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Introduction

Level set estimation is a general statistical framework where one has to estimate the t-level set of a function g (i.e. the set {x | g(x) ≥ t}) using observations where randomness is involved. Depending on the context, the function g can be a density [START_REF] Hartigan | Estimation of a convex density contour in two dimensions[END_REF][START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF]Cadre, 2006;[START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF]Chen et al., 2017), a cumulative distribution function (Di Bernardino et al., 2013, 2015) or a regression function which is the framework of this article. Let (X, Y ) be a pair of random variables taking value in R d × R.

The function r :

x → E [Y | X = x] is called the regression function of Y with respect to X. There are dierent applications of estimating L(t) := L r (t) = {x | r(x) ≥ t}. For example, in medical treatment, Y can be a variable characterizing the severity of a cancer. In certain cases, one compares Y to a threshold γ to choose between standard chemotherapy or aggressive chemotherapy. The problem is that measuring Y can be complicated, so one might hope to infer Y from a feature vector X of the patient where X can be obtained more easily. The problem then becomes the estimation of L(γ). Similarly, in economics, X can be demographic information concerning a person and Y can be his income. From a government point of view, it is relevant to estimate L(t) where t may be the poverty threshold or, on the contrary, a very high income threshold. For more details the reader is referred to [START_REF] Scott | Regression level set estimation via cost-sensitive classication[END_REF].

Despite the many potential applications, the estimation of the level sets of the regression function has not been widely studied. [START_REF] Willett | Minimax optimal level-set estimation[END_REF] obtained minimax rates (for dierent smoothness classes) for estimators based on recursive dyadic partitions. [START_REF] Scott | Regression level set estimation via cost-sensitive classication[END_REF] used a cost sensitive approach and a dierent measure of risk. Cavalier (1997) and [START_REF] Polonik | Estimation of regression contour clusters: an application of the excess mass approach to regression[END_REF] used estimators based on the maximization of the excess mass. Cavalier demonstrated asymptotic minimax rate of convergence for piecewise polynomial estimators using smoothness assumptions on the boundary of the level sets. [START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF] used a dierent approach and constructed a plug-in estimator L n (t) dened by L n (t) = {x ∈ R d : r n (x) ≥ t}, where r n (x) is the kernel estimator of the regression. The main advantage of this estimator lies in the simplicity of its calculation, inherited from the plug-in approach. Moreover, this estimator does not require strong assumptions on the shape of level sets. The error is investigated in term of the volume of the symmetrical dierence between the real and the estimated level sets

d λ (L n (t), L(t)) = λ (L n (t)∆L(t)) , where L n (t)∆L(t) = (L n (t) ∩ L C (t)) ∪ (L C n (t) ∩ L(t))
and λ is a measure on R d (for example the Lebesgue measure). The estimator is shown to be consistent with

E λ(L n (t)∆L(t)) = O(1/ √ nh d ).
To our knowledge, the exact asymptotic behavior of the Lebesgue measure of the volume of the symmetric dierence is still unknown for the regression function whereas an exact asymptotic limit has been obtained under reasonable assumptions by Cadre (2006) for the density case. Thus, our objective is to give exact asymptotic rate and exact asymptotic limit in the regression case.

Section 2 is devoted to denitions and notations. In Section 3, we state the exact asymptotic rate and limit for the regression framework. Then, we extend this result to the case of an unknown level t. Proofs are sketched and gathered in Section 4.

2 Denitions, notations and assumptions

Let (X, Y ) be a pair of random variables taking values in R d × J where d ≥ 2 and J is a bounded subset of R. Suppose that X has a density f and let r

(x) = E[Y |X = x].
Let K be a probability density on R d with K = K 2 < ∞ and denote by r n the corresponding kernel estimation of r, that is

r n (x) =        φn(x) fn(x) if f n (x) > 0; 0 otherwise, (1) 
where • Assumptions on (X, Y ) :

φ n (x) = 1 nh d n i=1 Y i K x-Xi h and f n (x) = 1 nh d n i=1 K x-Xi h with h = h(n) →
A0 (Denition of t -) For all t ∈ Θ there exists inf r ≤ t -≤ t such that L(t -) is compact;

A1 The functions r and f belong to class C 2 (R d ) and ∀t ∈ Θ, inf

L(t -) f > 0; A2 For all t ∈ Θ, inf r -1 (t)
∇r > 0;

A3 The function q(x) = Var (Y |X = x) belongs to class C 2 and satises inf r -1 (Θ) q > 0.

