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Abstract

The asymptotic behavior of a plug-in kernel estimator of the regression level sets is studied. The

exact asymptotic limit of the symmetric di�erence is derived for a given level and for an unknown level

corresponding to a �xed probability.

1 Introduction

Level set estimation is a general statistical framework where one has to estimate the t-level set of a function g

(i.e. the set {x | g(x) ≥ t}) using observations where randomness is involved. Depending on the context, the

function g can be a density (Hartigan, 1987; Tsybakov, 1997; Cadre, 2006; Mason and Polonik, 2009; Chen

et al., 2017), a cumulative distribution function (Di Bernardino et al., 2013, 2015) or a regression function

which is the framework of this article. Let (X,Y ) be a pair of random variables taking value in Rd × R.

The function r : x 7→ E [Y | X = x] is called the regression function of Y with respect to X. There are

di�erent applications of estimating L(t) := Lr(t) = {x | r(x) ≥ t}. For example, in medical treatment, Y

can be a variable characterizing the severity of a cancer. In certain cases, one compares Y to a threshold

γ to choose between standard chemotherapy or aggressive chemotherapy. The problem is that measuring Y

can be complicated, so one might hope to infer Y from a feature vector X of the patient where X can be

obtained more easily. The problem then becomes the estimation of L(γ). Similarly, in economics, X can be

demographic information concerning a person and Y can be his income. From a government point of view,

it is relevant to estimate L(t) where t may be the poverty threshold or, on the contrary, a very high income

threshold. For more details the reader is referred to Scott and Davenport (2007).

Despite the many potential applications, the estimation of the level sets of the regression function has not

been widely studied. Willett and Nowak (2007) obtained minimax rates (for di�erent smoothness classes) for
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estimators based on recursive dyadic partitions. Scott and Davenport (2007) used a cost sensitive approach

and a di�erent measure of risk. Cavalier (1997) and Polonik and Wang (2005) used estimators based on

the maximization of the excess mass. Cavalier demonstrated asymptotic minimax rate of convergence for

piecewise polynomial estimators using smoothness assumptions on the boundary of the level sets. Laloë and

Servien (2013) used a di�erent approach and constructed a plug-in estimator Ln(t) de�ned by Ln(t) = {x ∈

Rd : rn(x) ≥ t}, where rn(x) is the kernel estimator of the regression. The main advantage of this estimator

lies in the simplicity of its calculation, inherited from the plug-in approach. Moreover, this estimator does not

require strong assumptions on the shape of level sets. The error is investigated in term of the volume of the

symmetrical di�erence between the real and the estimated level sets

dλ(Ln(t),L(t)) = λ (Ln(t)∆L(t)) ,

where Ln(t)∆L(t) = (Ln(t) ∩ LC(t)) ∪ (LCn (t) ∩ L(t)) and λ is a measure on Rd (for example the Lebesgue

measure). The estimator is shown to be consistent with E λ(Ln(t)∆L(t)) = O(1/
√
nhd). To our knowledge,

the exact asymptotic behavior of the Lebesgue measure of the volume of the symmetric di�erence is still

unknown for the regression function whereas an exact asymptotic limit has been obtained under reasonable

assumptions by Cadre (2006) for the density case. Thus, our objective is to give exact asymptotic rate and

exact asymptotic limit in the regression case.

Section 2 is devoted to de�nitions and notations. In Section 3, we state the exact asymptotic rate and limit for

the regression framework. Then, we extend this result to the case of an unknown level t. Proofs are sketched

and gathered in Section 4.

2 De�nitions, notations and assumptions

Let (X,Y ) be a pair of random variables taking values in Rd × J where d ≥ 2 and J is a bounded subset of

R. Suppose that X has a density f and let r(x) = E[Y |X = x]. Let K be a probability density on Rd with

K̃ =
∫
K2<∞ and denote by rn the corresponding kernel estimation of r, that is

rn(x) =


φn(x)
fn(x) if fn(x) > 0;

0 otherwise,

(1)

where φn(x) = 1
nhd

n∑
i=1

YiK
(
x−Xi

h

)
and fn(x) = 1

nhd

n∑
i=1

K
(
x−Xi

h

)
with h = h(n)→ 0 being the bandwidth

parameter. We use λ to denote the Lebesgue measure and λm the measure induced by a bounded function m

in the sense that λm(S) =
∫
m1x∈Sdx for measurable sets S. Φ denotes the cumulative distribution function

of the standard Gaussian distribution N (0, 1) and c some strictly positive constant whose values may vary
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from line to line. From now on, Θ ⊂ (inf r, sup r) is an open interval. Let us introduce some assumptions :

• Assumptions on (X,Y ) :

A0 (De�nition of t−) For all t ∈ Θ there exists inf r ≤ t− ≤ t such that L(t−) is compact;

A1 The functions r and f belong to class C2(Rd) and ∀t ∈ Θ, inf
L(t−)

f > 0;

A2 For all t ∈ Θ, inf
r−1(t)

‖∇r‖ > 0;

A3 The function q(x) = Var (Y |X = x) belongs to class C2 and satis�es infr−1(Θ) q > 0.

