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This work presents a new approach for premixed turbulent combustion modeling based on convolutional neural networks (CNN). 1 We first propose a framework to reformulate the problem of subgrid flame surface density estimation as a machine learning task. Data needed to train the CNN is produced by direct numerical simulations (DNS) of a premixed turbulent flame stabilized in a slot-burner configuration. A CNN inspired from a U-Net architecture is designed and trained on the DNS fields to estimate subgridscale wrinkling. It is then tested on an unsteady turbulent flame where the mean inlet velocity is increased for a short time and the flame must react to a varying turbulent incoming flow. The CNN is found to efficiently extract the topological nature of the flame and predict subgrid-scale wrinkling, outperforming classical algebraic models.

Introduction

Deep Learning (DL) [START_REF] Goodfellow | Deep learning[END_REF] is a machine learning strategy at the center of a strong hype in many digital industries. This popularity stems in part from the capacity of this approach to sift efficiently through high-dimensional data inherent in real world applications. In conjunction with so-called Big Data , or the access to sensing, storage and computing capabilities that yield huge databases to learn from, some challenges e.g. in computer vision [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] , natural language processing [START_REF] Ferrucci | Building watson: an overview of the deepqa project[END_REF] and complex game playing [START_REF] Silver | Mastering the game of go without human knowledge[END_REF] have seen dramatic advancements in the past decade.

Originally developed as a model of the mammal brain [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF] , Artificial Neural Networks (ANN) have since been optimized for numerical performance, enabling the training of deeper architectures, and eventually putting them at the center of the DL effort. These developments have been traditionally lead by experts in computer cognition, limiting their application to select fields. Modern programming frameworks with high levels of abstraction [START_REF] Abadi | Tensor-Flow: large-scale machine learning on heterogeneous systems, software available from tensorflow[END_REF] have however been made available in the past 3 years, in conjunction with powerful hardware such as GPUs to perform fast training. This has opened the possibility for applications in many other fields, such as physics, where the causal nature of DL [START_REF] Lin | Why does deep and cheap learning work so well?[END_REF] suggests that complex patterns could also be sought and learned.

DL clearly belongs to methods devoted to the analysis of data . In the field of fluid mechanics and of combustion, where models i.e. the Navier-Stokes equations are known, evaluating the possible impacts of DL is difficult. In this area, what is obviously needed is a mixed models/data approach. Data-driven strategies are by nature approximations, suggesting significant challenges when used on problems for which deterministic equations are available. The low hanging fruits are therefore expected to be sub-problems where models do not rely on exact equations but on simple closure assumptions. In this field, DL may work better than standard models, notably when the flow topology is known to inform the estimation.

Recent studies applied to turbulent flows [START_REF] Duraisamy | New approaches in turbulence and transition modeling using data-driven techniques[END_REF][START_REF] Ling | Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[END_REF][START_REF] Vollant | Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures[END_REF][START_REF] Maulik | A neural network approach for the blind deconvolution of turbulent flows[END_REF][START_REF] Schoepplein | Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames[END_REF] have shown that subgrid-scale (SGS) closure models for Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) could be addressed using several machine learning algorithms, including shallow ANNs. However, advancements offered by DL methods have in large part stemmed from pattern recognition performed by deep ANNs [START_REF] Goodfellow | Deep learning[END_REF] , which are still mostly absent from the fluid mechanics literature, as shown in a recent review [START_REF] Duraisamy | Turbulence modeling in the age of data[END_REF] . Convolutional Neural Networks (CNNs) are interesting compared to ANNs because they introduce the notion of parameter sharing : instead of having to learn the relationships between input and output everywhere sep-arately, CNNs learn small filters that apply over the entire image. This reduces the number of connections (hence of learnable parameters) per layer, and offers the possibility to stack many layer efficiently. Additionally, on Nevertheless, some deep residual networks have been built, and it was shown that they could accurately recover state-of-the-art turbulent viscosity models on homogeneous isotropic turbulence [START_REF] Beck | Deep neural networks for data-based turbulence models[END_REF] .

