Open and closed factors in Arnoux-Rauzy words

Olga Parshina, Luca Q. Zamboni

To cite this version:

Olga Parshina, Luca Q. Zamboni. Open and closed factors in Arnoux-Rauzy words. Advances in Applied Mathematics, 2019, 107, pp.22-31. 10.1016/j.aam.2019.02.007 . hal-02072987

HAL Id: hal-02072987

https://hal.science/hal-02072987

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

cc

Open and closed factors in Arnoux-Rauzy words *

Olga Parshina ${ }^{1,2}$ and Luca Zamboni ${ }^{1}$
${ }^{1}$ Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, F69622 Villeurbanne Cedex, France
${ }^{2}$ Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia
\{parshina,zamboni\}@math.univ-lyon1.fr

In Memory of the Late Professor Aldo de Luca

Abstract

Given a finite non-empty set \mathbb{A}, let \mathbb{A}^{+}denote the free semigroup generated by \mathbb{A} consisting of all finite words $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathbb{A}$. A word $u \in \mathbb{A}^{+}$ is said to be closed if either $u \in \mathbb{A}$ or if u is a complete first return to some factor $v \in \mathbb{A}^{+}$, meaning u contains precisely two occurrences of v, one as a prefix and one as a suffix. We study the function $f_{x}^{c}: \mathbb{N} \rightarrow \mathbb{N}$ which counts the number of closed factors of each length in an infinite word x. We derive an explicit formula for f_{x}^{c} in case x is an Arnoux-Rauzy word. As a consequence we prove that $\liminf _{n \rightarrow \infty} f_{x}^{c}(n)=+\infty$. Keywords: Arnoux-Rauzy word, first return, complexity, return word, Sturmian word, closed word

1 Introduction

Throughout this paper we let $\mathbb{N}=\{1,2,3, \cdots\}$ and $\omega=\{0,1,2,3, \cdots\}$ be the smallest transfinite ordinal. Given a finite non-empty set \mathbb{A}, we let \mathbb{A}^{+}denote the

[^0]free semigroup generated by \mathbb{A} consisting of all words $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathbb{A}$, and $\mathbb{A}^{\mathbb{N}}$ denote the set of (right) infinite words $x=x_{1} x_{2} x_{3} \cdots$ with $x_{i} \in \mathbb{A}$. For each infinite word $x=x_{1} x_{2} x_{3} \cdots \in \mathbb{A}^{\mathbb{N}}$, the factor complexity $p_{x}(n)$ counts the number of distinct blocks (or factors) $x_{i} x_{i+1} \cdots x_{i+n-1}$ of length n occurring in x. First introduced by Hedlund and Morse in their seminal 1938 paper [19] under the name of block growth, the factor complexity provides a useful measure of the extent of randomness of x. Periodic words have bounded factor complexity while digit expansions of normal numbers have maximal complexity. A celebrated theorem of Morse and Hedlund in [19] states that every aperiodic (meaning not ultimately periodic) word contains at least $n+1$ distinct factors of each length n. Sturmian words are those aperiodic words of minimal factor complexity: $p_{x}(n)=n+1$ for each $n \geq 1$.

Several notions of complexity have been successfully used in the study of infinite words and their combinatorial properties. They include Abelian complexity [1, 7, $8,9,20,21$], palindrome complexity [1], cyclic complexity [7], privileged complexity [20], group complexity [8] and maximal pattern complexity [17] to name just a few. In this paper we introduce and study two new complexity functions based on the notions of open and closed words [13]. A word $u \in \mathbb{A}^{+}$is said to be closed if either $u \in \mathbb{A}$ or if u is a complete first return to some proper factor $v \in \mathbb{A}^{+}$, meaning u has precisely two occurrences of v, one as a prefix and one as a suffix. If u is not closed then u is said to be open. Thus a word $u \in \mathbb{A}^{+} \backslash \mathbb{A}$ is closed if and only if it is bordered and its longest border only occurs in u as a prefix and as a suffix. The longest border of a closed word is called frontier. For example, aabaaabaa is closed and its frontier is equal to $a a b a a$. In contrast, $a b$ is open as it is unbordered while $a b a a b b a b a b b a a b a$ is open since its frontier $a b a$ occurs internally in u. It is easily seen that all privileged words [20] are closed and hence so are all palindromic factors of rich words [14]. The terminology open and closed was first introduced by the authors in [5] although the notion of a closed word had already been introduced earlier by A. Carpi and A. de Luca in [6]. For a nice overview of open and closed words we refer the reader to the recent survey article by G. Fici [13].