• Assumptions on the kernel and bandwidth :

B1 The kernel K belongs to the class C2, has compact support which we suppose to be contained in

B(0, 1) and satis�es K(x) = K(−x);

B2 The bandwidth satis�es nhd

log8 n
→∞ and nhmin(d+4,2d) log8 n→ 0.

Note that A0 is a standard assumption in the theory of set estimation. Indeed, it is very di�cult to measure

errors if we try to estimate an unbounded set. Assumption A2 means that r has no plateau in levels around t.

If r had a plateau at level t, then even a very good estimator of r (in the sense that |rn − r| is small) might

still produce a bad estimator of L(t). Note that under B2, the bias is dominated by the variance. This is a

not ideal but acceptable setting in statistics in general and in kernel estimation in particular, as mentioned in

Cadre (2006).

3 Theoretical results

3.1 Known t

We �rst consider the case where the level t is known and obtain a rate of consistency for the volume of the

symmetric di�erence λ(Ln(t)∆L(t)) :

Theorem 1. Under assumptions A0 to B2, we have for d ≥ 2

√
nhdλ(Ln(t)∆L(t))

P→

√
2K̃

π

∫
r−1{t}

√
q/f

‖∇r‖
dH, (2)

and

√
nhdE [λ (Ln(t)∆L(t))]→

√
2K̃

π

∫
r−1{t}

√
q/f

‖∇r‖
dH (3)

where H denotes the (d− 1)-dimensional Hausdor� measure on Rd (Evans and Gariepy, 2015).
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This theorem gives the exact asymptotic limit for the Lebesgue measure of the symmetric di�erence between

the true level set L(t) and the estimated set Ln(t). Note that (2) is a natural extension of Theorem 2.1

in Cadre (2006) to the regression case and that (3) is an improvment of Theorem 2.1 in Laloë and Servien

(2013) where only a convergence rate of O(
√
nhd) is proved.

3.2 Unknown t

We now consider the problem of estimating L(t) when t is unknown because it is de�ned via a probability p

such that P (r(X) ≥ t) = p. We de�ne an estimator tn for t and the estimator for L(t) becomes Ln(tn). This

de�nition of t can be of interest for practical applications, for example, when an insurance company wishes

to focus on cost levels for unlikely risk factor values. In this case, t de�nes a level such that the set L(t) of

risk values for which the cost is greater than this level is of probability P(L(t)) = p. In this spirit, we can

mention the hydrology application presented in Di Bernardino et al. (2015). For this problem, we need a more

restrictive bandwidth assumption (which implies assumption B2):

B2' d ≥ 3 and the bandwidth satis�es nhd+2

logn →∞ and nhmin(d+4,2d) log8 n→ 0.

Note that this assumption excludes the case d = 2, contrary to B2, and that a problem of similar nature

occurs in Cadre (2006) when an unknown level is considered.

Theorem 2. De�ne the function P by P (u) = P (r(X) ≥ u) and let Θs = [s1, s2] be a strict subinterval of

Θ. Let p be such that p ∈ P (Θs) and let t be such that P (t) = p. Then, under assumptions A0-B2':

1. Almost surely for n > n0 = n0(ω), there exists an unique tn such that
∫
L(t−)

fn1rn≥tn = p. In

particular, P
(
∃! tn s.t.

∫
L(t−)

fn1rn≥tn = p
)
→ 1;

2. We have tn
a.s.→ t;

3. We have
√
nhdλ [Ln(tn)∆L(t)]

P→

√
2K̃

π

∫
r−1{t}

√
q/f

‖∇r‖
dH.

Remark that to compute this estimation in practice, we propose to replace L(t−) in the integral by the smallest

compact d dimensional cube containing all the data set. Furthermore, we can note that even if the problem

of estimating L(t) where t is unknown seems to be more di�cult, the convergence rate stays the same.

3.3 Discussion of the results

First of all, note that the convergence speed and the exact form of the limit are similar in the two theorems.

Moreover if we consider the restrictions on the bandwidth we see that the best convergence rate we can get

is O
(
n

2
d+4

)
up to some log n factor. We are in a situation similar to Cadre (2006) with a clear curse of

dimensionality.

