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Abstract: Given a finite non-empty set A, let A+ denote the free semigroup
generated by A consisting of all finite words u1u2 · · ·un with ui ∈ A. A word u ∈ A+

is said to be closed if either u ∈ A or if u is a complete first return to some factor
v ∈ A+, meaning u contains precisely two occurrences of v, one as a prefix and one as
a suffix. We study the function f c

x : N→ N which counts the number of closed factors
of each length in an infinite word x. We derive an explicit formula for f c

x in case x is
an Arnoux-Rauzy word. As a consequence we prove that lim infn→∞ f c

x(n) = +∞.
Keywords: Arnoux-Rauzy word, first return, complexity, return word, Sturmian
word, closed word

1 Introduction

Throughout this paper we let N = {1, 2, 3, · · · } and ω = {0, 1, 2, 3, · · · } be the
smallest transfinite ordinal. Given a finite non-empty set A, we let A+ denote the
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free semigroup generated by A consisting of all words u1u2 · · ·un with ui ∈ A, and AN

denote the set of (right) infinite words x = x1x2x3 · · · with xi ∈ A. For each infinite
word x = x1x2x3 · · · ∈ AN, the factor complexity px(n) counts the number of distinct
blocks (or factors) xixi+1 · · ·xi+n−1 of length n occurring in x. First introduced by
Hedlund and Morse in their seminal 1938 paper [19] under the name of block growth,
the factor complexity provides a useful measure of the extent of randomness of x.
Periodic words have bounded factor complexity while digit expansions of normal
numbers have maximal complexity. A celebrated theorem of Morse and Hedlund in
[19] states that every aperiodic (meaning not ultimately periodic) word contains at
least n + 1 distinct factors of each length n. Sturmian words are those aperiodic
words of minimal factor complexity: px(n) = n + 1 for each n ≥ 1.

Several notions of complexity have been successfully used in the study of infinite
words and their combinatorial properties. They include Abelian complexity [1, 7,
8, 9, 20, 21], palindrome complexity [1], cyclic complexity [7], privileged complexity
[20], group complexity [8] and maximal pattern complexity [17] to name just a few.
In this paper we introduce and study two new complexity functions based on the
notions of open and closed words [13]. A word u ∈ A+ is said to be closed if either
u ∈ A or if u is a complete first return to some proper factor v ∈ A+, meaning u
has precisely two occurrences of v, one as a prefix and one as a suffix. If u is not
closed then u is said to be open. Thus a word u ∈ A+ \ A is closed if and only if it
is bordered and its longest border only occurs in u as a prefix and as a suffix. The
longest border of a closed word is called frontier. For example, aabaaabaa is closed
and its frontier is equal to aabaa. In contrast, ab is open as it is unbordered while
abaabbababbaaba is open since its frontier aba occurs internally in u. It is easily seen
that all privileged words [20] are closed and hence so are all palindromic factors of
rich words [14]. The terminology open and closed was first introduced by the authors
in [5] although the notion of a closed word had already been introduced earlier by
A. Carpi and A. de Luca in [6]. For a nice overview of open and closed words we
refer the reader to the recent survey article by G. Fici [13].

For each infinite word x ∈ AN we consider the functions f c
x, f

o
x : N → N which

count the number of closed and open factors of x of each length n ∈ N. In this note
we investigate the function f c

x where x is an Arnoux-Rauzy word. Arnoux-Rauzy
words were first introduced in [2] in the special case of a 3-letter alphabet. They are
a natural generalization of Sturmian words to alphabets of cardinality greater that
two. If x ∈ AN is an Arnoux-Rauzy word, then px(n) = (|A|−1)n+1 for each n ∈ N.
Moreover each factor u of x has precisely |A| distinct complete first returns in x.