• Assumptions on the kernel and bandwidth :

B1 The kernel K belongs to the class C 2 , has compact support which we suppose to be contained in B(0, 1) and satises K(x) = K(-x);

B2 The bandwidth satises nh d log 8 n → ∞ and nh min(d+4,2d) log 8 n → 0.

Note that A0 is a standard assumption in the theory of set estimation. Indeed, it is very dicult to measure errors if we try to estimate an unbounded set. Assumption A2 means that r has no plateau in levels around t.

If r had a plateau at level t, then even a very good estimator of r (in the sense that |r n -r| is small) might still produce a bad estimator of L(t). Note that under B2, the bias is dominated by the variance. This is a not ideal but acceptable setting in statistics in general and in kernel estimation in particular, as mentioned in Cadre (2006).

3 Theoretical results

Known t

We rst consider the case where the level t is known and obtain a rate of consistency for the volume of the symmetric dierence λ(L n (t)∆L(t)) :

Theorem 1. Under assumptions A0 to B2, we have for d ≥ 2

√ nh d λ(L n (t)∆L(t)) P → 2 K π r -1 {t} q/f ∇r dH, (2) 
and

√ nh d E [λ (L n (t)∆L(t))] → 2 K π r -1 {t} q/f ∇r dH (3)
where H denotes the (d -1)-dimensional Hausdor measure on R d [START_REF] Evans | Measure theory and ne properties of functions[END_REF].

This theorem gives the exact asymptotic limit for the Lebesgue measure of the symmetric dierence between the true level set L(t) and the estimated set L n (t). Note that ( 2) is a natural extension of Theorem 2.1 in Cadre ( 2006) to the regression case and that ( 3) is an improvment of Theorem 2.1 in [START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF] where only a convergence rate of O( √ nh d ) is proved.

Unknown t

We now consider the problem of estimating L(t) when t is unknown because it is dened via a probability p such that P (r(X) ≥ t) = p. We dene an estimator t n for t and the estimator for L(t) becomes L n (t n ). This denition of t can be of interest for practical applications, for example, when an insurance company wishes to focus on cost levels for unlikely risk factor values. In this case, t denes a level such that the set L(t) of risk values for which the cost is greater than this level is of probability P(L(t)) = p. In this spirit, we can mention the hydrology application presented in Di [START_REF] Di Bernardino | Estimating covariate functions associated to multivariate risks: a level set approach[END_REF]. For this problem, we need a more restrictive bandwidth assumption (which implies assumption B2):

B2' d ≥ 3 and the bandwidth satises nh d+2 log n → ∞ and nh min(d+4,2d) log 8 n → 0.

Note that this assumption excludes the case d = 2, contrary to B2, and that a problem of similar nature occurs in Cadre ( 2006) when an unknown level is considered.

Theorem 2. Dene the function P by P (u) = P (r(X) ≥ u) and let

Θ s = [s 1 , s 2 ] be a strict subinterval of Θ.
Let p be such that p ∈ P (Θ s ) and let t be such that P (t) = p. Then, under assumptions A0-B2':

1. Almost surely for n > n 0 = n 0 (ω), there exists an unique t n such that L(t -) f n 1 rn≥tn = p. In particular,

P ∃! t n s.t. L(t -) f n 1 rn≥tn = p → 1;
2. We have t n a.s.

→ t;

3. We have

√ nh d λ [L n (t n )∆L(t)] P → 2 K π r -1 {t} q/f ∇r dH.
Remark that to compute this estimation in practice, we propose to replace L(t -) in the integral by the smallest compact d dimensional cube containing all the data set. Furthermore, we can note that even if the problem of estimating L(t) where t is unknown seems to be more dicult, the convergence rate stays the same.

