0.14 0.12 0.08 0.06 

MD (10−3mm2/s) 0.21  0.12 0.16  0.13 0.11  0.09 0.10 0.09 0.08 0.09 0.11 0.10 0.09 0.09 

 

 
Fig. 5  The region of interest of the heart (red-colored, coronal view). The 

yellow line indicates the position of the slice used for illustration. 
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Fig. 2 shows the E1 and FA maps derived from DTs estimated using different methods at the SNR of 5. Regarding 

 
Fig. 6  E1 and FA maps derived from DTs estimated using different methods on a short-axis slice of the real human heart. The red rectangle indicates the points, at 

which the proposed SPC outperforms the other methods. Bottom row is ground-truth. The yellow rectangle shows a region where the local smoothness assumption 

for DTs is violated. The color-coding represents the direction of E1 (Green: left-right direction in the image. Red: up-down direction in the image. Blue: direction 
perpendicular to the image plane). 
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the E1 maps, obviously, the LLS and IRLLS methods are very 

sensitive to noise by yielding irregular directions of the 

principal eigenvectors in the normal regions. The VF, LPCA, 

and SPC methods produce smoother E1 maps, thus 

demonstrating the effectiveness of the used regularization or 

denoising in the DT estimation. But, LPCA clearly shows 

over-smoothing for E1 map in the pathological region; the 

arbitrary directions of the principal eigenvectors, which 

characterize the presence of pathology, have been forced to 

vary regularly. Visually, VF and SPC led to rather similar 

results, by preserving the regular and slow variation of the 

principal eigenvectors in the normal region while not forcing 

the latters to vary regularly in the pathological region. 

Concerning the FA maps, the LLS and IRLLS methods are very 

sensitive to noise by yielding rather noisy FA maps. The VF, 

LPCA, and SPC methods produce smoother FA maps. 

Globally, LPCA under-estimate FA by presenting darker 

regions with respect to GT whereas the other methods 

over-estimate FA by exhibiting brighter regions with respect to 

GT. 

To assess more precisely the difference between the different 

methods, we show in Fig. 4 the error maps of E1 and FA 

 
 
Fig. 7  HA error maps (the left 3 columns) and HA distributions (the right column) derived from DTs estimated using different methods on a short-axis slice data.  

The horizontal and vertical axes of HA distributions rerpresent the transmural depth (from epicardium to endocardium) and HA, respectively.  
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obtained using different methods. We observe that the LPCA 

method leads to highly inaccurate results in the pathological 

region by generating big E1 and FA errors. In the normal region, 

the SPC method also exhibits smaller mean E1 errors than the 

IRLLS, VF, and LPCA methods. More quantitatively speaking, 

the SPC method generated smaller mean E1 error (11.7°) than 

IRLLS (21.5°), VF (15.5°), and LPCA (12.5°) in the normal 

region. Concerning the FA error maps, there is no obvious 

difference between the different methods except LPCA that 

shows severe errors in both normal and pathological regions. 

Their mean FA errors are 0.13 (IRLLS), 0.14 (VF), 0.16 

(LPCA), and 0.14 (SPC), respectively. 

Regarding the real cardiac DW data, the mean errors on the 

five heart of the six indices, E1, E2, HA, TA, FA, and MD are 

given in Tables I to III for three different numbers of DGDs. 

Globally, SPC outperforms the other methods except LPCA 

that shows slightly smaller TA errors. Very occasionally, SPC 

exhibits slightly greater E2 errors than LPCA or FA error than 

VF. When discarding the regularization on DT ( 1REG ) (i.e. 

0  ) or the regularization on cardiac fiber orientation (

2REG ) (i.e. 0  ), we observe (last two columns of Tables I 

 
 
Fig. 8  TA error maps (the left 3 columns) and TA histograms (the right column) derived from DTs estimated using different methods on a short-axis slice data.   
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to III) that removing one of the regularizers increased the error 

of DT estimation, which implies that both of the regularizers 

are necessary to improve the estimation of DT. 

As an illustration, we show in Figs. 6 to 8 the E1 and FA 

maps, the HA error maps with the HA distributions, and the TA 

error maps with the TA histograms, which were derived from 

DTs estimated using different methods on a short-axis slice of 

LV. The position of the slice is marked with the yellow line in 

Fig. 5. Obviously, the IRLLS method is very sensitive to noise. 

The E1, FA, HA, and TA obtained using LPCA, VF and SPC 

methods demonstrated the effectiveness of the used 

regularization mechanisms in improving the performance of 

DT estimation. Furthermore, the VF method is inferior to the 

LPCA and SPC methods in terms of E1. The visual comparison 

of the E1 obtained using the LPCA and SPC methods on the 

data acquired with 12 and 30 DGDs shows that the SPC method 

outperforms the LPCA method at some voxels inside the red 

rectangle in Fig. 6. In contrast, on the data acquired with 64 

DGDs, the SPC and LPCA methods generate very similar E1 

results. The comparison of HA (or TA) error maps or HA 

distributions (or TA histograms) (Figs. 7 and 8) obtained using 

different methods shows that the SPC method generates the 

smallest HA (or TA) errors among the four methods and its HA 

distributions (or TA histograms) are more consistent with GT.  