In the combustion community, the determination of the SGS contribution to the filtered reaction rate in reacting flows LES is an example of closure problem that has been daunting for a long time. Indeed, SGS interactions between the flame and turbulent scales largely determines the flame behavior, and modeling them is an important factor to obtain overall flame dynamics. Many turbulent modeling approaches are based on a reconstruction of the SGS wrinkling of the flame surface and the so-called flamelet assumption [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] . Under this assumption, the mean turbulent reaction rate can be expressed in terms of flame surface area [START_REF] Marble | The coherent flame model for turbulent chemical reactions[END_REF][START_REF] Candel | Coherent flame model: applications and recent extensions[END_REF] . Indeed, the idea that turbulence convects, deforms and spreads surfaces [START_REF] Pope | The evolution of surfaces in turbulence[END_REF] can be applied to a premixed flame front in a turbulent flow. The evaluation of the amount of flame surface area due to unresolved flame wrinkling is the core of all models based on flame surface areas in the last 50 years [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] , both for RANS [START_REF] Bray | A unified statistical model of the premixed turbulent flame[END_REF][START_REF] Peters | Laminar flamelet concepts in turbulent combustion[END_REF][START_REF] Duclos | A comparison of flamelet models for premixed turbulent combustion[END_REF][START_REF] Bruneaux | Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling[END_REF] and LES [START_REF] Boger | Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[END_REF][START_REF] Knikker | A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion[END_REF] . CNNs could be a natural fit for this task, which consists in recognizing geometrical topologies of the flame, and learning to associate an under-resolved wrinkling level to each. This is akin to many of the recognition challenges involved in image recognition, one of the domains that CNNs are known to excel at.

This paper explores this question and proposes a priori tests of a deep CNN-based model for the SGS contribution to the reaction rate of premixed turbulent flames. It is organized as follows: in Section 2 , the theoretical aspects of the study are presented. They are inspired from the context of flame surface density models, but are reformulated in the framework of machine learning algorithms. Section 3 describes the DNS performed to produce the data needed to train the neural network. Section 4 describes the design, implementation and training procedure of a CNN for the flame surface density estimation problem at hand. The data produced in the previous section is used to train a CNN. Once the training process has converged, this network is frozen into a function that is used on new fields to predict flame surface density in Section 5 . The method is meant to be used in this fashion: once the training has been performed using DNS data, no additional DNS is needed to use the model on new configurations. In the last section, the accuracy of the trained network is compared to several classical models from the literature, and the specific challenges of evaluating learning approaches are discussed.

Theoretical modeling

Flame surface density models

LES relies on a spatial filtering to split the turbulence spectrum and remove the non-resolved scales. For each quantity of interest Q from a well resolved flow field, the low-pass spatial filter F with width yields:

Q (x , t ) = V F (x -x ) Q (x , t ) d x (1) 
where • denotes the filtering operation. We will limit this study to perfectly premixed combustion where a progress variable c for adiabatic flows is defined as:

c = T -T u T b -T u ( 2 
)
with subscripts u and b referring to unburnt and burnt gases, respectively. A balance equation can be written for c [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] , by defining a density weighted (or Favre) filtering Q = ρQ / ρ for every quantity Q . Filtering the progress variable equation written in a propagative form (G-equation, [START_REF] Kerstein | Field equation for interface propagation in an unsteady homogeneous flow field[END_REF] ) assuming locally flame elements gives [START_REF] Knikker | A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion[END_REF] :

∂ ρ ˜ c ∂t + ∇ • ( ρ ˜ u ˜ c ) + ∇ • ( ρ u c -ρ ˜ u ˜ c ) = ρ u S 0 L ( 3 
)
where the right hand side term incorporates filtered diffusion and reaction terms into a single c -isosurface displacement speed assimilated to laminar flame speed S 0 L , and where ρ u is the fresh gases density.