Our main result in Theorem 1 below provides an explicit formula for the closed
complexity function f c

x(n) for an Arnoux-Rauzy word x on a t-letter alphabet A.
Since for any word x ∈ AN we have that f c

x(n) + f o
x(n) = px(n), a formula for f c

x(n)
also yields a formula for f o

x(n). Our formula is expressed in terms of two related
sequences associated to x. The first is the sequence (bk)k≥0 of the lengths of the
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bispecial factors ε = B0, B1, B2, . . . of x, ordered according to increasing length. The
second is the sequence (p

(k)
a )k∈ωa∈A where for each k ∈ ω, the t coordinates of (p

(k)
a )a∈A

are the lengths of the t first returns to Bk in x. Both sequences have been extensively
studied in the literature. For each k ∈ ω, the coordinates of (p

(k)
a )a∈A are coprime

and each is a period of the word Bk. Moreover, each Bk is an extremal Fine and
Wilf word, i.e., any word u having periods (p

(k)
a )a∈A and of length greater than bk is

a constant word, i.e., u = an for some n (see [24]).

Theorem 1. Let x ∈ AN be an Arnoux-Rauzy word. For each k ∈ ω and a ∈ A set
Ik,a = [bk − 2pk + p

(k)
a + 2, bk + p

(k)
a ] where pk = minb∈A{p(k)b }. Let

F (a, n) =
∑
k∈ω

n∈Ik,a

(d(n, Ik,a) + 1), (1)

where for n ∈ Ik,a, the quantity d(n, Ik,a) denotes the minimal distance from n to the
endpoints of the interval Ik,a. Then the number of closed factors of x for each length
n is f c

x(n) =
∑

a∈A F (a, n).

For each fixed n ∈ N and a ∈ A, the sum in (1) is finite since it only involves
those k for which n ∈ Ik,a.

As a corollary of Theorem 1, we show that if x is an Arnoux-Rauzy word, then
lim inf f c

x(n) = +∞. In contrast, it follows from [23] that if x is the regular paper-
folding word, then lim inf f c

x(n) = 0, in other words, for infinitely many n, all factors
of x of length n are open.

We end this section by recalling a few basic notions in combinatorics on words
relevant to the paper. Throughout this text A will denote a finite non-empty set
(the alphabet). For n ∈ N, let An denote the set of all words a1a2 · · · an with
ai ∈ A. For u = a1a2 · · · an ∈ An, we let u ∈ An denote the reversal of u, i.e.,
u = anan−1 · · · a1. Let A+ =

⋃
n∈NAn denote the free semigroup generated by A. For

u = a1a2 · · · an ∈ A+ the quantity n is called the length of u and denoted |u|. We set
A∗ = A+ ∪ {ε} where ε is the empty word (of length equal to 0). We let AN denote
the set of all infinite words a1a2a3 · · · with ai ∈ A. For x ∈ A+ ∪ AN and v ∈ A∗ we
say that v is a factor of x if x = uvy for some u ∈ A∗ and y ∈ A∗∪AN. We let Fac(x)
denote the set of all factors of x. A factor v of x is called right (resp. left) special if
va and vb (resp. av and bv) are each factors of x for some choice of distinct a, b ∈ A.
A factor which is both right and left special is said to be bispecial. Given factors
u and v of x, we say that u is a first return to v in x if uv is a factor of x having
precisely two first occurrences of v, one as a prefix and one as a suffix. In which case
the word uv is called a complete first return to v.
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2 Counting closed factors in Arnoux-Rauzy words

Throughout this section we let A denote a finite set of cardinality t ≥ 2. A recurrent
word x ∈ AN is called an Arnoux-Rauzy word if x contains, for each n ≥ 0, precisely
one right special factor Rn of length n and one left special factor Ln of length n.
Furthermore, Rn is a prefix of t-many distinct factors of x of length n + 1 while
Ln is a suffix of t-many distinct factors of x of length n + 1. In particular one has
px(n) = (t − 1)n + 1 and each factor u of x has precisely t distinct complete first
returns. In the special case of a binary alphabet, we see that x is a Sturmian word.
Arnoux-Rauzy words constitute a special class of episturmian words (see [3, 12, 16])
and hence each factor u of an Arnoux-Rauzy word is (palindromically) rich, i.e., u
contains exactly |u|+1 many distinct palindromic factors (including the empty word
ε). We will make use of the following alternative characterisation of rich words given
in [12].