Discussion of the results

First of all, note that the convergence speed and the exact form of the limit are similar in the two theorems.

Moreover if we consider the restrictions on the bandwidth we see that the best convergence rate we can get

is O n 2 d+4
up to some log n factor. We are in a situation similar to Cadre (2006) with a clear curse of dimensionality.

• The term q/f in the asymptotic limit is natural: estimating L(t) is easier when the variability is low and the density is high;

• Note that in the trivial case q = 0 everywhere, Y would be a deterministic function of X. Estimating L(t) would be a lot easier and thus we would have a faster convergence speed than √ nh d ;

• The exact limit depends on an integral over r -1 {t}. This is not surprising because r -1 {t} corresponds to the boundary of L(t) which is the place where the estimation is more dicult.

The results presented in Theorems 1 and 2 provide a natural and elegant extension of the results presented in (Cadre, 2006;[START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF]. However a nice perspective would be to get a asymptotic normality as the one obtained in [START_REF] Polonik | Estimation of regression contour clusters: an application of the excess mass approach to regression[END_REF] in the density function case. In a more practical perspective, addressing the problems of the choice of the bandwidth and of the estimation of the integral r -1 {t} √ q/f ∇r dH using the recent works of [START_REF] Doss | Bandwidth selection for kernel density estimators of multivariate level sets and highest density regions[END_REF]; [START_REF] Qiao | Asymptotics and optimal bandwidth selection for nonparametric estimation of density level sets[END_REF][START_REF] Qiao | Nonparametric estimation of surface integrals on level sets[END_REF] would be of great interest.

Proofs

Proof of Theorem 1

In all this section, c will denote generic constants whose values can change from line to line.

Sketch of the proof :

By denition of the symmetric dierence, one can write λ(L n (t)∆L(t)) = {r<t}∩L(t -) 1 rn(x)≥t dx + {r>t}∩L(t -) 1 rn(x)<t dx. We focus on the rst term as the second one can be treated similarly. One can approximate the integral of 1 rn(x)≥t over {r < t} ∩ L(t -) by the integral of 1 rn(x)≥t over V t n = {r ∈ [t -Γ n , t]}, where Γ n is some small number using Lemma 3 (i.e. Γ n := Γ log n nh d ).

So we only need to show that √ nh d V t n 1 rn(x)≥t dx tends in probability to some explicit number c. This can be derived by showing that its expectation tends to c and its variance tends to 0. By Fubini's theorem, one can 

write E √ nh d V t n 1 rn(x)≥t dx as √ nh d V t n P (r n (x) ≥ t) dx.
Var √ nh d V t n P (r n (x) ≥ t) dx = nh d (V t n ) 2 P (r n (x) ≥ t, r n (y) ≥ t) -P (r n (x) ≥ t) P (r n (y) ≥ t) dx dy. Recall that r n (x) = n i=1 Y i K x-Xi h n i=1 K x-Xi h
and that K has support in B(0, 1). This means that r n (x) only depends on X i if X i -x ≤ h and so r n (x) and r n (y) are "almost independent" if x -y ≥ 2h. One might therefore hope that P (r n (x) ≥ t, r n (y) ≥ t) -P (r n (x) ≥ t) P (r n (y) ≥ t) is small. In the proof of Proposition 3.2 in Cadre ( 2006), Cadre solved this problem by approximating P (f n (x) ≥ t, f n (y) ≥ t) -

P (f n (x) ≥ t) P (f n (y) ≥ t) in terms of C x,y (u, v) -C x (u)C y (v) (where C x,y , C
x and C y are respectively characteristic functions of (f n (x), f n (y)), f n (x) and f n (y)). Then he proved that C x,y (u, v) -C x (u)C y (v) is small. Unfortunately, this approach can not be generalized easily to the regression case.

In fact, even when x -y ≥ 2h, r n (x) and r n (y) are still dependent because the random variables N x and N y are not independent (where N x and N y are respectively the number of points belonging to B(x, h) and B(y, h) among X 1 , ..., X n ). Therefore, we study the dependence between r n (x) and r n (y) in Lemma 8.