= | ∇c | is the generalized flame surface density [START_REF] Boger | Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[END_REF] , and cannot be obtained in general from resolved flame surfaces. Indeed, when filtering c to c , surface wrinkling decreases, resulting in less total c -isosurface. One popular method to model is to introduce the wrinkling factor that compares the total and resolved generalized flame surfaces. The right-hand side term of Eq. ( 3) is then rewritten as:

ρ u S 0 L = ρ u S 0 L |∇ c | (4) 
where

= |∇ c | (5) 
Fractal approaches such as introduced by Gouldin et al. [START_REF] Gouldin | Chemical closure model for fractal flamelets[END_REF] suggest a relationship between and |∇ c | of the form:

= η c D f -2 |∇ c | (6) 
where D f is the fractal dimension of the flame surface, and η c is the inner cutoff scale below which the flame is no longer wrinkled.

The η c length scales with the laminar flame thickness δ 0 L [START_REF] Poinsot | Quenching processes and premixed turbulent combustion diagrams[END_REF][START_REF] Gulder | Inner cutoff scale of flame surface wrinkling in turbulent premixed flames[END_REF] . More recent work, based on flame/vortex interactions and multi-fractal analysis [START_REF] Charlette | A power-law wrinkling model for LES of premixed turbulent combustion. Part I -non-dynamic formulation and initial tests[END_REF] suggests a different form (modified to recover Eq. ( 6) at saturation [START_REF] Wang | Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] ):

= 1 + min δ 0 L -1 , δ 0 L , u S 0 L , Re u S 0 L β |∇ c | ( 7 
)
where β is a generalized parameter inspired from the fractal dimension. The function is meant to incorporate the strain induced by the unresolved scales between and η c . Extensions of this model have also been proposed to compute the parameter β dynamically [START_REF] Wang | Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF][START_REF] Charlette | A power-law flame wrinkling model for les of premixed turbulent combustion. Part II: dynamic formulation[END_REF] . From a machine learning standpoint, these all correspond to predicting the same output , but using several input variables: ( c , /δ 0 L , u /S 0 L ) . More variables could be included to further generalize the approach, e.g. information about the chemical state, since the machine learning framework does not require a strict physical formulation.

Reformulation in the machine learning context

Flame surface density estimation can be seen as the issue of relating the input field c to a matching output field . Supervised learning of this task can be implemented as follows:

• in a first phase, a dataset generated using a DNS is used, where both c and are known exactly. Models are trained on this data in a supervised manner.

• in a second step, the best trained model is frozen. It is executed in an LES context, where c is known but not .

It is important to note that the knowledge of , which comes from a DNS, is only needed during the training phase to generate the target values. The learned model, once trained, can be used on new configurations, whithout needing to perform the DNS. This is shown in Section 5 .

Both expressions ( 6) and ( 7) are fully local: the flame surface depends only on the local characteristics of turbulence ( u ), on the grid size ( ) and on the laminar flame characteristics ( δ 0 L and S 0 L ).

These functions are of the form:

= f ( c , u , . . . ) (8) f : R k → R
where k is the number of local variables considered. A generalized DL approach however could use more data by extracting topological information from the flow. In this study, we investigate the capability of spatial convolution to read the vector c of values over an entire subdomain , and to produce a prediction for the matching field of over . The function f CNN therefore performs:

= f CNN ( c ) (9) f CNN : R → R
The CNN input is 3D matrix, meaning must be a 3D regular grid. The neural network architecture chosen in this work ( Fig. 4 ) imposes a single constraint on : each dimension must be a multiple of 4. Other than that, there are no constraints on the input to the network, and it can be used on arbitrarily large domains.