For each infinite word $x \in \mathbb{A}^{\mathbb{N}}$ we consider the functions $f_{x}^{c}, f_{x}^{o}: \mathbb{N} \rightarrow \mathbb{N}$ which count the number of closed and open factors of x of each length $n \in \mathbb{N}$. In this note we investigate the function f_{x}^{c} where x is an Arnoux-Rauzy word. Arnoux-Rauzy words were first introduced in [2] in the special case of a 3-letter alphabet. They are a natural generalization of Sturmian words to alphabets of cardinality greater that two. If $x \in \mathbb{A}^{\mathbb{N}}$ is an Arnoux-Rauzy word, then $p_{x}(n)=(|\mathbb{A}|-1) n+1$ for each $n \in \mathbb{N}$. Moreover each factor u of x has precisely $|\mathbb{A}|$ distinct complete first returns in x.

Our main result in Theorem 1 below provides an explicit formula for the closed complexity function $f_{x}^{c}(n)$ for an Arnoux-Rauzy word x on a t-letter alphabet \mathbb{A}. Since for any word $x \in \mathbb{A}^{\mathbb{N}}$ we have that $f_{x}^{c}(n)+f_{x}^{o}(n)=p_{x}(n)$, a formula for $f_{x}^{c}(n)$ also yields a formula for $f_{x}^{o}(n)$. Our formula is expressed in terms of two related sequences associated to x. The first is the sequence $\left(b_{k}\right)_{k \geq 0}$ of the lengths of the
bispecial factors $\varepsilon=B_{0}, B_{1}, B_{2}, \ldots$ of x, ordered according to increasing length. The second is the sequence $\left(p_{a}^{(k)}\right)_{a \in \mathbb{A}}^{k \in \omega}$ where for each $k \in \omega$, the t coordinates of $\left(p_{a}^{(k)}\right)_{a \in \mathbb{A}}$ are the lengths of the t first returns to B_{k} in x. Both sequences have been extensively studied in the literature. For each $k \in \omega$, the coordinates of $\left(p_{a}^{(k)}\right)_{a \in \mathbb{A}}$ are coprime and each is a period of the word B_{k}. Moreover, each B_{k} is an extremal Fine and Wilf word, i.e., any word u having periods $\left(p_{a}^{(k)}\right)_{a \in \mathbb{A}}$ and of length greater than b_{k} is a constant word, i.e., $u=a^{n}$ for some n (see [24]).

Theorem 1. Let $x \in \mathbb{A}^{\mathbb{N}}$ be an Arnoux-Rauzy word. For each $k \in \omega$ and $a \in \mathbb{A}$ set $I_{k, a}=\left[b_{k}-2 p_{k}+p_{a}^{(k)}+2, b_{k}+p_{a}^{(k)}\right]$ where $p_{k}=\min _{b \in \mathbb{A}}\left\{p_{b}^{(k)}\right\}$. Let

$$
\begin{equation*}
F(a, n)=\sum_{\substack{k \in \omega \\ n \in I_{k, a}}}\left(d\left(n, I_{k, a}\right)+1\right) \tag{1}
\end{equation*}
$$

where for $n \in I_{k, a}$, the quantity $d\left(n, I_{k, a}\right)$ denotes the minimal distance from n to the endpoints of the interval $I_{k, a}$. Then the number of closed factors of x for each length n is $f_{x}^{c}(n)=\sum_{a \in \mathbb{A}} F(a, n)$.

For each fixed $n \in \mathbb{N}$ and $a \in \mathbb{A}$, the sum in (1) is finite since it only involves those k for which $n \in I_{k, a}$.

As a corollary of Theorem 1, we show that if x is an Arnoux-Rauzy word, then $\lim \inf f_{x}^{c}(n)=+\infty$. In contrast, it follows from [23] that if x is the regular paperfolding word, then $\lim \inf f_{x}^{c}(n)=0$, in other words, for infinitely many n, all factors of x of length n are open.