4



Let us now discuss the form of the exact limit :

• The term
√
q/f in the asymptotic limit is natural: estimating L(t) is easier when the variability is low

and the density is high;

• Note that in the trivial case q = 0 everywhere, Y would be a deterministic function of X. Estimating

L(t) would be a lot easier and thus we would have a faster convergence speed than
√
nhd;

• The exact limit depends on an integral over r−1 {t}. This is not surprising because r−1 {t} corresponds

to the boundary of L(t) which is the place where the estimation is more di�cult.

The results presented in Theorems 1 and 2 provide a natural and elegant extension of the results presented in

(Cadre, 2006; Laloë and Servien, 2013). However a nice perspective would be to get a asymptotic normality

as the one obtained in Polonik and Wang (2005) in the density function case. In a more practical perspective,

addressing the problems of the choice of the bandwidth and of the estimation of the integral
∫
r−1{t}

√
q/f

‖∇r‖ dH

using the recent works of Doss and Weng (2018); Qiao (2018, 2019) would be of great interest.

4 Proofs

4.1 Proof of Theorem 1

In all this section, c will denote generic constants whose values can change from line to line.

Sketch of the proof : By de�nition of the symmetric di�erence, one can write λ(Ln(t)∆L(t)) =∫
{r<t}∩L(t−)

1rn(x)≥t dx +
∫
{r>t}∩L(t−)

1rn(x)<t dx. We focus on the �rst term as the second one can be

treated similarly. One can approximate the integral of 1rn(x)≥t over {r < t} ∩ L(t−) by the integral of

1rn(x)≥t over V tn = {r ∈ [t− Γn, t]}, where Γn is some small number using Lemma 3 (i.e. Γn := Γ
√

logn
nhd ).

So we only need to show that
√
nhd

∫
V t
n
1rn(x)≥t dx tends in probability to some explicit number c. This can

be derived by showing that its expectation tends to c and its variance tends to 0. By Fubini's theorem, one can

write E
(√

nhd
∫
V t
n
1rn(x)≥t dx

)
as
√
nhd

∫
V t
n
P (rn(x) ≥ t) dx. Then, by using Berry-Esseen inequality and

properties of kernel estimators, one can give an explicit formula to approximate P (rn(x) ≥ t) with Lemmas 4

and 5. This explicit formula eases the calculation of the limit of
√
nhd

∫
V t
n
P (rn(x) ≥ t) dx which is provided

in Proposition 7. Then, the variance term is treated in Proposition 9. Again by Fubini's theorem, one can

show that

Var

(
√
nhd

∫
V t
n

P (rn(x) ≥ t) dx

)
= nhd

∫∫
(V t

n)2

P (rn(x) ≥ t, rn(y) ≥ t)− P (rn(x) ≥ t)P (rn(y) ≥ t) dx dy.
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Recall that rn(x) =

∑n
i=1 YiK

(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) and that K has support in B(0, 1). This means that rn(x) only

depends on Xi if ‖Xi − x‖ ≤ h and so rn(x) and rn(y) are "almost independent" if ‖x− y‖ ≥ 2h. One

might therefore hope that P (rn(x) ≥ t, rn(y) ≥ t) − P (rn(x) ≥ t)P (rn(y) ≥ t) is small. In the proof of

Proposition 3.2 in Cadre (2006), Cadre solved this problem by approximating P (fn(x) ≥ t, fn(y) ≥ t) −

P (fn(x) ≥ t)P (fn(y) ≥ t) in terms of Cx,y(u, v) − Cx(u)Cy(v) (where Cx,y, Cx and Cy are respectively

characteristic functions of (fn(x), fn(y)), fn(x) and fn(y)). Then he proved that Cx,y(u, v)−Cx(u)Cy(v) is

small. Unfortunately, this approach can not be generalized easily to the regression case.

In fact, even when ‖x− y‖ ≥ 2h, rn(x) and rn(y) are still dependent because the random variables Nx

and Ny are not independent (where Nx and Ny are respectively the number of points belonging to B(x, h)

and B(y, h) among X1, ..., Xn). Therefore, we study the dependence between rn(x) and rn(y) in Lemma 8.