The nature of f CNN differs from classical SGS models which use only local information to infer the subgrid reaction rate: the CNN explores the flow around each point to construct subgrid quantities. Convolutions are promising for this task for several reasons:

• convolutions are an efficient strategy to obtain approximations of any order of derivatives of a scalar field [START_REF] Pratt | Digital image processing: PIKS scientific inside[END_REF] ; • flames are not local elements but complex structures that spread over several mesh points. Analyzing these structures using algebraic (pointwise) models [START_REF] Charlette | A power-law wrinkling model for LES of premixed turbulent combustion. Part I -non-dynamic formulation and initial tests[END_REF][START_REF] Colin | A thickened flame model for large eddy simulations of turbulent premixed combustion[END_REF] is challenging. The spatial analysis offered by successive convolutions may enable to better understand the global topology of the flame and therefore permit a better estimation of the unresolved structures; • recent advances in training convolutional neural networks have lead to a high availability of these methods; • convolutions enable to train models on large inputs via parameter sharing. This implies that the parameter n in Eq. ( 9) can be high, even though the dimensionality of the problem increases with the cube of n . This contrasts with other classical machine learning approaches, including non-convolutional neural networks, which would quickly become impractically large on so many inputs.

Building the training database

Direct numerical simulations of premixed flames

In order to obtain |∇ c | and fields needed to train the CNN, two DNS of a methane-air slot burner are used. Their instantaneous snapshots are treated to produce c and ∇c , and filtered (see

Section 3.2 ).
The fully compressible explicit code AVBP is used to solve the filtered multi-species 3D Navier-Stokes equations with simplified thermochemistry on unstructured meshes [START_REF] Schønfeld | Steady and unsteady flows simulations using the hybrid flow solver AVBP[END_REF][START_REF] Selle | Compressible large-eddy simulation of turbulent combustion in complex geometry on unstructured meshes[END_REF] . A Taylor-Galerkin finite element scheme called TTGC [START_REF] Colin | Development of high-order Taylor-Galerkin schemes for unsteady calculations[END_REF] of third-order in space and time is used. Inlet and outlet boundary conditions are treated using an NSCBC approach [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] with transverse terms corrections [START_REF] Granet | Comparison of nonreflecting outlet boundary conditions for compressible solvers on unstructured grids[END_REF] . Other boundaries are treated as periodic.

Chemical kinetics of the reactions between methane and air at 1 bar are modeled using a global 2-step scheme fitted to reproduce the flame propagation properties such as the flame speed, the burned gas temperature and the flame thickness [START_REF] Franzelli | Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame[END_REF] . This simplified chemistry description is sufficient to study the dynamics of premixed turbulent flames. Fresh gases are a stoichiometric mixture with flame speed S 0 L = 40 . 5 cm/s and thermal flame thickness 0.34 mm. The mesh is a homogeneous cartesian grid with constant element size d x = 0 . 1 mm, ensuring 7-9 points in the preheat zone and 4-5 in the reaction zone. Flame speed and thickness were found to be conserved within 5% on a laminar 1D flame. The domain size is 512 cells in the x direction and 256 cells in the y and z ones, for a total of 33.6 million cells. It is periodic in the y and z directions, and fed by a profile of fresh and burnt gases in the x = 0 plane ( Fig. 1 ). The inlet is set with a double hyperbolic tangent profile in the y direction, with a central flow of fresh gases enclosed in slower burnt gases coflows. Inlet temperatures are 300 and 2256 K in the fresh and burnt gases, respectively. Inlet velocities are u in = 10 and u co f low = 0 . 1 m/s. The characteristic width of the shear layer, as defined by Pope [START_REF] Pope | Turbulent flows[END_REF] , is δ m = 0 . 34 mm, with a corresponding Reynolds number of Re m ≈200.

• The central flow is a fresh stoichiometric mixture of methane and air. • The coflow is a slow stream of burnt gases, identical in temperature and mixture to the product of the complete combustion of the central flow. • Turbulence is injected in the fresh gases only. Simulations are performed with either 5% or 10% turbulence injected according to a Passot-Pouquet spectrum [START_REF] Passot | Numerical simulation of compressible homogeneous flows in the turbulent regime[END_REF] with an integral length scale l F = 2 mm, yielding l F /δ 0 L ≈ 6 . The fresh gas injection channel has a height h = 8 mm ( h/δ 0 L ≈ 25 ). Table 1 describes the two DNS simulations performed in this study and used to train the CNN. The global Damköhler number is estimated as Da = u /S 0 L × l F /δ 0 L . DNS1 and DNS2 are steady-state simulations, run for 14 ms each. The first 4 ms are transient and discarded, leading to 2 datasets of 10 ms each, with a full field saved every 0.2 ms. This ensures that the fresh gases have traveled approximately 20 mesh points between each snapshot, yielding significant changes in flame shape and therefore diversity in the training data for the CNN.