Lemma 2.1. [Proposition 3 in [12]] A word u ∈ A+ is rich if and only if for every
prefix v of u, the longest palindromic suffix of v is uni-occurrent in v.

Let us now fix an Arnoux-Rauzy word x ∈ AN. Recall that for each length n ∈ ω
an Arnoux-Rauzy word contains either zero or one bispecial factor of length n. Let
ε = B0, B1, B2, . . . be the sequence of bispecial factors of x ordered according to
increasing length. Put bk = |Bk| so that 0 = b0 < b1 < b2 < · · · . We recall the
following characterization of the bispecial factors Bk of x in terms of palindromic
closures (see [10, 12]). For each k ∈ N there exists a unique ak ∈ A such that Bk−1ak
is a left special factor of x. The sequence (ak)k∈N is called the directive sequence of
x. It follows that Bk−1ak is a prefix of Bk but in fact Bk is the palindromic closure of
Bk−1ak, i.e., the shortest palindrome beginning in Bk−1ak. More precisely, if we let
Sk denote the longest palindromic suffix of Bk−1ak and write Bk−1ak = xkSk with
xk ∈ A∗, then Bk = xkSkxk (see for instance Lemma 5 in [10] in case the alphabet
A is binary).

Lemma 2.2. For each k ∈ N we have that Sk is a uni-occurrent factor of Bk. In
particular Sk is not a factor of Bk−1.

Proof. Clearly Sk is a factor of Bk. To see that it is uni-occurrent, suppose that Sk

occurs more than once in Bk. Since Sk and Bk are each palindromes and Bk = xkSkxk,
it follows that Sk occurs at least twice in xkSk = Bk−1ak. But this contradicts
Lemma 2.1 since Sk was defined as the longest palindromic suffix of Bk−1ak.

Define ϕ : Fac(x)→ ω by ϕ(v) is the least k ∈ ω such that v is a factor of Bk. In
particular ϕ(v) = 0⇔ v = ε.

Lemma 2.3. Let k ∈ N and v ∈ A+. Then v ∈ ϕ−1(k) if and only if v is a factor of
Bk containing Sk as a factor. In particular each v ∈ ϕ−1(k) is uni-occurrent in Bk.
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Proof. Suppose v is a factor of Bk containing Sk as a factor. Then by Lemma 2.2, v
is not a factor of Bk−1 and hence not a factor of any Bj with j < k. Hence ϕ(v) = k.
Conversely suppose that ϕ(v) = k. Then v is a factor of Bk but not of Bk−1. Since

Bk = xkSkxk = Bk−1akxk = xkakBk−1,

it follows that v must contain Sk as a factor. Having established that each v ∈ ϕ−1(k)
contains Sk, it follows by Lemma 2.2 that v is uni-occurrent in Bk.

For each k ∈ ω and a ∈ A, let R
(k)
a denote the complete first return to Bk in x

beginning in Bka and put p
(k)
a = |R(k)

a | − bk. In other words p
(k)
a is the length of the

first return to Bk determined by R
(k)
a . We note that R

(0)
a = a for each a ∈ A. The

sequence (p
(k)
a )k∈ωa∈A is computed recursively as follows : p

(0)
a = 1 for each a ∈ A. For

k ≥ 1, we have p
(k)
ak = p

(k−1)
ak , and p

(k)
b = p

(k−1)
b + p

(k−1)
ak for b ∈ A \ {ak}. It is easily

verified by induction that

bk =

∑
a∈A p

(k)
a − t

t− 1
.