We end this section by recalling a few basic notions in combinatorics on words relevant to the paper. Throughout this text \mathbb{A} will denote a finite non-empty set (the alphabet). For $n \in \mathbb{N}$, let \mathbb{A}^{n} denote the set of all words $a_{1} a_{2} \cdots a_{n}$ with $a_{i} \in \mathbb{A}$. For $u=a_{1} a_{2} \cdots a_{n} \in \mathbb{A}^{n}$, we let $\bar{u} \in \mathbb{A}^{n}$ denote the reversal of u, i.e., $\bar{u}=a_{n} a_{n-1} \cdots a_{1}$. Let $\mathbb{A}^{+}=\bigcup_{n \in \mathbb{N}} \mathbb{A}^{n}$ denote the free semigroup generated by \mathbb{A}. For $u=a_{1} a_{2} \cdots a_{n} \in \mathbb{A}^{+}$the quantity n is called the length of u and denoted $|u|$. We set $\mathbb{A}^{*}=\mathbb{A}^{+} \cup\{\varepsilon\}$ where ε is the empty word (of length equal to 0). We let $\mathbb{A}^{\mathbb{N}}$ denote the set of all infinite words $a_{1} a_{2} a_{3} \cdots$ with $a_{i} \in \mathbb{A}$. For $x \in \mathbb{A}^{+} \cup \mathbb{A}^{\mathbb{N}}$ and $v \in \mathbb{A}^{*}$ we say that v is a factor of x if $x=u v y$ for some $u \in \mathbb{A}^{*}$ and $y \in \mathbb{A}^{*} \cup \mathbb{A}^{\mathbb{N}}$. We let $\operatorname{Fac}(x)$ denote the set of all factors of x. A factor v of x is called right (resp. left) special if $v a$ and $v b$ (resp. $a v$ and $b v$) are each factors of x for some choice of distinct $a, b \in \mathbb{A}$. A factor which is both right and left special is said to be bispecial. Given factors u and v of x, we say that u is a first return to v in x if $u v$ is a factor of x having precisely two first occurrences of v, one as a prefix and one as a suffix. In which case the word $u v$ is called a complete first return to v.

2 Counting closed factors in Arnoux-Rauzy words

Throughout this section we let \mathbb{A} denote a finite set of cardinality $t \geq 2$. A recurrent word $x \in \mathbb{A}^{\mathbb{N}}$ is called an Arnoux-Rauzy word if x contains, for each $n \geq 0$, precisely one right special factor R_{n} of length n and one left special factor L_{n} of length n. Furthermore, R_{n} is a prefix of t-many distinct factors of x of length $n+1$ while L_{n} is a suffix of t-many distinct factors of x of length $n+1$. In particular one has $p_{x}(n)=(t-1) n+1$ and each factor u of x has precisely t distinct complete first returns. In the special case of a binary alphabet, we see that x is a Sturmian word. Arnoux-Rauzy words constitute a special class of episturmian words (see [3, 12, 16]) and hence each factor u of an Arnoux-Rauzy word is (palindromically) rich, i.e., u contains exactly $|u|+1$ many distinct palindromic factors (including the empty word $\varepsilon)$. We will make use of the following alternative characterisation of rich words given in [12].
Lemma 2.1. [Proposition 3 in [12]] A word $u \in \mathbb{A}^{+}$is rich if and only if for every prefix v of u, the longest palindromic suffix of v is uni-occurrent in v.

Let us now fix an Arnoux-Rauzy word $x \in \mathbb{A}^{\mathbb{N}}$. Recall that for each length $n \in \omega$ an Arnoux-Rauzy word contains either zero or one bispecial factor of length n. Let $\varepsilon=B_{0}, B_{1}, B_{2}, \ldots$ be the sequence of bispecial factors of x ordered according to increasing length. Put $b_{k}=\left|B_{k}\right|$ so that $0=b_{0}<b_{1}<b_{2}<\cdots$. We recall the following characterization of the bispecial factors B_{k} of x in terms of palindromic closures (see $[10,12]$). For each $k \in \mathbb{N}$ there exists a unique $a_{k} \in \mathbb{A}$ such that $B_{k-1} a_{k}$ is a left special factor of x. The sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ is called the directive sequence of x. It follows that $B_{k-1} a_{k}$ is a prefix of B_{k} but in fact B_{k} is the palindromic closure of $B_{k-1} a_{k}$, i.e., the shortest palindrome beginning in $B_{k-1} a_{k}$. More precisely, if we let S_{k} denote the longest palindromic suffix of $B_{k-1} a_{k}$ and write $B_{k-1} a_{k}=x_{k} S_{k}$ with $x_{k} \in \mathbb{A}^{*}$, then $B_{k}=x_{k} S_{k} \overline{x_{k}}$ (see for instance Lemma 5 in [10] in case the alphabet \mathbb{A} is binary).

Lemma 2.2. For each $k \in \mathbb{N}$ we have that S_{k} is a uni-occurrent factor of B_{k}. In particular S_{k} is not a factor of B_{k-1}.

