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Introduction

Throughout this paper we let N = {1, 2, 3, • • • } and ω = {0, 1, 2, 3, • • • } be the smallest transfinite ordinal. Given a finite non-empty set A, we let A + denote the free semigroup generated by A consisting of all words u 1 u 2 • • • u n with u i ∈ A, and A N denote the set of (right) infinite words x = x 1 x 2 x 3 • • • with x i ∈ A. For each infinite word x = x 1 x 2 x 3 • • • ∈ A N , the factor complexity p x (n) counts the number of distinct blocks (or factors) x i x i+1 • • • x i+n-1 of length n occurring in x. First introduced by Hedlund and Morse in their seminal 1938 paper [START_REF] Morse | Symbolic dynamics[END_REF] under the name of block growth, the factor complexity provides a useful measure of the extent of randomness of x. Periodic words have bounded factor complexity while digit expansions of normal numbers have maximal complexity. A celebrated theorem of Morse and Hedlund in [START_REF] Morse | Symbolic dynamics[END_REF] states that every aperiodic (meaning not ultimately periodic) word contains at least n + 1 distinct factors of each length n. Sturmian words are those aperiodic words of minimal factor complexity: p x (n) = n + 1 for each n ≥ 1.

Several notions of complexity have been successfully used in the study of infinite words and their combinatorial properties. They include Abelian complexity [START_REF] Allouche | Palindrome complexity, Selected papers in honor of Jean Berstel[END_REF][START_REF] Cassaigne | Cyclic complexity of words[END_REF][START_REF] Charlier | On a group theoretic generalization of the Morse-Hedlund theorem[END_REF][START_REF] Coven | Sequences with minimal block growth[END_REF][START_REF] Peltomäki | Introducing privileged words: privileged complexity of Sturmian words[END_REF][START_REF] Richomme | Abelian complexity of minimal subshifts[END_REF], palindrome complexity [START_REF] Allouche | Palindrome complexity, Selected papers in honor of Jean Berstel[END_REF], cyclic complexity [START_REF] Cassaigne | Cyclic complexity of words[END_REF], privileged complexity [START_REF] Peltomäki | Introducing privileged words: privileged complexity of Sturmian words[END_REF], group complexity [START_REF] Charlier | On a group theoretic generalization of the Morse-Hedlund theorem[END_REF] and maximal pattern complexity [START_REF] Kamae | Sequence entropy and the maximal pattern complexity of infinite words[END_REF] to name just a few. In this paper we introduce and study two new complexity functions based on the notions of open and closed words [START_REF] Fici | Open and closed words[END_REF]. A word u ∈ A + is said to be closed if either u ∈ A or if u is a complete first return to some proper factor v ∈ A + , meaning u has precisely two occurrences of v, one as a prefix and one as a suffix. If u is not closed then u is said to be open. Thus a word u ∈ A + \ A is closed if and only if it is bordered and its longest border only occurs in u as a prefix and as a suffix. The longest border of a closed word is called frontier. For example, aabaaabaa is closed and its frontier is equal to aabaa. In contrast, ab is open as it is unbordered while abaabbababbaaba is open since its frontier aba occurs internally in u. It is easily seen that all privileged words [START_REF] Peltomäki | Introducing privileged words: privileged complexity of Sturmian words[END_REF] are closed and hence so are all palindromic factors of rich words [START_REF] Glen | Palindromic richness[END_REF]. The terminology open and closed was first introduced by the authors in [START_REF] Bucci | Enumeration and structure of trapezoidal words[END_REF] although the notion of a closed word had already been introduced earlier by A. Carpi and A. de Luca in [START_REF] Carpi | Periodic-like words, periodicity and boxes[END_REF]. For a nice overview of open and closed words we refer the reader to the recent survey article by G. Fici [START_REF] Fici | Open and closed words[END_REF].

For each infinite word x ∈ A N we consider the functions f c x , f o x : N → N which count the number of closed and open factors of x of each length n ∈ N. In this note we investigate the function f c

x where x is an Arnoux-Rauzy word. Arnoux-Rauzy words were first introduced in [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF] in the special case of a 3-letter alphabet. They are a natural generalization of Sturmian words to alphabets of cardinality greater that two. If x ∈ A N is an Arnoux-Rauzy word, then p x (n) = (|A| -1)n + 1 for each n ∈ N. Moreover each factor u of x has precisely |A| distinct complete first returns in x.