Using this Lemma, Proposition 9 proves that Var √ nh d V t n P (r n (x) ≥ t) dx tends to 0, which concludes the proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, one has

√ nh d λ (L n (t)∆L(t)) -V t n 1 rn(x)≥t dx -V t n 1 rn(x)<t dx P → 0. Proposition 7 allows us to conclude that E √ nh d V t n 1 rn(x)≥t → K 2π r -1 {t} √ q/f ∇r dH, while Proposi- tion 9 gives Var √ nh d V t n 1 rn(x)≥t dx → 0. This ensures that √ nh d V t n 1 rn(x)≥t P → K 2π r -1 {t} q/f ∇r dH.
The same arguments applied to √ nh d V t n 1 rn(x)<t dx complete the proof.

Lemma 3. Let Γ > 0 be a constant such that

√ nh d P sup L(t -) |r n -r| > Γ log n nh d
→ 0 [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF][START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF]. Moreover dene

V t n = r -1 t -Γ log n nh d , t and V t n = r -1 t, t + Γ log n nh d .
Then, under the assumptions of Theorem 1, we have :

(i) √ nh d   λ (L n (t)∆L(t)) - V t n 1 rn(x)≥t dx - V t n 1 rn(x)<t dx    P → 0; (ii) √ nh d   Eλ (L n (t)∆L(t)) - V t n P (r n (x) ≥ t) dx - V t n P (r n (x) < t) dx    → 0. Remark. Using Prop A.2 of Cadre (2006), we have max λ(V t n ), λ(V t n ) ≤ c log n nh d . √ nh d r≤t-Γ log n nh d ∩L(t -) P (r n (x) ≥ t) dx ≤ √ nh d r≤t-Γ log n nh d ∩L(t -) P sup L(t -) |r n -r| ≥ Γ log n nh d dx ≤ L(t -) √ nh d P sup L(t -)
|r n -r| ≥ Γ log n nh d → 0 by Lemma 4.1. in [START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF] and, similarly √ nh d r>t+Γ log n nh d P (r n (x) < t) dx → 0. As we have

√ nh d Eλ (L n (t)∆L(t)) = √ nh d V t n P (r n (x) ≥ t) dx + √ nh d V t n P (r n (x) < t) dx + √ nh d r≤t-Γ log n nh d ∩L(t -) P (r n (x) ≥ t) dx + √ nh d r>t+Γ log n nh d P (r n (x) < t) dx,
we have (ii).

Lemma 4. Let V n (x, t) = Var (Y -t) K x-X h and set τn (x) = (tf (x) -φ(x)) nh d Kf (x)[q(x)+(r(x)-t) 2 ]
. Then, under the assumptions of Theorem 1, [START_REF] Laloë | Nonparametric estimation of regression level sets using kernel plug-in estimator[END_REF] and Prop A.2. in Cadre ( 2006), we have

√ nh d V t n P (r n (x) ≥ t) -V t n Φ (τ n (x)) dx → 0. Proof. Set τ n (x) = (tEf n (x) -Eφ n (x)) nh d Vn(x,t)h -d . Using Lemma 4.1. in
√ nh d V t n P (r n (x) ≥ t) dx - V t n Φ (τ n (x)) dx ≤ √ nh d V t n sup V t n P (r n (x) ≥ t) -Φ (τ n (x)) ≤ √ nh d c log n nh d c √ nh d = c log n nh d → 0 under assumptions on h. ( 4 
)
Straightforward calculations show that

V n (x, t)h -d -Kf q + (r -t) 2 (x) ≤ ch 2 , ∀n, ∀x ∈ V t n and
(5)

|Ef n (x) -f (x)| ≤ ch 2 , |Eφ n (x) -φ(x)| ≤ ch 2 , ∀x ∈ r -1 (Θ). (6) 
Therefore, for all x ∈ V t n ,

1 √ nh d |τ n (x) -τn (x)| ≤ |tEf n -Eφ n | 1 V n (x, t)h -d - 1 Kw(x) + |t (Ef n -f ) -(Eφ n -φ)| 1 Kw(x) ≤ c Kw(x) -V n (x, t)h -d V n (x, t)h -d Kw(x) V n (x, t)h -d + Kw(x) + ch 2 1 Kw(x)
≤ ch 2 by ( 5), A1 and A3.