Using this Lemma, Proposition 9 proves that Var
(√

nhd
∫
V t
n
P (rn(x) ≥ t) dx

)
tends to 0, which concludes

the proof of Theorem 1. �

Proof of Theorem 1. By Lemma 3, one has
√
nhd

[
λ (Ln(t)∆L(t))−

∫
V t
n
1rn(x)≥t dx−

∫
V

t
n
1rn(x)<t dx

]
P→

0. Proposition 7 allows us to conclude that E
[√

nhd
∫
V t
n
1rn(x)≥t

]
→
√

K̃
2π

∫
r−1{t}

√
q/f

‖∇r‖ dH, while Proposi-

tion 9 gives Var
(√

nhd
∫
V t
n
1rn(x)≥t dx

)
→ 0. This ensures that

√
nhd

∫
V t
n

1rn(x)≥t
P→

√
K̃

2π

∫
r−1{t}

√
q/f

‖∇r‖
dH.

The same arguments applied to
√
nhd

∫
V t
n
1rn(x)<t dx complete the proof.

Lemma 3. Let Γ > 0 be a constant such that
√
nhdP

(
supL(t−) |rn − r| > Γ

√
logn
nhd

)
→ 0 (Einmahl and Ma-

son, 2005; Laloë and Servien, 2013). Moreover de�ne V tn = r−1

[
t− Γ

√
logn
nhd , t

]
and V tn = r−1

[
t, t+ Γ

√
logn
nhd

]
.

Then, under the assumptions of Theorem 1, we have :

(i)
√
nhd

λ (Ln(t)∆L(t))−
∫
V t
n

1rn(x)≥t dx−
∫
V t
n

1rn(x)<t dx

 P→ 0;

(ii)
√
nhd

Eλ (Ln(t)∆L(t))−
∫
V t
n

P (rn(x) ≥ t) dx−
∫
V t
n

P (rn(x) < t) dx

→ 0.

Remark. Using Prop A.2 of Cadre (2006), we have max
(
λ(V tn), λ(V tn)

)
≤ c
√

logn
nhd .
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Proof. Since the proofs are quite similar, we only deal with the point (ii) of Lemma 3. Note that

√
nhd

∫
{
r≤t−Γ

√
log n

nhd

}
∩L(t−)

P (rn(x) ≥ t) dx ≤
√
nhd

∫
{
r≤t−Γ

√
log n

nhd

}
∩L(t−)

P

(
sup
L(t−)

|rn − r| ≥ Γ

√
log n

nhd

)
dx

≤
∣∣L(t−)

∣∣√nhdP( sup
L(t−)

|rn − r| ≥ Γ

√
log n

nhd

)
→ 0 by Lemma 4.1. in Laloë and Servien (2013)

and, similarly
√
nhd

∫{
r>t+Γ

√
log n

nhd

} P (rn(x) < t) dx→ 0. As we have

√
nhdEλ (Ln(t)∆L(t)) =

√
nhd

∫
V t
n

P (rn(x) ≥ t) dx+
√
nhd

∫
V

t
n

P (rn(x) < t) dx

+
√
nhd

∫
{
r≤t−Γ

√
log n

nhd

}
∩L(t−)

P (rn(x) ≥ t) dx+
√
nhd

∫
{
r>t+Γ

√
log n

nhd

} P (rn(x) < t) dx,

we have (ii).

Lemma 4. Let Vn(x, t) = Var
(
(Y − t)K

(
x−X
h

))
and set τ̃n(x) = (tf(x)− φ(x))

√
nhd

K̃f(x)[q(x)+(r(x)−t)2]
.

Then, under the assumptions of Theorem 1,
√
nhd

(∫
V t
n
P (rn(x) ≥ t)−

∫
V t
n

Φ̄ (τ̃n(x))
)

dx→ 0.

Proof. Set τn(x) = (tEfn(x)− Eφn(x))
√

nhd

Vn(x,t)h−d . Using Lemma 4.1. in Laloë and Servien (2013) and

Prop A.2. in Cadre (2006), we have

√
nhd

∣∣∣∣∣
∫
V t
n

P (rn(x) ≥ t) dx−
∫
V t
n

Φ̄ (τn(x)) dx

∣∣∣∣∣ ≤ √nhd∣∣V tn∣∣ sup
V t
n

∣∣P (rn(x) ≥ t)− Φ̄ (τn(x))
∣∣

≤
√
nhd

(
c

√
log n

nhd

)
c√
nhd

= c

√
log n

nhd
→ 0 under assumptions on h. (4)

Straightforward calculations show that

∣∣∣Vn(x, t)h−d − K̃f
(
q + (r − t)2

)
(x)
∣∣∣ ≤ ch2,∀n, ∀x ∈ V tn and (5)

|Efn(x)− f(x)| ≤ ch2, |Eφn(x)− φ(x)| ≤ ch2,∀x ∈ r−1(Θ). (6)

Therefore, for all x ∈ V tn,

1√
nhd
|τn(x)− τ̃n(x)| ≤ |tEfn − Eφn|

∣∣∣∣∣∣ 1√
Vn(x, t)h−d

− 1√
K̃w(x)

∣∣∣∣∣∣+ |t (Efn − f)− (Eφn − φ)| 1√
K̃w(x)

≤ c

∣∣∣K̃w(x)− Vn(x, t)h−d
∣∣∣√

Vn(x, t)h−d
√
K̃w(x)

(√
Vn(x, t)h−d +

√
K̃w(x)

) + ch2 1√
K̃w(x)

≤ ch2 by (5), A1 and A3.