Our main result in Theorem 1 below provides an explicit formula for the closed complexity function f c x (n) for an Arnoux-Rauzy word x on a t-letter alphabet A. Since for any word x ∈ A N we have that f c x (n) + f o x (n) = p x (n), a formula for f c x (n) also yields a formula for f o x (n). Our formula is expressed in terms of two related sequences associated to x. The first is the sequence (b k ) k≥0 of the lengths of the bispecial factors ε = B 0 , B 1 , B 2 , . . . of x, ordered according to increasing length. The second is the sequence (p (k) a ) k∈ω a∈A where for each k ∈ ω, the t coordinates of (p

(k)
a ) a∈A are the lengths of the t first returns to B k in x. Both sequences have been extensively studied in the literature. For each k ∈ ω, the coordinates of (p (k) a ) a∈A are coprime and each is a period of the word B k . Moreover, each B k is an extremal Fine and Wilf word, i.e., any word u having periods (p (k) a ) a∈A and of length greater than b k is a constant word, i.e., u = a n for some n (see [START_REF] Tijdeman | Fine and Wilf words for any periods[END_REF]). Theorem 1. Let x ∈ A N be an Arnoux-Rauzy word. For each k ∈ ω and a ∈ A set

I k,a = [b k -2p k + p (k) a + 2, b k + p (k) a ] where p k = min b∈A {p (k) b }. Let F (a, n) = k∈ω n∈I k,a (d(n, I k,a ) + 1), ( 1 
)
where for n ∈ I k,a , the quantity d(n, I k,a ) denotes the minimal distance from n to the endpoints of the interval I k,a . Then the number of closed factors of x for each length

n is f c x (n) = a∈A F (a, n).
For each fixed n ∈ N and a ∈ A, the sum in ( 1) is finite since it only involves those k for which n ∈ I k,a .

As a corollary of Theorem 1, we show that if x is an Arnoux-Rauzy word, then lim inf f c x (n) = +∞. In contrast, it follows from [START_REF] Schaeffer | Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences[END_REF] that if x is the regular paperfolding word, then lim inf f c x (n) = 0, in other words, for infinitely many n, all factors of x of length n are open.

We end this section by recalling a few basic notions in combinatorics on words relevant to the paper. Throughout this text A will denote a finite non-empty set (the alphabet). For n ∈ N, let A n denote the set of all words

a 1 a 2 • • • a n with a i ∈ A. For u = a 1 a 2 • • • a n ∈ A n , we let u ∈ A n denote the reversal of u, i.e., u = a n a n-1 • • • a 1 . Let A + = n∈N A n denote the free semigroup generated by A. For u = a 1 a 2 • • • a n ∈ A + the
quantity n is called the length of u and denoted |u|. We set A * = A + ∪ {ε} where ε is the empty word (of length equal to 0). We let A N denote the set of all infinite words a 1 a 2 a 3 • • • with a i ∈ A. For x ∈ A + ∪ A N and v ∈ A * we say that v is a factor of x if x = uvy for some u ∈ A * and y ∈ A * ∪ A N . We let Fac(x) denote the set of all factors of x. A factor v of x is called right (resp. left) special if va and vb (resp. av and bv) are each factors of x for some choice of distinct a, b ∈ A. A factor which is both right and left special is said to be bispecial. Given factors u and v of x, we say that u is a first return to v in x if uv is a factor of x having precisely two first occurrences of v, one as a prefix and one as a suffix. In which case the word uv is called a complete first return to v.

Counting closed factors in Arnoux-Rauzy words

Throughout this section we let A denote a finite set of cardinality t ≥ 2. A recurrent word x ∈ A N is called an Arnoux-Rauzy word if x contains, for each n ≥ 0, precisely one right special factor R n of length n and one left special factor L n of length n. Furthermore, R n is a prefix of t-many distinct factors of x of length n + 1 while L n is a suffix of t-many distinct factors of x of length n + 1. In particular one has p x (n) = (t -1)n + 1 and each factor u of x has precisely t distinct complete first returns. In the special case of a binary alphabet, we see that x is a Sturmian word. Arnoux-Rauzy words constitute a special class of episturmian words (see [START_REF] Berstel | Sturmian and episturmian words (A survey of some recent results)[END_REF][START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF][START_REF] Justin | Episturmian words and episturmian morphisms[END_REF]) and hence each factor u of an Arnoux-Rauzy word is (palindromically) rich, i.e., u contains exactly |u| + 1 many distinct palindromic factors (including the empty word ε). We will make use of the following alternative characterisation of rich words given in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]. Lemma 2.1. [Proposition 3 in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]] A word u ∈ A + is rich if and only if for every prefix v of u, the longest palindromic suffix of v is uni-occurrent in v.