Finally, using Lipschitz property of Φ,

√ nh d V t n Φ (τ n (x)) dx -V t n Φ (τ n (x)) dx ≤ c nh d+4 log n → 0.
This convergence and (4) conclude the lemma.

Lemma 5. Let a n (x) = (tf (x) -φ(x))

nh d Kf (x)q(x) = (t -r(x)) nh d f (x)
Kq(x) . Then, under the assumptions of Theorem 1,

√ nh d V t n Φ (τ n (x)) dx -V t n Φ (a n (x)) dx → 0.
Proof. We have

√ nh d V t n Φ (τ n (x)) dx - V t n Φ (a n (x)) dx ≤ c √ nh d V t n sup V t n |tf -φ| nh d Kf 1 q + (r -t) 2 - 1 √ q by Lipschitz property of Φ ≤ c nh d log n sup V t n (r -t) 2 using that V t n ≤ c log n nh d and inf r -1 (Θ) q > 0 ≤ c log 3 n nh d by the denition of V t n ,
which tends to 0 by assumptions on h, hence the lemma. , we have

{x|u ≥ a n (x), x ∈ V t n } = x|r(x) ∈ t -u b(x) nh d , t .
Proof. By the continuity of r, r -1 [t - * , t

+ * ] is a compact set contained in the open set r -1 ]t -2 * , t + 2 * [.
By proposition 2.26 in [START_REF] Lee | Introduction to smooth manifolds[END_REF], there exists a nonnegative function p such that p = 1 on r -1 [t - * , t + * ] and the support of p is contained in r -1 ]t -2 * , t + 2 * [. By A1 and A3, the function Kq f is bounded on r -1 (Θ) between two strictly positive numbers denoted b and b. Then the function b(x) dened as follows satises our requirements:

b(x) =        Kq(x) f (x) -b p(x) + b if x ∈ r -1 ]t -3 * , t + 3 * [ ; b otherwise.
For the second point, recall that on

V t n , a n (x) = (t -r(x)) nh d b(x) so on V t n , we have u ≥ a n (x) ⇐⇒ r(x) ≥ t -u b(x) nh d . So we have easily {x|u ≥ a n (x), x ∈ V t n } ⊂ x|r(x) ∈ t -u b(x) nh d , t . Inversely, let x be such that r(x) ∈ t -u b(x) nh d , t . Then r(x) ≥ t -u b(x) nh d ≥ t -Γ b(x) log n bnh d (by assumptions on u) ≥ t-Γ log n nh d . This means that x ∈ V t n and thus x|r(x) ∈ t -u b(x) nh d , t ⊂ {x|u ≥ a n (x), x ∈ V t n }. Proposition 7.
Under the assumptions of Theorem 1, we have

√ nh d V t n P (r n (x) ≥ t) dx → K 2π r -1 {t} √ q/f ∇r dH and √ nh d E [λ (L n (t)∆L(t))] → 2 K π r -1 {t} √ q/f ∇r dH. √ nh d V t n Φ (a n (x)) dx = √ nh d Γ log n b 0 Φ (u) R 1 u≥an(x) 1 x∈V t n dx du + √ nh d ∞ Γ log n b Φ (u) R 1 u≥an(x) 1 x∈V t n dx du := I 1 + I 2 . (7) 
Using Lemma 6, a generalization of Lemma 3.2 and Propositions A.1 and A.2 of Cadre ( 2006), Lebesgue's dominated convergence theorem gives

I 1 → ∞ 0 Φ (u)du r -1 {t} √ b ∇r dH = 1 2π r -1 {t} √ b ∇r dH = K 2π r -1 {t} q/f ∇r dH.
We also have that

I 2 ≤ √ nh d ∞ Γ log n b Φ (u) du R 1 x∈V t n dx ≤ c √ log n c √ log n 1 u 3 du → 0. Using (7) this leads us to √ nh d V t n Φ(a n (x)) dx → K 2π r -1 {t} √ q/f
∇r dH. Lemma 3, 4 and 5 end the proof.