Proof. Clearly S_{k} is a factor of B_{k}. To see that it is uni-occurrent, suppose that S_{k} occurs more than once in B_{k}. Since S_{k} and B_{k} are each palindromes and $B_{k}=x_{k} S_{k} \overline{x_{k}}$, it follows that S_{k} occurs at least twice in $x_{k} S_{k}=B_{k-1} a_{k}$. But this contradicts Lemma 2.1 since S_{k} was defined as the longest palindromic suffix of $B_{k-1} a_{k}$.

Define $\varphi: \operatorname{Fac}(x) \rightarrow \omega$ by $\varphi(v)$ is the least $k \in \omega$ such that v is a factor of B_{k}. In particular $\varphi(v)=0 \Leftrightarrow v=\varepsilon$.

Lemma 2.3. Let $k \in \mathbb{N}$ and $v \in \mathbb{A}^{+}$. Then $v \in \varphi^{-1}(k)$ if and only if v is a factor of B_{k} containing S_{k} as a factor. In particular each $v \in \varphi^{-1}(k)$ is uni-occurrent in B_{k}.

Proof. Suppose v is a factor of B_{k} containing S_{k} as a factor. Then by Lemma 2.2, v is not a factor of B_{k-1} and hence not a factor of any B_{j} with $j<k$. Hence $\varphi(v)=k$. Conversely suppose that $\varphi(v)=k$. Then v is a factor of B_{k} but not of B_{k-1}. Since

$$
B_{k}=x_{k} S_{k} \overline{x_{k}}=B_{k-1} a_{k} \overline{x_{k}}=x_{k} a_{k} B_{k-1},
$$

it follows that v must contain S_{k} as a factor. Having established that each $v \in \varphi^{-1}(k)$ contains S_{k}, it follows by Lemma 2.2 that v is uni-occurrent in B_{k}.

For each $k \in \omega$ and $a \in \mathbb{A}$, let $R_{a}^{(k)}$ denote the complete first return to B_{k} in x beginning in $B_{k} a$ and put $p_{a}^{(k)}=\left|R_{a}^{(k)}\right|-b_{k}$. In other words $p_{a}^{(k)}$ is the length of the first return to B_{k} determined by $R_{a}^{(k)}$. We note that $R_{a}^{(0)}=a$ for each $a \in \mathbb{A}$. The sequence $\left(p_{a}^{(k)}\right)_{a \in \mathbb{A}}^{k \in \omega}$ is computed recursively as follows : $p_{a}^{(0)}=1$ for each $a \in \mathbb{A}$. For $k \geq 1$, we have $p_{a_{k}}^{(k)}=p_{a_{k}}^{(k-1)}$, and $p_{b}^{(k)}=p_{b}^{(k-1)}+p_{a_{k}}^{(k-1)}$ for $b \in \mathbb{A} \backslash\left\{a_{k}\right\}$. It is easily verified by induction that

$$
b_{k}=\frac{\sum_{a \in \mathbb{A}} p_{a}^{(k)}-t}{t-1}
$$

For each $k \in \mathbb{N}$, we set $p_{k}=p_{a_{k}}^{(k)}$. Since B_{k} is a complete first return to B_{k-1} beginning in $B_{k-1} a_{k}$ i.e., $R_{a_{k}}^{(k-1)}=B_{k}$, it follows that

$$
\begin{equation*}
p_{k}=p_{a_{k}}^{(k)}=p_{a_{k}}^{(k-1)}=\left|R_{a_{k}}^{(k-1)}\right|-b_{k-1}=b_{k}-b_{k-1} . \tag{2}
\end{equation*}
$$

It follows immediately from our recursive definition of the $p_{a}^{(k)}$ that

$$
p_{k}=\min \left\{p_{a}^{(k)} \mid a \in \mathbb{A}\right\} .
$$

Lemma 2.4. Let $k \in \mathbb{N}$ and let J_{k} denote the interval $\left[b_{k}-2 p_{k}+2, b_{k}\right]$. If $v \in \varphi^{-1}(k)$ then $|v| \in J_{k}$ and, for each $m \in J_{k}$, the set $\varphi^{-1}(k)$ contains precisely $d\left(m, J_{k}\right)+1$ distinct words of length m, where $d\left(m, J_{k}\right)$ is the minimal distance between m and the two boundary points of the interval J_{k}. In particular $\left|\varphi^{-1}(k)\right|=p_{k}^{2}$.