Let us now fix an Arnoux-Rauzy word x ∈ A N . Recall that for each length n ∈ ω an Arnoux-Rauzy word contains either zero or one bispecial factor of length n. Let ε = B 0 , B 1 , B 2 , . . . be the sequence of bispecial factors of x ordered according to increasing length.

Put b k = |B k | so that 0 = b 0 < b 1 < b 2 < • • • .
We recall the following characterization of the bispecial factors B k of x in terms of palindromic closures (see [START_REF] De Luca | Sturmian words: structure, combinatorics and their arithmetics[END_REF][START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]). For each k ∈ N there exists a unique a k ∈ A such that B k-1 a k is a left special factor of x. The sequence (a k ) k∈N is called the directive sequence of x. It follows that B k-1 a k is a prefix of B k but in fact B k is the palindromic closure of B k-1 a k , i.e., the shortest palindrome beginning in B k-1 a k . More precisely, if we let S k denote the longest palindromic suffix of B k-1 a k and write B k-1 a k = x k S k with x k ∈ A * , then B k = x k S k x k (see for instance Lemma 5 in [START_REF] De Luca | Sturmian words: structure, combinatorics and their arithmetics[END_REF] in case the alphabet A is binary). Lemma 2.2. For each k ∈ N we have that S k is a uni-occurrent factor of B k . In particular S k is not a factor of B k-1 .

Proof. Clearly S k is a factor of B k . To see that it is uni-occurrent, suppose that S k occurs more than once in B k . Since S k and B k are each palindromes and

B k = x k S k x k , it follows that S k occurs at least twice in x k S k = B k-1 a k . But this contradicts Lemma 2.1 since S k was defined as the longest palindromic suffix of B k-1 a k . Define ϕ : Fac(x) → ω by ϕ(v) is the least k ∈ ω such that v is a factor of B k . In particular ϕ(v) = 0 ⇔ v = ε. Lemma 2.3. Let k ∈ N and v ∈ A + . Then v ∈ ϕ -1 (k) if and only if v is a factor of B k containing S k as a factor. In particular each v ∈ ϕ -1 (k) is uni-occurrent in B k .
Proof. Suppose v is a factor of B k containing S k as a factor. Then by Lemma 2.2, v is not a factor of B k-1 and hence not a factor of any B j with j < k. Hence ϕ

(v) = k. Conversely suppose that ϕ(v) = k. Then v is a factor of B k but not of B k-1 . Since B k = x k S k x k = B k-1 a k x k = x k a k B k-1 ,
it follows that v must contain S k as a factor. Having established that each v ∈ ϕ -1 (k) contains S k , it follows by Lemma 2.2 that v is uni-occurrent in B k .

For each k ∈ ω and a ∈ A, let R 

a k = p (k-1) a k
, and p

(k) b = p (k-1) b + p (k-1) a k for b ∈ A \ {a k }. It is easily verified by induction that b k = a∈A p (k) a -t t -1 .
For each k ∈ N, we set

p k = p (k) a k . Since B k is a complete first return to B k-1 beginning in B k-1 a k i.e., R (k-1) a k = B k , it follows that p k = p (k) a k = p (k-1) a k = |R (k-1) a k | -b k-1 = b k -b k-1 . (2) 
It follows immediately from our recursive definition of the p (k)

a that p k = min{p (k) a | a ∈ A}. Lemma 2.4. Let k ∈ N and let J k denote the interval [b k -2p k + 2, b k ]. If v ∈ ϕ -1 (k)
then |v| ∈ J k and, for each m ∈ J k , the set ϕ -1 (k) contains precisely d(m, J k ) + 1 distinct words of length m, where d(m, J k ) is the minimal distance between m and the two boundary points of the interval J k . In particular |ϕ -1 (k)| = p 2 k .