Lemma 8. Let x, y ∈ R d such that x -y ≥ 2h and put N x = n i=1 1 Xi∈B(x;h) . Let D x = P (X ∈ B(x, h)), then we know that D x = B(x,h) f (u) du ≤ αh d where α does not depend neither on x nor on n. Then, under the assumptions of Theorem 1, we have lim n→∞ J n = 0 where J n = sup Proof. Let (x n ), (y n ), (u n ) and (v n ) be four sequences such that x n -y n ≥ 2h and u n , v n ≤ 2αnh d . It is sucient to show that

P (N xn = u n , N yn = v n ) P (N xn = u n ) P (N yn = v n ) → 1.
Using the denitions of N x and D x , this quotient can be rewritten as

(n -u n )!(n -v n )! n!(n -u n -v n )! (1 -D xn -D yn ) n-un-vn (1 -D xn ) n-un (1 -D yn ) n-vn .
From the Stirling formula, the rst term is equivalent to

1 -un n n-un 1 -vn n n-vn 1 -un+vn n n-un-vn
when n → ∞. Thus, one only needs to prove the following limits:

1 -un n n-un 1 -vn n n-vn 1 -un+vn n n-un-vn → 1 and (1 -D xn ) n-un (1 -D yn ) n-vn (1 -D xn -D yn ) n-un-vn → 1.
The left hand of the rst limit can be written as

1 -un+vn n un+vn 1 -un n un 1 -vn n vn 1 + u n v n /n 2 1 -un+vn n n := A 1 A 2 × A 3 × A 4 .
By using straightforward calculations and the fact that u n , v n ≤ 2αnh d , one can show that A i → 1, ∀i ∈ {1, 2, 3, 4}, thus nish the demonstration of the lemma.

Proposition 9. Under the assumptions of Theorem 1, we have Var

√ nh d V t n 1 rn(x)≥t dx → 0.
Proof. First, one has

Var √ nh d V t n 1 rn(x)≥t dx = nh d (V t n ) 2 P (r n (x) ≥ t, r n (y) ≥ t) -P (r n (x) ≥ t) P (r n (y) ≥ t) dx dy. (8) Now, set S n = {x, y ∈ V t n | x -y ≥ 2h} and S n = {x, y ∈ V t n | x -y ≤ 2h}. Then nh d Sn P (r n (x) ≥ t, r n (y) ≥ t) -P (r n (x) ≥ t) P (r n (y) ≥ t) dx dy ≤ cnh d log n nh d h d → 0, (9) 
whereas, by using straightforward calculations, one can rewrite the integral over S n as

nh d Sn u,v Q x,u Q y,v (P (N x = u, N y = v) -P (N x = u) P (N y = v)) dx dy (10) with Q x,u = P u i=1 YiK( x-X i h ) u i=1 K( x-X i h ) ≥ t X 1 , ..., X u ∈ B(x; h) . Moreover nh d Sn u∨v≥2αnh d |P (N x = u, N y = v) -P (N x = u) P (N y = v)| dx dy ≤ n 2 h d Sn P N x ≥ 2αnh d + P N y ≥ 2αnh d dx dy. (11) 
Observe that

P N x ≥ 2αnh d ≤ P N x ≥ nD x + αnh d where D x is dened in Lemma 8 ≤ exp - α 2 n 2 h 2d 2nD x + 2 3 αnh d by using N x ∼ Binomial(n, D x )
≤ e -1 3 αnh d using Bernstein's inequality (see Theorem 1 in [START_REF] Janson | On concentration of probability[END_REF]). With (11), this leads us to

nh d Sn u∨v≥2αnh d |P (N x = u, N y = v) -P (N x = u) P (N y = v)| dx dy ≤ cn log ne -1 3 αnh d → 0 (12) 
as nh d log n → ∞. We also have that

nh d Sn u,v≤2αnh d Q x,u P (N x = u) Q y,v P (N y = v) P (N x = u, N y = v) P (N x = u) P (N y = v) -1 dx dy = J n √ nh d V t n P (r n (x) ≥ t) dx 2 .
arguments as in the previous proof one can show that it converges to 0. Therefore we get P (t n k ) → P (t) which leads to t n k → t. As this conclusion is valid for any convergent subsequence of (t n ), we have t n → t.