Dataset

Two meshes are used in this study:

• a DNS mesh used to perform the reactive simulations, which contains 512 × 256 × 256 cells. • an "LES" mesh, which represents the same domain but 8 times coarser in every direction, i.e. 64 × 32 × 32 cells.

Fine solutions are produced on the DNS mesh using the Navier-Stokes solver, and then filtered according to Eq. ( 1) and downsampled on the lower resolution LES mesh. In order to perform this filtering operation, a Gaussian filter is implemented. Its width is defined as the multiplying factor on the maximum gradient | ∇c |, i.e. :

= max |∇c| max |∇ c | d x ( 10 
)
computed on a 1D laminar DNS. The resulting function is therefore written in discrete form as: 2 . 3 δ 0 l ≈ l F / 2 . 5 . Data is often normalized when dealing with machine learning tasks, e.g by subtracting the mean and dividing by the standard deviation of the dataset. In the context of the methodology presented here, these values are not known a priori on a new combustion setup, and only the DNS can yield the information for the output data. The overarching goal of the approach presented here is to apply the technique to cases where a DNS cannot be performed, hence the need for the network to learn features that are not specifically tailored to a single setup. To achieve this, the input and target fields must be normalized in a fashion that is reproducible a-priori .

F (n ) = e -1 2 ( n σ ) 2 if n ∈ [1 , N] 0 otherwise (11) 
To reach this goal, the input field c is normalized by construction in Eq. ( 2) . Indeed, for premixed combustion this field goes from 0 in the fresh gases to 1 in the burnt flow. The output flame surface density value however spans from 0 far from the flame (both in fresh and burnt gases) to a maximum value that depends on the amount of SGS wrinkling of the flame. The maximum value of on a laminar 1D flame is used to normalize this field: max lam . The normalized target value writes: [START_REF] Schoepplein | Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames[END_REF] and does not exceed 1 in areas where the flame is not wrinkled at the subgrid scale. Values exceeding 1 suggest unresolved flame surface. Figure 2 the number of feature channels is doubled. The upsampling path is a mirrored version of the downsampling path, with a similar structure: it includes 3D transposed convolutions instead of 3D convolutions, and a 2 × 2 × 2 upsampling operation to recover the initial dimensions. Additionally, according to the U-net structure, skipconnections link layers with equal resolution of each path. In order to perform a regression task the final layer, a 3D transposed convolution with 1 × 1 × 1 kernel was used, with a ReLu activation to prevent the network from predicting negative outputs. In total, the network consists of 1,414,145 trainable parameters, corresponding to all the weights that need to be adjusted in the network. In the following, the network described here is simply referred to as the CNN.

+ = max lam

Training the CNN

The data from the two DNS described in Section 3.2 ( Table 1 ) is used to train the CNN. In machine learning, the data is classically split in three categories: Training and validation datasets are often taken from the same distribution, and are simply different samples. Ideally, the testing dataset should be taken from a slightly different distribution, in order to show that the underlying features of the data have been learned, and that they can be generalized to new cases. In this study, two DNS with similar setups (DNS1 and DNS2) that lead to similar flames with some variability introduced by different turbulent intensities are used to produce the training and validation sets, by splitting their data ( Table 2 ). In order to obtain a testing set from a different distribution, a dedicated simulation DNS3 is performed, as described in Section 5 .