For each k ∈ N, we set pk = p
(k)
ak . Since Bk is a complete first return to Bk−1 beginning

in Bk−1ak i.e., R
(k−1)
ak = Bk, it follows that

pk = p(k)ak
= p(k−1)ak

= |R(k−1)
ak
| − bk−1 = bk − bk−1. (2)

It follows immediately from our recursive definition of the p
(k)
a that

pk = min{p(k)a | a ∈ A}.

Lemma 2.4. Let k ∈ N and let Jk denote the interval [bk−2pk +2, bk]. If v ∈ ϕ−1(k)
then |v| ∈ Jk and, for each m ∈ Jk, the set ϕ−1(k) contains precisely d(m, Jk) + 1
distinct words of length m, where d(m, Jk) is the minimal distance between m and
the two boundary points of the interval Jk. In particular |ϕ−1(k)| = p2k.

Proof. In view of Lemma 2.3 we have that v ∈ ϕ−1(k) if and only if v is a factor
of Bk which contains Sk as a subfactor It follows that |Sk| ≤ |v| ≤ |Bk|. Also, since
Bk = Bk−1akxk, by (2) we deduce that pk = bk − bk−1 = |xk| + 1. Furthermore, as
Bk = xkSkxk we have |Sk| = |Bk| − 2|xk| = bk − 2(pk − 1) = bk − 2pk + 2. Hence
bk−2pk+2 ≤ |v| ≤ bk. Now suppose m ∈ Jk. To see that ϕ−1(k) contains d(m, Jk)+1
distinct words of length m we simply use the fact that each v ∈ ϕ−1(k) contains Sk

and is uni-occurrent in Bk (see Lemma 2.3). Finally,

|ϕ−1(k)| = 1+2+· · ·+(pk−1)+pk+(pk−1)+· · ·+2+1 = 2

(
pk(pk − 1)

2

)
+pk = p2k.
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Let k ∈ N and v ∈ ϕ−1(k). As a consequence of Lemma 2.3, there exists a unique
decomposition Bk = u1vu2 with u1, u2 ∈ A∗. In particular, vu2 is right special in x
and u1v is left special in x. Now suppose u is a closed factor of x with frontier v. In
particular u begins and ends in v. Since x is recurrent and aperiodic, it follows that
vu2 is a prefix of u and u1v is a suffix of u, whence u1uu2 is a complete first return
to Bk. In fact, u1uu2 begins and ends in Bk and does not admit other occurrences
of Bk for otherwise v would occur in u internally (meaning not as a prefix or as a

suffix). Thus u1uu2 = R
(k)
a for some a ∈ A.

Definition 2.5. Let u be a closed factor of x and a ∈ A. We say u is of type a if
and only if either u = a or, if u is closed with frontier v ∈ A+, then u1uu2 = R

(k)
a

where k = ϕ(v) and Bk = u1vu2.

If u is a closed factor of x of type a ∈ A and frontier v ∈ A+, then

|u| − |v| = |R(k)
a | − (|u1|+ |u2|+ |v|) = |R(k)

a | − |Bk| = p(k)a , (3)

where k = ϕ(v). We observe that the equality |u| − |v| = p
(k)
a in (3) also holds in

case u ∈ A taking v = ε and k = 0.

Let C(x) denote the set of all closed factors of x and for each u ∈ C(x) let
fr(u) ∈ A∗ denote its frontier. By convention we define fr(a) = ε for each a ∈ A. For
each k ∈ ω and a ∈ A we let Ck,a(x) denote the set of all closed factors u of x of
type a whose frontier fr(u) belongs to ϕ−1(k).

Lemma 2.6. The sets {Ck,a(x) : k ∈ ω, a ∈ A} define a partition of C(x) and
fr : Ck,a(x)→ ϕ−1(k) is a bijection.