From Tables I to III, we also observe that the errors of the six 

indices increase more or less with the decrease of the number of 

DGDs, regardless of the methods. For instance, when the 

number of DGDs decreases from 64 to 30, the E1 errors 

increase from about 6 to 14 degrees. When the number of 

DGDs decreases from 30 to 12, the methods exhibit smaller E1 

errors increase (about 2 to 4 degrees). Likewise, the FA errors 

increase from 0.01 to 0.05 when the number of DGDs decreases 

from 64 to 12. 

IV. DISCUSSION  

We have proposed a SPC method to estimate human cardiac 

DT by introducing two regularizers in the conventional NLL 

estimator. The first regularizer penalizes the dissimilarity 

between neighboring DTs, which is based on the assumption 

that DTs are locally smooth, which is commonly used by spatial 

regularization methods. The second regularizer introduces a 

constraint on cardiac fiber orientation, which is motivated by 

the fact that the helix angle and transverse angle of human 

cardiac fibers have approximately regular variations with 

transmural depth on most regions of LV.  

To guarantee a positive definite solution, an efficient way 

based on Cholesky decomposition was used in [20], [46], [47]. 

In the present study, we proposed an alternative numerical 

solution, in which we convert the variable d  of the objective 

function to six variables containing three angles ( ,  , and 

 ) and three eigenvalues ( 1 , 2 , and 3 ). The new form of 

the objective function allows us to add directly constraints on 

eigenvectors or eigenvalues of DT such as 1,2,30 1   

(constraint the eigenvalues in the range [0, 1]). It is more 

flexible than the Cholesky decomposition.  

By applying the proposed SPC method on the LV excluding 

apex region, we demonstrated that the introduction of the two 

regularizers is necessary for improving the DT estimation, but 

the second regularizer (
2REG ) exhibits smaller contribution 

than the first one (
1REG ). Such conclusion on ex vivo cardiac 

data could be extended to the case of in vivo cardiac data. For 

the apex region, the helix angle and transverse angle have 

irregular variations with transmural depth [48], thus the second 

regularizer should be removed ( 0  ). The improvements of 

the proposed SPC method could be obtained using 
1REG  only.  

In the situations where the local smoothness assumption is 

violated, which is the case with the regions boxed with yellow 

rectangle in Fig. 6 or the pathological region of the simulated 

data, the SPC method should be used with caution. 

Unfortunately, in this case, none of the four methods (IRLLS, 

LPCA, VF, and LPC) can achieve accurate or simply plausible 

estimation of DT. Therefore, it is a challenge work and needs 

further study. In all cases, we should not try to estimate the 

cardiac DT in irregular regions without sufficient SNR.  

For the first regularizer 
1REG , we used the Euclidian 

distance for the Cartesian coordinate system. Previous studies 

performed tensor processing in a shape-adaptive (i.e. prolate 

spheroidal) coordinate system [54], [55]. It would be 

interesting to also consider the regularization of tensor fields in 

the prolate spheroidal coordinate and compare the results from 

the two systems. 

We observed that SPC FA map is much smoother than the 

ground-truth FA map (Fig. 6). Note however that, unlike the 

case for the simulated data, the ground-truth for the in vivo data 

refers to the average of the 20-times repeatedly acquired data 

with 64 DGDs (Section III.C). It does not represent the 

ground-truth of the myocardium (which is unknown), and it is 

simply a reference for comparison. It would then be interesting 

to know if such oversmooth effect alters the ground-truth of the 

myocardium.  

Meanwhile, in vivo cardiac DTI acquisitions are a 

challenging task because of inevitable compromise between 

spatial resolution and coverage, SNR, and cardiac and 

respiratory motion. A direct consequence would for example be 

the fact that there are few points to represent the myocardium. 

In addition, it is difficult to acquire in vivo DW data for 

different numbers of DGDs. In all these situations, the 

performance of the proposed method might be influenced. It 

then becomes important to obtain a sufficient number of pixels 

with good quality for representing the myocardium. A solution 

might be to increase the number of pixels using interpolation 

[10] or superresolution [56] methods, before applying the 

proposed method.  

V. CONCLUSION 

The proposed SPC method allows for the estimation of 

human cardiac DT in dMRI with a few DGDs. The results on ex 

vivo human cardiac data showed that the proposed method is 

able to accurately estimate DTs at the most voxels of LV. Its 

comparisons with the existing LLS, IRLLS, LPCA, and VF 
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methods demonstrates its lower mean errors of E1, E2, HA, 

TA, FA, and MD. Furthermore, the proposed numerical 

solution framework provides a flexible tool for DT estimation, 

by easily allowing introducing additional constraints on 

eigenvectors or eigenvalues. 
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