Proof. In view of Lemma 2.3 we have that $v \in \varphi^{-1}(k)$ if and only if v is a factor of B_{k} which contains S_{k} as a subfactor It follows that $\left|S_{k}\right| \leq|v| \leq\left|B_{k}\right|$. Also, since $B_{k}=B_{k-1} a_{k} \overline{x_{k}}$, by (2) we deduce that $p_{k}=b_{k}-b_{k-1}=\left|x_{k}\right|+1$. Furthermore, as $B_{k}=x_{k} S_{k} \overline{x_{k}}$ we have $\left|S_{k}\right|=\left|B_{k}\right|-2\left|x_{k}\right|=b_{k}-2\left(p_{k}-1\right)=b_{k}-2 p_{k}+2$. Hence $b_{k}-2 p_{k}+2 \leq|v| \leq b_{k}$. Now suppose $m \in J_{k}$. To see that $\varphi^{-1}(k)$ contains $d\left(m, J_{k}\right)+1$ distinct words of length m we simply use the fact that each $v \in \varphi^{-1}(k)$ contains S_{k} and is uni-occurrent in B_{k} (see Lemma 2.3). Finally,
$\left|\varphi^{-1}(k)\right|=1+2+\cdots+\left(p_{k}-1\right)+p_{k}+\left(p_{k}-1\right)+\cdots+2+1=2\left(\frac{p_{k}\left(p_{k}-1\right)}{2}\right)+p_{k}=p_{k}^{2}$.

Let $k \in \mathbb{N}$ and $v \in \varphi^{-1}(k)$. As a consequence of Lemma 2.3, there exists a unique decomposition $B_{k}=u_{1} v u_{2}$ with $u_{1}, u_{2} \in \mathbb{A}^{*}$. In particular, $v u_{2}$ is right special in x and $u_{1} v$ is left special in x. Now suppose u is a closed factor of x with frontier v. In particular u begins and ends in v. Since x is recurrent and aperiodic, it follows that $v u_{2}$ is a prefix of u and $u_{1} v$ is a suffix of u, whence $u_{1} u u_{2}$ is a complete first return to B_{k}. In fact, $u_{1} u u_{2}$ begins and ends in B_{k} and does not admit other occurrences of B_{k} for otherwise v would occur in u internally (meaning not as a prefix or as a suffix). Thus $u_{1} u u_{2}=R_{a}^{(k)}$ for some $a \in \mathbb{A}$.

Definition 2.5. Let u be a closed factor of x and $a \in \mathbb{A}$. We say u is of type a if and only if either $u=a$ or, if u is closed with frontier $v \in \mathbb{A}^{+}$, then $u_{1} u u_{2}=R_{a}^{(k)}$ where $k=\varphi(v)$ and $B_{k}=u_{1} v u_{2}$.

If u is a closed factor of x of type $a \in \mathbb{A}$ and frontier $v \in \mathbb{A}^{+}$, then

$$
\begin{equation*}
|u|-|v|=\left|R_{a}^{(k)}\right|-\left(\left|u_{1}\right|+\left|u_{2}\right|+|v|\right)=\left|R_{a}^{(k)}\right|-\left|B_{k}\right|=p_{a}^{(k)}, \tag{3}
\end{equation*}
$$

where $k=\varphi(v)$. We observe that the equality $|u|-|v|=p_{a}^{(k)}$ in (3) also holds in case $u \in \mathbb{A}$ taking $v=\varepsilon$ and $k=0$.

Let $C(x)$ denote the set of all closed factors of x and for each $u \in C(x)$ let $\operatorname{fr}(u) \in \mathbb{A}^{*}$ denote its frontier. By convention we define $\operatorname{fr}(a)=\varepsilon$ for each $a \in \mathbb{A}$. For each $k \in \omega$ and $a \in \mathbb{A}$ we let $C_{k, a}(x)$ denote the set of all closed factors u of x of type a whose frontier $\operatorname{fr}(u)$ belongs to $\varphi^{-1}(k)$.

Lemma 2.6. The sets $\left\{C_{k, a}(x): k \in \omega, a \in \mathbb{A}\right\}$ define a partition of $C(x)$ and $f r: C_{k, a}(x) \rightarrow \varphi^{-1}(k)$ is a bijection.