Finally, using Lipschitz property of Φ,
∣∣∣√nhd (∫V t

n
Φ̄ (τn(x)) dx−

∫
V t
n

Φ̄ (τ̃n(x))
)

dx
∣∣∣ ≤ c

√
nhd+4 log n→ 0.
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This convergence and (4) conclude the lemma.

Lemma 5. Let an(x) = (tf(x)− φ(x))
√

nhd

K̃f(x)q(x)
= (t− r(x))

√
nhdf(x)

K̃q(x)
. Then, under the assumptions of

Theorem 1,
√
nhd

(∫
V t
n

Φ̄ (τ̃n(x)) dx−
∫
V t
n

Φ̄ (an(x)) dx
)
→ 0.

Proof. We have

√
nhd

∣∣∣∣∣
∫
V t
n

Φ̄ (τ̃n(x)) dx−
∫
V t
n

Φ̄ (an(x)) dx

∣∣∣∣∣
≤ c
√
nhd

∣∣V tn∣∣ sup
V t
n

[
|tf − φ|

√
nhd

K̃f

∣∣∣∣∣ 1√
q + (r − t)2

− 1
√
q

∣∣∣∣∣
]

by Lipschitz property of Φ

≤ c
√
nhd log n sup

V t
n

(r − t)2 using that
∣∣V tn∣∣ ≤ c√ log n

nhd
and inf

r−1(Θ)
q > 0

≤ c

√
log3 n

nhd
by the de�nition of V tn,

which tends to 0 by assumptions on h, hence the lemma.

Lemma 6. Let ε∗ > 0 such that [t− 4ε∗, t+ 4ε∗] ⊂ Θ. Under the assumptions of Theorem 1, there ex-

ists a function b ∈ C2
(
Rd,R

)
bounded between two strictly positive numbers b and b̄ such that b(x) =

K̃q(x)
f(x) on r−1 [t− ε∗, t+ ε∗] and limx→∞∇b(x) = 0. Furthermore ∀n and ∀u ≤ Γ

√
log n

b
, we have

{x|u ≥ an(x), x ∈ V tn} =

{
x|r(x) ∈

[
t− u

√
b(x)
nhd , t

]}
.

Proof. By the continuity of r, r−1 [t− ε∗, t+ ε∗] is a compact set contained in the open set r−1 ]t− 2ε∗, t+ 2ε∗[.

By proposition 2.26 in Lee (2003), there exists a nonnegative function p such that p = 1 on r−1 [t− ε∗, t+ ε∗]

and the support of p is contained in r−1 ]t− 2ε∗, t+ 2ε∗[. By A1 and A3, the function K̃q
f is bounded on

r−1 (Θ) between two strictly positive numbers denoted b and b̄. Then the function b(x) de�ned as follows

satis�es our requirements:

b(x) =


(
K̃q(x)
f(x) − b

)
p(x) + b if x ∈ r−1 ]t− 3ε∗, t+ 3ε∗[ ;

b otherwise.

For the second point, recall that on V tn, an(x) = (t− r(x))
√

nhd

b(x) so on V tn, we have u ≥ an(x) ⇐⇒ r(x) ≥

t − u
√

b(x)
nhd . So we have easily {x|u ≥ an(x), x ∈ V tn} ⊂

{
x|r(x) ∈

[
t− u

√
b(x)
nhd , t

]}
. Inversely, let x be

such that r(x) ∈
[
t− u

√
b(x)
nhd , t

]
. Then r(x) ≥ t − u

√
b(x)

nhd
≥ t − Γ

√
b(x) log n

bnhd
(by assumptions on u)

≥ t−Γ
√

logn
nhd . This means that x ∈ V tn and thus

{
x|r(x) ∈

[
t− u

√
b(x)
nhd , t

]}
⊂ {x|u ≥ an(x), x ∈ V tn}.