Proof. Each closed factor u ∈ C(x) has a unique type and its frontier fr(u) belongs
to ϕ−1(k) for a unique value of k ∈ ω. Whence each closed factor u of x belongs
to a unique Ck,a(x). By definition, if u ∈ Ck,a(x) then fr(u) ∈ ϕ−1(k). Moreover
u is uniquely determined by its frontier fr(u) and its type. In fact, if u ∈ Ck,a(x)

then u1uu2 = R
(k)
a where u1, u2 are determined by the (unique) factorization Bk =

u1fr(u)u2. This proves fr is injective. To see that fr is also surjective, let v ∈ ϕ−1(k).

Then we can write Bk = u1vu2 for some u1, u2 ∈ A∗. Hence R
(k)
a begins in u1 and

ends in u2. It follows that u = u−11 R
(k)
a u−12 is a closed factor of x of type a and

fr(u) = v.

Proof of Theorem 1. Fix n ∈ N. By Lemma 2.6 we have

f c
x(n) = |C(x) ∩ An| =

∑
k∈ω
a∈A

|Ck,a(x) ∩ An|.
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Now assume u ∈ Ck,a ∩ An and put v = fr(u) ∈ ϕ−1(k). Then by (3) we have

that n = |u| = |v|+ p
(k)
a . By Lemma 2.4, |v| = n− p

(k)
a ∈ Jk = [bk − 2pk + 2, bk]. By

Lemma 2.6 the number of words u ∈ Ck,a(x) ∩ An is equal to the number of words

v ∈ ϕ−1(k) of length n − p
(k)
a which by Lemma 2.4 is equal to d(n − p

(k)
a , Jk) + 1 =

d(n, Ik,a) + 1 where Ik,a = [bk − 2pk + p
(k)
a + 2, bk + p

(k)
a ]. This completes the proof of

Theorem 1.

In case |A| = 2, i.e., x is Sturmian, each bispecial factor Bk has precisely two
first returns, the shortest one is of length pk, and we let qk denote the length of the
other first return. So for fixed a ∈ A and k ∈ N we have

p(k)a =

{
pk, if a = ak;

qk, otherwise.

If a = ak then Ik,a = [qk, qk +2pk−2] and if a 6= ak then Ik,a = [2qk−pk, 2qk +pk−2].
Putting Pk = [qk, qk + 2pk − 2] and Qk = [2qk − pk, 2qk + pk − 2], we obtain that for
a Sturmian word x the number of closed factors of x of each length n is given by

f c
x(n) =

∑
k∈ω
n∈Pk

(d(n, Pk) + 1) +
∑
k∈ω
n∈Qk

(d(n,Qk) + 1). (4)

Example 2.7. Consider the Fibonacci word

xfib = abaababaabaababaa · · ·

fixed by the morphism a 7→ ab, b 7→ a. Then pk = Fk and qk = Fk+1 where the
sequence (Fk)k∈ω is the Fibonacci sequence given by F0 = F1 = 1 and Fk+1 =
Fk + Fk−1 for k ≥ 1.

Table 1 shows the number of closed factors of length n ≤ 15 in the Fibonacci
word computed using (4).

Table 1: The number of closed factors in the Fibonacci word.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f c
xfib

(n) 2 1 2 3 4 3 4 5 6 5 6 7 8 9 10

For example, for n = 11 we must determine those k for which either 11 ∈ Pk or
11 ∈ Qk. It is easily checked that 11 only belongs to P4 = [8, 16], Q3 = [7, 11] and
Q4 = [11, 19]. So

f c
xfib

(11) = d(11, P4) + 1 + d(11, Q3) + 1 + d(11, Q4) + 1 = 4 + 1 + 1 = 6.

The graph of the function f c
xfib

is shown in Figure 1. The function is clearly not
monotone.
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Figure 1: The number of closed factors in the Fibonacci word.