Additionally, data augmentation during training was found to increase the quality of the results. Each training sample is a random 16 × 16 × 16 crop from the 3D fields, and random 90 • rotations and mirror operations are applied since the model should For this DNS, inlet velocity of the fresh gases is doubled for 1 ms (5 snapshots), then set back to its original value for 2 ms (10 snapshots), when the detached pocket of burnt gases reaches the exit.

have no preferential orientation and the network must learn an isotropic function. A training step is performed on a mini-batch of 40 such cubes in order to average the gradient used for optimization and smooth the learning process. The ADAM [START_REF] Kingma | A method for stochastic optimization[END_REF] optimizer is used on a mean-squared-error loss function over all output pixels of the prediction compared to the target. A total of 100 of these mini-batches are observed before performing a test on the validation set to evaluate current train and validation error rates. Each of these 100 mini-batch runs is called an epoch . The learning rate, used to weight the update value given by the gradient descent procedure, is initially set to 0.01, and decreased by 20% every 10 epochs. The network converges in ≈150 epochs, for a total training time of 20 min on an Nvidia Tesla V100 GPU. On this dedicated processor, the dataset is indeed much smaller than typical DL challenge datasets, yielding comparatively short training times.

Using the CNN to evaluate subgrid scale wrinkling

DNS3: a simulation tailored for testing

Once the training data has been generated ( Section 3 ) and the CNN has been fully trained on it ( Section 4 ), the network is frozen, and can be used to produce predictions of + based on new fields of c unseen during training. To verify the capacity of the CNN to generalize its learning, a new, more difficult case (DNS3) was used. DNS3 is a short-term transient started from the last field of DNS2, where inlet velocity is doubled, going from 10 to 20 m/s for 1 ms (5 snapshots), and then set back to its original value for 2 more ms ( Fig. 7 ). The RMS value of injected turbulence remains constant at u = 1 m/s. This sudden change leads to a very different, unsteady flow ( Fig. 7 ) where a "mushroom"-type structure is generated [START_REF] Poinsot | Vortex driven acoustically coupled combustion instabilities[END_REF] and where turbulence varies very strongly and rapidly. It is a typical situation encountered in chambers submitted to combustion instabilities, and is now used to evaluate the CNN. This a priori estimation of + on new fields of c with a trained and frozen network is referred to as inference in machine learning, and it is again performed here on the GPU. As explained in Section 2.2 , due to the fully convolutional nature of the chosen network, need not be of the size n 3 : the network can be directly executed on a 3D flow field of any size, regardless of the size that it was trained on. Inference is therefore performed on each full-field snapshot in a single pass. This has the strong advantage that there is no overlapping region between inference areas, in which the predictions can be of poorer quality [START_REF] Beck | Deep neural networks for data-based turbulence models[END_REF] . Inference time is 12 ms for each 64 × 32 × 32 LES field observed.

Figure 6 displays the total flame surface in the domain versus time during DNS3. Fig. 7 shows all the temporal snapshots of c during DNS3, used for testing the CNN. As the inlet speed is doubled, more mass flow enters the domain and the total flame surface increases. After the mass flow is set back to its initial value at snapshot 5, the flame surface continues to increase until snapshot ≈9, which matches the highly wrinkled aspect of the flame as seen in Fig. 8 . The mass flow then decreases below its original level, when the unburnt gas pocket exits the domain, starting at snapshot 15. The flame then grows back to its stable length and total area near snapshot 23. Snapshots after number 15 were not included in the testing dataset DNS3: indeed, no significant difference was observed, and this quasi-stable state is less challenging for the generalization of the trained network.

The objective of the network is to predict a value of + at every node and for every instantaneous snapshot that is as close as possible to the true value computed in the DNS + target . Figure 9 (a) shows the overall point by point agreement on the full test set, and demonstrates that the network recovers well the overall trend in the data. In order to better appreciate the error, Fig. 9 (b) plots the Root Mean Squared Error (RMSE) of the prediction for bins of points sharing a predicted value in 0.1-wide windows. This shows that the maximum RMSE occurs for the higher values of + , and Fig. 9 (c) indicates that some snapshots experience rare extreme RMSE values that can reach 0.4. These events are however limited, and the majority of errors are in the [0 -0 . 2] range. This is a normalized value directly comparable to + , which is valued at 1 in unwrinkled flame fronts and ≈2.5 in highly wrinkled areas ( Fig. 8 ).