Proof. In view of Lemma 2.3 we have that v ∈ ϕ -1 (k) if and only if v is a factor of B k which contains S k as a subfactor It follows that

|S k | ≤ |v| ≤ |B k |. Also, since B k = B k-1 a k x k , by (2) we deduce that p k = b k -b k-1 = |x k | + 1. Furthermore, as B k = x k S k x k we have |S k | = |B k | -2|x k | = b k -2(p k -1) = b k -2p k + 2. Hence b k -2p k +2 ≤ |v| ≤ b k . Now suppose m ∈ J k . To see that ϕ -1 (k) contains d(m, J k )+1
distinct words of length m we simply use the fact that each v ∈ ϕ -1 (k) contains S k and is uni-occurrent in B k (see Lemma 2.3). Finally,

|ϕ -1 (k)| = 1+2+• • •+(p k -1)+p k +(p k -1)+• • •+2+1 = 2 p k (p k -1) 2 +p k = p 2 k .
Let k ∈ N and v ∈ ϕ -1 (k). As a consequence of Lemma 2.3, there exists a unique decomposition B k = u 1 vu 2 with u 1 , u 2 ∈ A * . In particular, vu 2 is right special in x and u 1 v is left special in x. Now suppose u is a closed factor of x with frontier v. In particular u begins and ends in v. Since x is recurrent and aperiodic, it follows that vu 2 is a prefix of u and u 1 v is a suffix of u, whence u 1 uu 2 is a complete first return to B k . In fact, u 1 uu 2 begins and ends in B k and does not admit other occurrences of B k for otherwise v would occur in u internally (meaning not as a prefix or as a suffix). Thus

u 1 uu 2 = R (k)
a for some a ∈ A. Definition 2.5. Let u be a closed factor of x and a ∈ A. We say u is of type a if and only if either u = a or, if u is closed with frontier

v ∈ A + , then u 1 uu 2 = R (k) a where k = ϕ(v) and B k = u 1 vu 2 .
If u is a closed factor of x of type a ∈ A and frontier v ∈ A + , then

|u| -|v| = |R (k) a | -(|u 1 | + |u 2 | + |v|) = |R (k) a | -|B k | = p (k) a , (3) 
where k = ϕ(v). We observe that the equality |u| -|v| = p

(k) a in (3) also holds in case u ∈ A taking v = ε and k = 0.
Let C(x) denote the set of all closed factors of x and for each u ∈ C(x) let fr(u) ∈ A * denote its frontier. By convention we define fr(a) = ε for each a ∈ A. For each k ∈ ω and a ∈ A we let C k,a (x) denote the set of all closed factors u of x of type a whose frontier fr(u) belongs to ϕ -1 (k).

Lemma 2.6. The sets {C k,a (x) : k ∈ ω, a ∈ A} define a partition of C(x) and fr : C k,a (x) → ϕ -1 (k) is a bijection.

Proof. Each closed factor u ∈ C(x) has a unique type and its frontier fr(u) belongs to ϕ -1 (k) for a unique value of k ∈ ω. Whence each closed factor u of x belongs to a unique C k,a (x). By definition, if u ∈ C k,a (x) then fr(u) ∈ ϕ -1 (k). Moreover u is uniquely determined by its frontier fr(u) and its type. In fact, if

u ∈ C k,a (x) then u 1 uu 2 = R (k)
a where u 1 , u 2 are determined by the (unique) factorization B k = u 1 fr(u)u 2 . This proves fr is injective. To see that fr is also surjective, let v ∈ ϕ -1 (k). Then we can write

B k = u 1 vu 2 for some u 1 , u 2 ∈ A * . Hence R (k) a begins in u 1 and ends in u 2 . It follows that u = u -1 1 R (k) a u -1 2
is a closed factor of x of type a and fr(u) = v.

Proof of Theorem 1. Fix n ∈ N. By Lemma 2.6 we have

f c x (n) = |C(x) ∩ A n | = k∈ω a∈A |C k,a (x) ∩ A n |. Now assume u ∈ C k,a ∩ A n and put v = fr(u) ∈ ϕ -1 (k). Then by (3) we have that n = |u| = |v| + p (k) a . By Lemma 2.4, |v| = n -p (k) a ∈ J k = [b k -2p k + 2, b k ]. By Lemma 2.6 the number of words u ∈ C k,a (x) ∩ A n is equal to the number of words v ∈ ϕ -1 (k) of length n -p (k) a which by Lemma 2.4 is equal to d(n -p (k) a , J k ) + 1 = d(n, I k,a ) + 1 where I k,a = [b k -2p k + p (k) a + 2, b k + p (k)
a ]. This completes the proof of Theorem 1.