Proposition 7. Under the assumptions of Theorem 1, we have
√
nhd

∫
V t
n
P (rn(x) ≥ t) dx →√

K̃
2π

∫
r−1{t}

√
q/f

‖∇r‖ dH and
√
nhdE [λ (Ln(t)∆L(t))]→

√
2K̃
π

∫
r−1{t}

√
q/f

‖∇r‖ dH.

8



Proof. We have

√
nhd

∫
V t
n

Φ̄ (an(x)) dx =
√
nhd

∫ Γ
√

log n

b

0

Φ′(u)

∫
R
1u≥an(x)1x∈V t

n
dxdu

+
√
nhd

∫ ∞
Γ
√

log n

b

Φ′(u)

∫
R
1u≥an(x)1x∈V t

n
dxdu := I1 + I2. (7)

Using Lemma 6, a generalization of Lemma 3.2 and Propositions A.1 and A.2 of Cadre (2006), Lebesgue's

dominated convergence theorem gives

I1 →
∫ ∞

0

Φ′(u)du

∫
r−1{t}

√
b

‖∇r‖
dH =

√
1

2π

∫
r−1{t}

√
b

‖∇r‖
dH =

√
K̃

2π

∫
r−1{t}

√
q/f

‖∇r‖
dH.

We also have that I2 ≤
√
nhd

∫∞
Γ
√

log n

b

Φ′(u) du
∫
R 1x∈V t

n
dx ≤ c

√
log n

∫
c
√

logn
1
u3 du → 0. Using (7) this

leads us to
√
nhd

∫
V t
n

Φ̄(an(x)) dx→
√

K̃
2π

∫
r−1{t}

√
q/f

‖∇r‖ dH. Lemma 3, 4 and 5 end the proof.

Lemma 8. Let x, y ∈ Rd such that ‖x− y‖ ≥ 2h and putNx =
∑n
i=1 1Xi∈B(x;h). LetDx = P (X ∈ B(x, h)),

then we know that Dx =
∫
B(x,h)

f(u) du ≤ αhd where α does not depend neither on x nor on n. Then,

under the assumptions of Theorem 1, we have limn→∞ Jn = 0 where Jn = sup
x,y∈Rd

‖x−y‖≥2h

u,v≤2αnhd

∣∣∣ P(Nx=u,Ny=v)
P(Nx=u)P(Ny=v) − 1

∣∣∣.

Proof. Let (xn), (yn), (un) and (vn) be four sequences such that ‖xn − yn‖ ≥ 2h and un, vn ≤ 2αnhd. It

is su�cient to show that
P (Nxn

= un, Nyn = vn)

P (Nxn = un)P (Nyn = vn)
→ 1. Using the de�nitions of Nx and Dx, this quotient

can be rewritten as
(n− un)!(n− vn)!

n!(n− un − vn)!

(1−Dxn −Dyn)
n−un−vn

(1−Dxn)
n−un (1−Dyn)

n−vn .

From the Stirling formula, the �rst term is equivalent to

(
1− un

n

)n−un
(
1− vn

n

)n−vn(
1− un+vn

n

)n−un−vn when n → ∞. Thus,

one only needs to prove the following limits:

(
1− un

n

)n−un
(
1− vn

n

)n−vn(
1− un+vn

n

)n−un−vn → 1 and
(1−Dxn)

n−un (1−Dyn)
n−vn

(1−Dxn −Dyn)
n−un−vn → 1.

The left hand of the �rst limit can be written as

(
1− un+vn

n

)un+vn(
1− un

n

)un
(
1− vn

n

)vn (1 +
unvn/n

2

1− un+vn
n

)n
:=

A1

A2 ×A3
×A4.

By using straightforward calculations and the fact that un, vn ≤ 2αnhd, one can show that Ai → 1,∀i ∈

{1, 2, 3, 4}, thus �nish the demonstration of the lemma.

Proposition 9. Under the assumptions of Theorem 1, we have Var
(√

nhd
∫
V t
n
1rn(x)≥t dx

)
→ 0.

9



Proof. First, one has

Var

(
√
nhd

∫
V t
n

1rn(x)≥t dx

)
= nhd

∫∫
(V t

n)2

P (rn(x) ≥ t, rn(y) ≥ t)− P (rn(x) ≥ t)P (rn(y) ≥ t) dxdy. (8)

Now, set Sn = {x, y ∈ V tn | ‖x− y‖ ≥ 2h} and S̃n = {x, y ∈ V tn | ‖x− y‖ ≤ 2h}. Then

∣∣∣∣∣∣∣nhd
∫∫
S̃n

P (rn(x) ≥ t, rn(y) ≥ t)− P (rn(x) ≥ t)P (rn(y) ≥ t) dxdy

∣∣∣∣∣∣∣ ≤ cnhd
√

log n

nhd
hd → 0, (9)

whereas, by using straightforward calculations, one can rewrite the integral over Sn as