Lemma 12. Under assumptions of Theorem 2, we have 

√ nh d L(t -) f (x) 1 r(x)≥t -1 rn(x)≥t dx P → 0. Proof. Write √ nh d L(t -) f (x) 1 r(x)≥t -1 rn(x)≥t dx = √ nh d L(t -) f (x) 1 r(x)≥t>rn(x) -1 rn(x)

  0 being the bandwidth parameter. We use λ to denote the Lebesgue measure and λ m the measure induced by a bounded function m in the sense that λ m (S) = m1 x∈S dx for measurable sets S. Φ denotes the cumulative distribution function of the standard Gaussian distribution N (0, 1) and c some strictly positive constant whose values may vary from line to line. From now on, Θ ⊂ (inf r, sup r) is an open interval. Let us introduce some assumptions :

Lemma 6 .

 6 Let * > 0 such that [t -4 * , t + 4 * ] ⊂ Θ. Under the assumptions of Theorem 1, there exists a function b ∈ C 2 R d , R bounded between two strictly positive numbers b and b such that b(x) = Kq(x) f (x) on r -1 [t - * , t + * ] and lim x→∞ ∇b(x) = 0. Furthermore ∀n and ∀u ≤ Γ log n b

  Then, by using Berry-Esseen inequality and properties of kernel estimators, one can give an explicit formula to approximate P (r n (x) ≥ t) with Lemmas 4

	and 5. This explicit formula eases the calculation of the limit of	√	nh d	V t n	P (r n (x) ≥ t) dx which is provided
	in Proposition 7. Then, the variance term is treated in Proposition 9. Again by Fubini's theorem, one can
	show that				
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										nh d	happens with proba-
	f (x)1 rn(x)<t dx so the f (x)1 rn(x)≥t dx bility tending to 1. n lemma will be proved if we have that √ nh d V t n f (x)1 rn(x)<t dx -√ nh d V t n
									√
						P → 2 π K	r -1 {t}	q/f ∇r dH.
	Proof. Straightforward nh The calculations show √ that rst term tends in probability to 0 by	Lemma	4.2	in	Cadre	(2006).
	For	the	second	term,	we	have	c √	nh d	L(t
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with J n dened in Lemma 8. This last quantity tends to 0 according to Lemma 8 and Proposition 7. Using that convergence and (8), ( 9), ( 10) and ( 12) end the proof.

Proof of Theorem 2

Proof of Theorem 2. The theorem follows from Propositions 10, 11 and 13.

Proposition 10. Let P (u) = L(t -) f (x)1 r(x)≥u dx for u in [t -, sup r] and let Θ s = [s 1 , s 2 ] be a strict subinterval of Θ. Then, under the assumptions of Theorem 2, for every p in P (Θ s ) and almost surely for n > n 0 = n 0 (ω), there exists an unique t n such that L(t -) f n (x)1 rn(x)≥tn dx = p. Moreover, t n ∈ Θ.

|r -r n |. In the second case, we also have u

Thus

by using Cadre ( 2006) and the fact that n → 0 by Theorem II.3, Chapter 5 of Bosq and Lecoutre (1987).

So, we conclude that P n (u) → P (u) almost surely for every u in Θ z .

Let t be such that P (t) = p. To show unique existence of a value t n such that P n (t n ) = p, we need to justify three points: a/ P n is strictly decreasing on [z 1 , z 2 ]; b/ P n (z 1 ) ≥ p and P n (z 2 ) ≤ p and c/

. By continuity of r, there exists x ∈ M 1 and > 0 such that B(x, ) ⊂ M 1 and r (B(x, )) ∈ 2u+u 3 , u+2u

3

. Uniform convergence of r n to r implies that r n (B(x, )

by denition of P n , and a/ is proved. Using the same argument, P (t) is a strictly decreasing function on