In case |A| = 2, i.e., x is Sturmian, each bispecial factor B k has precisely two first returns, the shortest one is of length p k , and we let q k denote the length of the other first return. So for fixed a ∈ A and k ∈ N we have

p (k) a = p k , if a = a k ; q k , otherwise. If a = a k then I k,a = [q k , q k + 2p k -2] and if a = a k then I k,a = [2q k -p k , 2q k + p k -2]. Putting P k = [q k , q k + 2p k -2] and Q k = [2q k -p k , 2q k + p k -2]
, we obtain that for a Sturmian word x the number of closed factors of x of each length n is given by

f c x (n) = k∈ω n∈P k (d(n, P k ) + 1) + k∈ω n∈Q k (d(n, Q k ) + 1). (4) 
Example 2.7. Consider the Fibonacci word

x f ib = abaababaabaababaa • • •
fixed by the morphism a → ab, b → a. Then p k = F k and q k = F k+1 where the sequence (F k ) k∈ω is the Fibonacci sequence given by F 0 = F 1 = 1 and

F k+1 = F k + F k-1 for k ≥ 1.
Table 1 shows the number of closed factors of length n ≤ 15 in the Fibonacci word computed using (4).

Table 1: The number of closed factors in the Fibonacci word. While the previous result applies to Arnoux-Rauzy words, for a general aperiodic word x the limit inferior of the function f c x (n) need not be infinite. For example, in the case of the regular paperfolding word one has that lim inf n→∞ f c x (n) = 0. In fact, in [START_REF] Schaeffer | Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences[END_REF] the authors exhibit an 11-state automaton which accepts the base 2 representation of those n for which there is a closed factor of the regular paperfolding word of length n (see Figure 1 in [START_REF] Schaeffer | Closed, palindromic, rich, privileged, trapezoidal, and balanced words in automatic sequences[END_REF]). As another perhaps simpler example, let x be the fixed point beginning in a of the 2-uniform morphism ϕ on the alphabet {a, b, c, d} given by ϕ : a → ac, b → ad, c → bc, d → bd. Then it is easily shown that all factors of x of length 2 n (n ∈ N) are open. We remark that this last example is closely related to the regular paperfolding word. In fact, the regular paperfolding word is the image of the fixed point of ϕ under the mapping which sends a, c to 0 and b, d to 1.

a

  denote the complete first return to B k in x beginning in B k a and put p (k) a = |R (k) a | -b k . In other words p (k) a is the length of the first return to B k determined by R (k) a . We note that R (0) a = a for each a ∈ A. The sequence (p (k) a ) k∈ω a∈A is computed recursively as follows : p (0) a = 1 for each a ∈ A. For k ≥ 1, we have p (k)

  for n = 11 we must determine those k for which either 11 ∈ P k or 11 ∈ Q k . It is easily checked that 11 only belongs to P 4 =[START_REF] Charlier | On a group theoretic generalization of the Morse-Hedlund theorem[END_REF][START_REF] Justin | Episturmian words and episturmian morphisms[END_REF], Q 3 =[START_REF] Cassaigne | Cyclic complexity of words[END_REF][START_REF] De Luca | Some combinatorial properties of Sturmian words[END_REF] andQ 4 = [11, 19]. So f c x f ib (11) = d(11, P 4 ) + 1 + d(11, Q 3 ) + 1 + d(11, Q 4 ) + 1 = 4 + 1 + 1 = 6.The graph of the function f c x f ib is shown in Figure1. The function is clearly not monotone.
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 1 Figure 1: The number of closed factors in the Fibonacci word.
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 2 Figure 2 illustrates the behavior of the number of closed factors of the Tribonacci word x trib ∈ {a, b, c} N defined as the fixed point of the morphism a → ab, b → ac, c → a.
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 2 Figure 2: The number of closed factors in the Tribonacci word.
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 35 Figure 3: The number of closed factors in the word x r .
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