From this we conclude that the transient data of DNS3 performs very well on the testing set in a statistical sense.

Comparison with algebraic models

One issue with learning techniques, including CNNs, is that they are the result of an optimization process where a mean squared error of a loss function is minimized. The resulting loss function value is hard to interpret in a physical sense. In order to give a baseline to compare the accuracy of the technique with, the model of Charlette et al. [START_REF] Charlette | A power-law wrinkling model for LES of premixed turbulent combustion. Part I -non-dynamic formulation and initial tests[END_REF] was implemented with a parameter value β = 0 . 5 . This efficiency function assumes flame-turbulence equilibrium to evaluate the amount of sub-grid scale wrinkling, ultimately yielding . Eq. ( 5) gives the relationship with , and therefore in adapt the approach accordingly -to different conditions typically encountered in realistic configurations. This could include e.g. flame thickening factor, pressure, inlet temperature, or equivalence ratio variations. Indeed, in its current form, the method needs to be either tested or retrained as soon as these parameters vary, but success of CNN generalization in the literature suggest that single architectures could be trained over significant ranges of these quantities.

Fig. 1 .

 1 Fig. 1. Physical domain used for the DNS. At the inlet, a double hyperbolic tangent profile is used to inject fresh gases in a sheet ≈8 mm high, surrounded by a slower coflow of burnt gases. Top-bottom (along y ) and left-right (along z ) boundaries are periodic. Yellow isosurface is a typical view of T = 1600 K for DNS2.

  shows a typical instantaneous snapshot of the configuration in the (xy ) plane: + varies between ≈1 near the inlet, where turbulence injection has not yet wrinkled the flame, and a maximum of ≈3 in some local pockets. This shows how the instantaneous field requires specific FSD estimation locally. The DNS field is used to produce input and output fields of lower resolution, which in turn are used to train the neural network. The complete training strategy is shown in Fig. 3 . The DNS field of c is filtered to produce c and + , then sampled on the 8 times coarser LES mesh. These two fields are then sampled on X ∈ R n 3 , n = 16 and fed to the neural network as input/output training.

Fig. 2 .

 2 Fig.2. (xy ) slice view of the last field from DNS2 ("snapshot 0" in Fig.5). Fully resolved progress variable c (top). From this data, the input of the neural network c (middle) and target output to be learned + (bottom) are produced.

Fig. 5 .

 5 Fig. 5. Inlet velocity versus time (1 snapshot every 0.2 ms) for DNS3, continued from DNS2.

Fig. 6 .

 6 Fig. 6. Total flame surface in the domain versus time during DNS3. Test set spans snapshots 1 through 15. A view of the field from snapshot 9 is shown in Fig. 8 .

•

  the training set, used to optimize the weights of the network; • the validation set, used to evaluate the error during training on a set that has not been observed. This enables to detect the point where the network starts overfitting to the training set, and additional training starts to increase the error on the validation set; • the testing set, kept completely unseen during training, and only used a posteriori once the training is converged to assess the performance of the full approach.

Fig. 7 .

 7 Fig. 7. View of c in the (xy ) plane at z = 0 for all snapshots ( 1 -15 ) of DNS3. Black ( c = 0 ) to white ( c = 1 ) shows transition from unburnt to burnt gases, respectively.

Fig. 8 .

 8 Fig. 8. (xy ) slice view of snapshot 9 from DNS3. Fully resolved progress variable c (top). From this data, the input of the neural network c (middle) and target output to be learned + (bottom) are produced.

Table 1

 1 Parameters for the two DNS simulations performed to produce training data for the CNN.

		u rms / ū	Snapshots	u /S 0 L	Da
	DNS1	5%	50	1:23	7
	DNS2	10%	50	2:47	15

Table 2

 2 Data split for the network training and testing in this study. All columns are expressed in terms of DNS snapshot numbers (1 every 0.2 ms), in sequence.

		Training	Validation	Testing
	DNS1	1-40	41-50	∅
	DNS2	1-40	41-50	∅
	DNS2	∅	∅	1-15
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