∣∣∣∣∣∣nhd
∫∫
Sn

∑
u,v

Qx,uQy,v (P (Nx = u,Ny = v)− P (Nx = u)P (Ny = v)) dxdy

∣∣∣∣∣∣ (10)

with Qx,u = P
(∑u

i=1 YiK( x−Xi
h )∑u

i=1K( x−Xi
h )

≥ t
∣∣∣∣ X1, ..., Xu ∈ B(x;h)

)
. Moreover

nhd
∫∫
Sn

∑
u∨v≥2αnhd

|P (Nx = u,Ny = v)− P (Nx = u)P (Ny = v)|dxdy

≤ n2hd
∫∫
Sn

P
(
Nx ≥ 2αnhd

)
+ P

(
Ny ≥ 2αnhd

)
dx dy. (11)

Observe that

P
(
Nx ≥ 2αnhd

)
≤ P

(
Nx ≥ nDx + αnhd

)
where Dx is de�ned in Lemma 8

≤ exp

(
− α2n2h2d

2nDx + 2
3αnh

d

)
by using Nx ∼ Binomial(n,Dx)

≤ e− 1
3αnh

d

using Bernstein's inequality (see Theorem 1 in Janson (1999)). With (11), this leads us to

nhd
∫∫
Sn

∑
u∨v≥2αnhd

|P (Nx = u,Ny = v)− P (Nx = u)P (Ny = v)|dxdy ≤ cn log ne−
1
3αnh

d

→ 0 (12)

as nhd

logn →∞. We also have that

nhd
∫∫
Sn

∑
u,v≤2αnhd

Qx,uP (Nx = u)Qy,vP (Ny = v)

∣∣∣∣ P (Nx = u,Ny = v)

P (Nx = u)P (Ny = v)
− 1

∣∣∣∣dxdy

= Jn

(
√
nhd

∫
V t
n

P (rn(x) ≥ t) dx

)2

.

10



with Jn de�ned in Lemma 8. This last quantity tends to 0 according to Lemma 8 and Proposition 7. Using

that convergence and (8), (9), (10) and (12) end the proof.

4.2 Proof of Theorem 2

Proof of Theorem 2. The theorem follows from Propositions 10, 11 and 13.

Proposition 10. Let P (u) =
∫
L(t−)

f(x)1r(x)≥u dx for u in [t−, sup r] and let Θs = [s1, s2] be a strict

subinterval of Θ. Then, under the assumptions of Theorem 2, for every p in P (Θs) and almost surely for

n > n0 = n0(ω), there exists an unique tn such that
∫
L(t−)

fn(x)1rn(x)≥tn dx = p. Moreover, tn ∈ Θ.

Proof. De�ne Pn(u) =
∫
L(t−)

fn(x)1rn(x)≥u dx and let Θz = [z1, z2] be an interval such that Θs ( Θz ( Θ .

We have |P (u)− Pn(u)| ≤
∫

L(t−)

f(x)
∣∣1r(x)≥u − 1rn(x)≥u

∣∣dx+
∫

L(t−)

|f(x)− fn(x)|dx ≤ I1 + I2. As almost

surely fn → f uniformly on L(t−), we have
∫

L(t−)

|f(x)− fn(x)|dx→ 0. For I1, we note that 1r≥u − 1rn≥u

is only nonzero when r ≥ u > rn or rn ≥ u > r. In the �rst case, we have u− εn ≤ u ≤ r = rn + r − rn ≤

u + r − rn ≤ u + εn where εn = sup
L(t−)

|r − rn|. In the second case, we also have u − εn ≤ r ≤ u + εn.

Thus
∫

L(t−)

f(x)
∣∣1r(x)≥u − 1rn(x)≥u

∣∣dx ≤ ∫
L(t−)

f(x)1r(x)∈[u−εn,u+εn] dx ≤ λf
(
r−1 [u− εn, u+ εn]

)
→ 0

by using Cadre (2006) and the fact that εn → 0 by Theorem II.3, Chapter 5 of Bosq and Lecoutre (1987).

So, we conclude that Pn(u)→ P (u) almost surely for every u in Θz.