Proof. Each closed factor $u \in C(x)$ has a unique type and its frontier $\operatorname{fr}(u)$ belongs to $\varphi^{-1}(k)$ for a unique value of $k \in \omega$. Whence each closed factor u of x belongs to a unique $C_{k, a}(x)$. By definition, if $u \in C_{k, a}(x)$ then $\operatorname{fr}(u) \in \varphi^{-1}(k)$. Moreover u is uniquely determined by its frontier $\operatorname{fr}(u)$ and its type. In fact, if $u \in C_{k, a}(x)$ then $u_{1} u u_{2}=R_{a}^{(k)}$ where u_{1}, u_{2} are determined by the (unique) factorization $B_{k}=$ $u_{1} \operatorname{fr}(u) u_{2}$. This proves fr is injective. To see that fr is also surjective, let $v \in \varphi^{-1}(k)$. Then we can write $B_{k}=u_{1} v u_{2}$ for some $u_{1}, u_{2} \in \mathbb{A}^{*}$. Hence $R_{a}^{(k)}$ begins in u_{1} and ends in u_{2}. It follows that $u=u_{1}^{-1} R_{a}^{(k)} u_{2}^{-1}$ is a closed factor of x of type a and $\operatorname{fr}(u)=v$.

Proof of Theorem 1. Fix $n \in \mathbb{N}$. By Lemma 2.6 we have

$$
f_{x}^{c}(n)=\left|C(x) \cap \mathbb{A}^{n}\right|=\sum_{\substack{k \in \omega \\ a \in \mathbb{A}}}\left|C_{k, a}(x) \cap \mathbb{A}^{n}\right| .
$$

Now assume $u \in C_{k, a} \cap \mathbb{A}^{n}$ and put $v=\operatorname{fr}(u) \in \varphi^{-1}(k)$. Then by (3) we have that $n=|u|=|v|+p_{a}^{(k)}$. By Lemma 2.4, $|v|=n-p_{a}^{(k)} \in J_{k}=\left[b_{k}-2 p_{k}+2, b_{k}\right]$. By Lemma 2.6 the number of words $u \in C_{k, a}(x) \cap \mathbb{A}^{n}$ is equal to the number of words $v \in \varphi^{-1}(k)$ of length $n-p_{a}^{(k)}$ which by Lemma 2.4 is equal to $d\left(n-p_{a}^{(k)}, J_{k}\right)+1=$ $d\left(n, I_{k, a}\right)+1$ where $I_{k, a}=\left[b_{k}-2 p_{k}+p_{a}^{(k)}+2, b_{k}+p_{a}^{(k)}\right]$. This completes the proof of Theorem 1.

In case $|\mathbb{A}|=2$, i.e., x is Sturmian, each bispecial factor B_{k} has precisely two first returns, the shortest one is of length p_{k}, and we let q_{k} denote the length of the other first return. So for fixed $a \in \mathbb{A}$ and $k \in \mathbb{N}$ we have

$$
p_{a}^{(k)}= \begin{cases}p_{k}, & \text { if } a=a_{k} \\ q_{k}, & \text { otherwise }\end{cases}
$$

If $a=a_{k}$ then $I_{k, a}=\left[q_{k}, q_{k}+2 p_{k}-2\right]$ and if $a \neq a_{k}$ then $I_{k, a}=\left[2 q_{k}-p_{k}, 2 q_{k}+p_{k}-2\right]$. Putting $P_{k}=\left[q_{k}, q_{k}+2 p_{k}-2\right]$ and $Q_{k}=\left[2 q_{k}-p_{k}, 2 q_{k}+p_{k}-2\right]$, we obtain that for a Sturmian word x the number of closed factors of x of each length n is given by

$$
\begin{equation*}
f_{x}^{c}(n)=\sum_{\substack{k \in \omega \\ n \in P_{k}}}\left(d\left(n, P_{k}\right)+1\right)+\sum_{\substack{k \in \omega \\ n \in Q_{k}}}\left(d\left(n, Q_{k}\right)+1\right) \tag{4}
\end{equation*}
$$

Example 2.7. Consider the Fibonacci word

$$
x_{f i b}=a b a a b a b a a b a a b a b a a \cdots
$$

fixed by the morphism $a \mapsto a b, b \mapsto a$. Then $p_{k}=F_{k}$ and $q_{k}=F_{k+1}$ where the sequence $\left(F_{k}\right)_{k \in \omega}$ is the Fibonacci sequence given by $F_{0}=F_{1}=1$ and $F_{k+1}=$ $F_{k}+F_{k-1}$ for $k \geq 1$.

Table 1 shows the number of closed factors of length $n \leq 15$ in the Fibonacci word computed using (4).

Table 1: The number of closed factors in the Fibonacci word.