Figure 2 illustrates the behavior of the number of closed factors of the Tribonacci
word xtrib ∈ {a, b, c}N defined as the fixed point of the morphism a 7→ ab, b 7→ ac,
c 7→ a.

Figure 2: The number of closed factors in the Tribonacci word.

Our last example (Figure 3) illustrates the behavior of the number of closed
factors of the Sturmian word xr ∈ {0, 1}N whose directive sequence begins with
0010000011110111110101101110011000011 · · · .

8



Figure 3: The number of closed factors in the word xr.

The above examples suggest that the function f c
x(n) tends to infinity, although

it need not be monotone and may contain plateaus and inflection points. Our next
result establishes this fact:

Corollary 2.8. If x ∈ AN is an Arnoux-Rauzy word, then

lim inf
n→∞

f c
x(n) = +∞.

Proof. For each k ∈ ω set Ik = [bk− pk + 2, bk + pk], i.e., I0 = [1, 1] and Ik = Iak,k for
k ≥ 1. Since pk ≥ 1 for each k ∈ N it follows that N =

⋃
k∈ω Ik. Given m ∈ N, pick j

such that pj − 1 > 2m, and put N = bj + 2. We will show that f c
x(n) ≥ m for every

n ≥ N. Notice that since bk = bk−1 +pk, the left hand endpoint of the interval Ij+1 is
bj + 2. Thus for each n ≥ N there exists a positive integer k ≥ j, such that n ∈ Ik+1.
We have |Ik+1| = 2pk+1 − 2 ≥ 2pj − 2 > 4m. If d(n, Ik+1) ≥ m, then it follows from
Theorem 1 that f c

w(n) ≥ m. Otherwise we must have either i) bk+1 + pk+1 − n < m
or ii) n− (bk + 2) < m. In case i) we have

n− bk+1 > pk+1 −m ≥ pj −m > m + 1. (5)

Since m+ 1 ≥ 2, we have that n also belongs to Ik+2. We will show that d(n, Ik+2) ≥
m. By (5) we have n− (bk+1 + 2) ≥ m. Also

bk+2 + pk+2 − n ≥ bk+2 + pk+2 − (bk+1 + pk+1) = 2pk+2 − pk+1 ≥ pk+2 ≥ pj > 2m + 1.

Thus d(n, Ik+2) ≥ m and hence by Theorem 1f c
x(n) ≥ m.

9



In case ii) n < bk +2+m ≤ bk +2m+1 < bk +pk, and hence n ∈ Ik. We will show
that d(n, Ik) ≥ m. In fact, bk + pk − n > pk − 2 −m ≥ pj − 2 −m ≥ m. Moreover,
since n ∈ Ik+1, we have that n− (bk−1 + 2) ≥ bk + 2− (bk−1 + 2) = pk ≥ pj > 2m+ 1,
and thus d(n, Ik) ≥ m.

While the previous result applies to Arnoux-Rauzy words, for a general aperiodic
word x the limit inferior of the function f c

x(n) need not be infinite. For example,
in the case of the regular paperfolding word one has that lim infn→∞ f c

x(n) = 0.
In fact, in [23] the authors exhibit an 11-state automaton which accepts the base 2
representation of those n for which there is a closed factor of the regular paperfolding
word of length n (see Figure 1 in [23]). As another perhaps simpler example, let x
be the fixed point beginning in a of the 2-uniform morphism ϕ on the alphabet
{a, b, c, d} given by ϕ : a 7→ ac, b 7→ ad, c 7→ bc, d 7→ bd. Then it is easily shown that
all factors of x of length 2n (n ∈ N) are open. We remark that this last example
is closely related to the regular paperfolding word. In fact, the regular paperfolding
word is the image of the fixed point of ϕ under the mapping which sends a, c to 0
and b, d to 1.

References

[1] J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, Palindrome complexity,
Selected papers in honor of Jean Berstel, Theoret. Comput. Sci., 292 (2003),
pp. 9–31.

[2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n+1,
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