Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates - Archive ouverte HAL
Article Dans Une Revue Combustion and Flame Année : 2019

Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates

Résumé

This work presents a new approach for premixed turbulent combustion modeling based on convolutional neural networks (CNN).1 We first propose a framework to reformulate the problem of subgrid flame surface density estimation as a machine learning task. Data needed to train the CNN is produced by direct numerical simulations (DNS) of a premixed turbulent flame stabilized in a slot-burner configuration. A CNN inspired from a U-Net architecture is designed and trained on the DNS fields to estimate subgrid-scale wrinkling. It is then tested on an unsteady turbulent flame where the mean inlet velocity is increased for a short time and the flame must react to a varying turbulent incoming flow. The CNN is found to efficiently extract the topological nature of the flame and predict subgrid-scale wrinkling, outperforming classical algebraic models.
Fichier principal
Vignette du fichier
Lapeyre_23414.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02072920 , version 1 (19-03-2019)

Identifiants

Citer

Corentin J Lapeyre, Antony Misdariis, Nicolas Cazard, Denis Veynante, Thierry Poinsot. Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 2019, 203, pp.255-264. ⟨10.1016/j.combustflame.2019.02.019⟩. ⟨hal-02072920⟩
200 Consultations
184 Téléchargements

Altmetric

Partager

More