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\boldsymbol{f}_{\boldsymbol{x}_{f i b}}^{\boldsymbol{c}}(\boldsymbol{n})$	2	1	2	3	4	3	4	5	6	5	6	7	8	9	10

For example, for $n=11$ we must determine those k for which either $11 \in P_{k}$ or $11 \in Q_{k}$. It is easily checked that 11 only belongs to $P_{4}=[8,16], Q_{3}=[7,11]$ and $Q_{4}=[11,19]$. So

$$
f_{x_{f i b}}^{c}(11)=d\left(11, P_{4}\right)+1+d\left(11, Q_{3}\right)+1+d\left(11, Q_{4}\right)+1=4+1+1=6
$$

The graph of the function $f_{x_{f i b}}^{c}$ is shown in Figure 1. The function is clearly not monotone.

Figure 1: The number of closed factors in the Fibonacci word.

Figure 2 illustrates the behavior of the number of closed factors of the Tribonacci word $x_{\text {trib }} \in\{a, b, c\}^{\mathbb{N}}$ defined as the fixed point of the morphism $a \mapsto a b, b \mapsto a c$, $c \mapsto a$.

Figure 2: The number of closed factors in the Tribonacci word.

Our last example (Figure 3) illustrates the behavior of the number of closed factors of the Sturmian word $x_{r} \in\{0,1\}^{\mathbb{N}}$ whose directive sequence begins with $0010000011110111110101101110011000011 \cdots$.

Figure 3: The number of closed factors in the word x_{r}.

The above examples suggest that the function $f_{x}^{c}(n)$ tends to infinity, although it need not be monotone and may contain plateaus and inflection points. Our next result establishes this fact:

Corollary 2.8. If $x \in \mathbb{A}^{\mathbb{N}}$ is an Arnoux-Rauzy word, then

$$
\liminf _{n \rightarrow \infty}^{c} f_{x}^{c}(n)=+\infty
$$

Proof. For each $k \in \omega$ set $I_{k}=\left[b_{k}-p_{k}+2, b_{k}+p_{k}\right]$, i.e., $I_{0}=[1,1]$ and $I_{k}=I_{a_{k}, k}$ for $k \geq 1$. Since $p_{k} \geq 1$ for each $k \in \mathbb{N}$ it follows that $\mathbb{N}=\bigcup_{k \in \omega} I_{k}$. Given $m \in \mathbb{N}$, pick j such that $p_{j}-1>2 m$, and put $N=b_{j}+2$. We will show that $f_{x}^{c}(n) \geq m$ for every $n \geq N$. Notice that since $b_{k}=b_{k-1}+p_{k}$, the left hand endpoint of the interval I_{j+1} is $b_{j}+2$. Thus for each $n \geq N$ there exists a positive integer $k \geq j$, such that $n \in I_{k+1}$. We have $\left|I_{k+1}\right|=2 p_{k+1}-2 \geq 2 p_{j}-2>4 m$. If $d\left(n, I_{k+1}\right) \geq m$, then it follows from Theorem 1 that $f_{w}^{c}(n) \geq m$. Otherwise we must have either i) $b_{k+1}+p_{k+1}-n<m$ or ii) $n-\left(b_{k}+2\right)<m$. In case i) we have

$$
\begin{equation*}
n-b_{k+1}>p_{k+1}-m \geq p_{j}-m>m+1 \tag{5}
\end{equation*}
$$

Since $m+1 \geq 2$, we have that n also belongs to I_{k+2}. We will show that $d\left(n, I_{k+2}\right) \geq$ m. By (5) we have $n-\left(b_{k+1}+2\right) \geq m$. Also
$b_{k+2}+p_{k+2}-n \geq b_{k+2}+p_{k+2}-\left(b_{k+1}+p_{k+1}\right)=2 p_{k+2}-p_{k+1} \geq p_{k+2} \geq p_{j}>2 m+1$.
Thus $d\left(n, I_{k+2}\right) \geq m$ and hence by Theorem $1 f_{x}^{c}(n) \geq m$.

In case ii) $n<b_{k}+2+m \leq b_{k}+2 m+1<b_{k}+p_{k}$, and hence $n \in I_{k}$. We will show that $d\left(n, I_{k}\right) \geq m$. In fact, $b_{k}+p_{k}-n>p_{k}-2-m \geq p_{j}-2-m \geq m$. Moreover, since $n \in I_{k+1}$, we have that $n-\left(b_{k-1}+2\right) \geq b_{k}+2-\left(b_{k-1}+2\right)=p_{k} \geq p_{j}>2 m+1$, and thus $d\left(n, I_{k}\right) \geq m$.