Let t be such that P (t) = p. To show unique existence of a value tn such that Pn(tn) = p, we need

to justify three points: a/ Pn is strictly decreasing on [z1, z2]; b/ Pn(z1) ≥ p and Pn(z2) ≤ p and c/

Pn is continue on [z1, z2] . Let u < u′ be two points on the segment [z1, z2]. Put M1 = r−1 ]t−, sup r[, then

M1 is an open subset of L(t−). By continuity of r, there exists x ∈ M1 and ε > 0 such that B(x, ε) ⊂ M1

and r (B(x, ε)) ∈
]

2u+u′

3 , u+2u′

3

[
. Uniform convergence of rn to r implies that rn (B(x, ε)) ∈ ]u, u′[. Because

infL(t−) fn > 0 for n large enough, this leads to
∫
L(t−)

fn(x)1rn(x)∈[u,u′[ dx > 0. Therefore, Pn(u) > Pn(u′)

by de�nition of Pn, and a/ is proved. Using the same argument, P (t) is a strictly decreasing function on

[z1, z2]. Because t ∈ Θs ( Θz, we have P (z1) > P (t) = p and P (z2) < p. With the previously proved

convergence of Pn, one can deduce b/ and c/ can be proved using dominated convergence theorem and

straightforward calculations which completes the proof.

Proposition 11. Let t ∈ Θs be such that
∫
L(t−)

f(x)1r(x)≥t dx = p where p ∈ P (Θs). Then, under the

assumptions of Theorem 2, we have tn → t a.s.

Proof. According to Proposition 10, tn is contained in Θ for n large enough. We extract a subsequence (tnk
)

from (tn) that converges to some t∗. To show that (tnk
) converges to t, it is su�cient to show that P (tnk

)

converges to P (t) because P (u) =
∫
L(t−)

f(x)1r(x)≥u dx is a continuous strictly decreasing function. We

have |P (tnk
)− P (t)| ≤

∫
L(t−)

f(x)
∣∣∣1r(x)≥tnk

− 1rnk
(x)≥tnk

∣∣∣dx+
∫
L(t−)

|f(x)− fnk
(x)|dx. Using the same

11



arguments as in the previous proof one can show that it converges to 0. Therefore we get P (tnk
)→ P (t) which

leads to tnk
→ t. As this conclusion is valid for any convergent subsequence of (tn), we have tn → t.

Lemma 12. Under assumptions of Theorem 2, we have
√
nhd

∫
L(t−)

f(x)
(
1r(x)≥t − 1rn(x)≥t

)
dx

P→ 0.

Proof. Write

√
nhd

∫
L(t−)

f(x)
(
1r(x)≥t − 1rn(x)≥t

)
dx =

√
nhd

∫
L(t−)

f(x)
(
1r(x)≥t>rn(x) − 1rn(x)≥t>r(x)

)
dx.

By Lemma 4.1 of Laloë and Servien (2013), the event

{
supL(t−)|rn − r| ≤ Γ

√
logn
nhd

}
happens with proba-

bility tending to 1. Note that on this event, we have
∫
L(t−)

f(x)1r(x)≥t>rn dx =
∫
V t
n
f(x)1rn(x)<t dx so the

lemma will be proved if we have that
√
nhd

∫
V t
n
f(x)1rn(x)<t dx−

√
nhd

∫
V t
n
f(x)1rn(x)≥t dx

P→ 0. Using the

same arguments as in Proposition 7 and 9 with integrating with respect to the measure induced by f , we can

show that each of these two terms tends in probability to the same constant.

Proposition 13. Under assumptions of Theorem 2, we have
√
nhd [λ (Ln(tn)∆L(t))− λ (Ln(t)∆L(t))]

P→ 0,

which implies that
√
nhdλ [Ln(tn)∆L(t)]

P→
√

2K̃
π

∫
r−1{t}

√
q/f

‖∇r‖ dH.

Proof. Straightforward calculations show that
√
nhd|λ (Ln(tn)∆L(t))− λ (Ln(t)∆L(t))| ≤

c
√
nhd

∣∣∣∫L(t−)
(f(x)− fn(x))1r(x)≥t dx

∣∣∣ + c
√
nhd

∣∣∣∫L(t−)
fn(x)

(
1r(x)≥t − 1rn(x)≥t

)
dx
∣∣∣.

The �rst term tends in probability to 0 by Lemma 4.2 in Cadre (2006).

For the second term, we have c
√
nhd

∣∣∣∫L(t−)
fn(x)

(
1r(x)≥t − 1rn(x)≥t

)
dx
∣∣∣ ≤

c supL(t−) |fn − f |
√
nhd

∫
L(t−)

(
1r(x)≥t>rn(x) + 1rn(x)≥t>r(x)

)
dx+c

√
nhd

∣∣∣∫L(t−)
f(x)

(
1r(x)≥t − 1rn(x)≥t

)
dx
∣∣∣.

Theorem 1 and Lemma 12 end the proof.
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