While the previous result applies to Arnoux-Rauzy words, for a general aperiodic word x the limit inferior of the function $f_{x}^{c}(n)$ need not be infinite. For example, in the case of the regular paperfolding word one has that $\liminf _{n \rightarrow \infty} f_{x}^{c}(n)=0$. In fact, in [23] the authors exhibit an 11-state automaton which accepts the base 2 representation of those n for which there is a closed factor of the regular paperfolding word of length n (see Figure 1 in [23]). As another perhaps simpler example, let x be the fixed point beginning in a of the 2 -uniform morphism φ on the alphabet $\{a, b, c, d\}$ given by $\varphi: a \mapsto a c, b \mapsto a d, c \mapsto b c, d \mapsto b d$. Then it is easily shown that all factors of x of length $2^{n}(n \in \mathbb{N})$ are open. We remark that this last example is closely related to the regular paperfolding word. In fact, the regular paperfolding word is the image of the fixed point of φ under the mapping which sends a, c to 0 and b, d to 1 .

References

[1] J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, Palindrome complexity, Selected papers in honor of Jean Berstel, Theoret. Comput. Sci., 292 (2003), pp. 9-31.
[2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité $2 n+1$, Bull. Soc. Math. France 119 (2) (1991), pp. 199-215.
[3] J. Berstel, Sturmian and episturmian words (A survey of some recent results), in: Proceedings of CAI 2007, Lecture Notes in Computer Science, vol. 4728, 2007, pp. 23-47.
[4] S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromic complexity of infinite words, Internat. J. Found. Comput. Sci., 15 (2004), pp. 293-306.
[5] M. Bucci, A. De Luca, G. Fici, Enumeration and structure of trapezoidal words, Theoret. Comput. Sci. 468 (2013), pp. 12-22.
[6] A. Carpi, A. de Luca, Periodic-like words, periodicity and boxes, Acta. Inform. 37 (2001), pp. 597-618.
[7] J. Cassaigne, G. Fici, M. Sciortino, L.Q. Zamboni, Cyclic complexity of words, J. Combin. Theory Ser. A, 145 (2017), pp. 36-56.
[8] E. Charlier, S. Puzynina, L.Q. Zamboni, On a group theoretic generalization of the Morse-Hedlund theorem, Proceedings of the AMS, 145 (2017), pp. 33813394.
[9] E. M. Coven, G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), pp. 138-153.
[10] A. de Luca, Sturmian words: structure, combinatorics and their arithmetics, Theoret. Comput. Sci. 183 (1997), pp. 45-82.
[11] A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words. Theoret. Comput. Sci., 136 (1994), pp. 361-385
[12] X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), pp. 539-553.
[13] G. Fici, Open and closed words, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS No. 123 (2017), p. 138-147.
[14] A. Glen, J. Justin, S. Widmer, L.Q. Zamboni, Palindromic richness, European J. Combin. 30 (2009), no. 2, pp. 510-531.
[15] J. Justin, On a paper by Castelli, Mignosi, Restivo, RAIRO: Theoret.Informatics Appl. 34 (2000), pp. 373-377.
[16] J. Justin, G. Pirillo, Episturmian words and episturmian morphisms, Theoret. Comput. Sci. 276 (2002), pp. 281-313.
[17] T. Kamae, L.Q. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems 22 (2002), pp. 1191-1199.
[18] M. Lothaire, Combinatorics on Words (Addison-Wesley, Reading, MA, 1983)
[19] M. Morse, G. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), pp. 815-866.
[20] J. Peltomäki, Introducing privileged words: privileged complexity of Sturmian words, Theoret. Comput. Sci. 500 (2013), pp. 57-67.
[21] G. Richomme, K. Saari, L.Q. Zamboni, Abelian complexity of minimal subshifts, J. Lond. Math. Soc. (2), 83 (2011), pp. 79-95.
[22] R. Risley, L. Zamboni, A generalization of Sturmian sequences: Combinatorial structure and transcendence, Acta Arithmetica 95.2 (2000), pp. 167-184.
[23] L. Schaeffer, J. Shallit, Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences, Electron. J. Comb., 23(1) (2016), pp. $1-25$.
[24] R. Tijdeman, L.Q. Zamboni, Fine and Wilf words for any periods, Indag. Math. (N.S.) 14 (2003), pp. 135-147.

[^0]: *This work was performed within the framework of the LABEX MILYON (ANR-10-LABX0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and has been supported by RFBS grant 18-31-00009.

