

Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle

Dmitri Ionov, Yu-Han Qi, Jin-Ting Kang, Alexander Golovin, Oleg B. Oleinikov, Wang Zheng, Ariel D. Anbar, Zhao-Feng Zhang, Fang Huang

▶ To cite this version:

Dmitri Ionov, Yu-Han Qi, Jin-Ting Kang, Alexander Golovin, Oleg B. Oleinikov, et al.. Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica et Cosmochimica Acta, 2019, 248, pp.1-13. 10.1016/j.gca.2018.12.023 . hal-02072845

HAL Id: hal-02072845 https://hal.science/hal-02072845

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0016703718307117 Manuscript_0f031eff29e9e552fe4496c838b80d0c

1	Calcium isotopic signatures of carbonatite and silicate metasomatism,
2	melt percolation and crustal recycling in the lithospheric mantle
3	
4	Dmitri A. Ionov ^{a,b*} , Yu-Han Qi ^c , Jin-Ting Kang ^{b,c} , Alexander V. Golovin ^d , Oleg
5	B. Oleinikov ^e , Wang Zheng ^{f,g} , Ariel D. Anbar ^f , Zhao-Feng Zhang ^b , Fang
6	Huang ^c
7	
8	^a Géosciences Montpellier, Université de Montpellier, 34095 Montpellier, France
9	^b State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese
10	Academy of Sciences, 510640 Guangzhou, China
11	^c CAS Key Laboratory of Crust-Mantle Materials and Environments, School of
12	Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
13	^d Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Sciences,
14	Koptyuga 3, Novosibirsk 630090, Russian Federation
15	^e Diamond and Precious Metal Geology Institute, Siberian Branch Russian Academy of Sciences,
16	Lenina 39, Yakutsk 677007, Russian Federation
17	^f School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287,USA
18	^s Institue of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
19	
20	* Corresponding author.
21	E-mail address: dmitri.ionov@gm.univ-montp2.fr (Dmitri Ionov)
22	5260 words in the main text
23	

24 Abstract (316 words)

25 Ca isotopes can be strongly fractionated at the Earth's surface and thus may be tracers of 26 subducted carbonates and other Ca-rich surface materials in mantle rocks, magmas and fluids. However, the $\delta^{44/40}$ Ca range in the mantle and the scope of intra-mantle isotope fractionation 27 28 are poorly constrained. We report Ca isotope analyses for 22 mantle xenoliths: four basalt-29 hosted refractory peridotites from Tariat in Mongolia and 18 samples from the Obnazhennaya 30 (Obn) kimberlite on the NE Siberian craton. Obn peridotites are Paleoproterozoic to Archean 31 melting residues metasomatised by carbonate-rich and/or silicate melts including unique xenoliths that contain texturally equilibrated carbonates. $\delta^{44/40}$ Ca in 15 Obn xenoliths shows 32 33 limited variation (0.74–0.97‰) that overlaps the value (0.94 \pm 0.05‰) inferred for the bulk silicate Earth from data on fertile lherzolites, but is lower than $\delta^{44/40}$ Ca for non-metasomatised 34 refractory peridotites from Mongolia (1.10 \pm 0.03‰). Bulk $\delta^{44/40}$ Ca in four Obn peridotites 35 36 containing metasomatic carbonates ranges from $0.81 \pm 0.08\%$ to $0.83 \pm 0.06\%$, with similar 37 values in acid-leachates and leaching residues, indicating isotopic equilibration of the 38 carbonates with host rocks. We infer that (a) metasomatism tends to decrease $\delta^{44/40}$ Ca values of the mantle, but its 39 40 effects are usually limited ($\leq 0.3\%$); (b) Ca isotopes cannot distinguish "carbonatite" and "silicate" types of mantle metasomatism. The lowest $\delta^{44/40}$ Ca value (0.56‰) was obtained for 41 42 a phlogopite-bearing Obn peridotite with a very high Ca/Al of 8 suggesting that the greatest 43 metasomatism-induced Ca isotope shifts may be seen in rocks initially low in Ca that 44 experienced significant Ca input leading to high Ca/Al. Two Obn peridotites, a dunite (melt channel material) and a veined spinel wehrlite, have high $\delta^{44/40}$ Ca values (1.22‰ and 1.38‰), 45 46 which may be due to isotope fractionation by diffusion during silicate melt intrusion and 47 percolation in the host mantle. Overall, we find no evidence that recycling of crustal

48 carbonates may greatly affect Ca isotope values in the global mantle or on a regional scale.

- *Keywords*: Ca isotopes; Isotope fractionation; Lithospheric mantle; Carbonate; Metasomatism; Crustal
- 51 recycling

1. INTRODUCTION

52 53

Two most abundant Ca isotopes, ⁴⁰Ca (96.94%) and ⁴⁴Ca (2.09%), have a mass difference 54 55 of about 10% (Heuser et al., 2002) and thus can experience significant fractionation at low temperatures near the Earth's surface. The Ca isotope compositions, expressed as $\delta^{44/40}$ Ca 56 57 relative to the NIST SRM 915a reference material, range by up to several permil in Ca-rich 58 sedimentary and other rocks formed or altered near the surface (Amini et al., 2009; Blättler 59 and Higgins, 2017; Fantle and Tipper, 2014; Feng et al., 2016). In contrast, high temperature 60 equilibrium isotope fractionation in the mantle should be at least an order of magnituide lower 61 (e.g. Huang et al., 2010; Wang et al., 2017; Zhu et al., 2018). This difference may make it 62 possible to use Ca isotopes to trace recycling of Ca-rich surface materials because mantle 63 rocks contaminated by surface materials may have unusual isotope ratios. Hence, Ca isotopes may shed more light on the long-lasting debate on the role of crustal components in the 64 65 mantle (e.g. Xu, 2002) along with other non-convenional stable isotopes (e.g. Huang et al., 66 2011; Wang et al., 2016). Ca isotopes are particularly promising to explore the role of 67 subducted Ca-rich sediments in the sources of mantle metasomatism and mantle-derived 68 magmas (e.g. Chen et al., 2018; Huang S. et al., 2011; Zeng et al., 2010), and in carbon 69 cycling (e.g. Tappe et al., 2017). 70 The application of Ca isotopes to these topics necessitates a good knowledge of, first, the

range of Ca isotope compositions in pristine mantle rocks that contain no crustal additions, and second, the extent of intra-mantle isotope differentiation by melting and metasomatism including non-equilibrium prosesses like diffusion (e.g. Zhao et al., 2017) and inter-mineral fractionation (Huang et al., 2010; Kang et al., 2016; Wang et al., 2017). Recently, Kang et al. (2017) reported Ca isotope compositions for mantle peridotites ranging from fertile lherzolites to harzburgites, and constrained the Ca isotope composition of the bulk silicate Earth (BSE) and pristine melting residues. They also found that $\delta^{44/40}$ Ca in metasomatized peridotites spans a range from the BSE to considerably lower values.

Here we report $\delta^{44/40}$ Ca for a suite of strongly metasomatized, Ca-enriched mantle rocks to 79 80 better define the Ca isotope range in the lithospheric mantle, primarily to constrain the role of 81 metasomatism by carbonate-rich and silicate melts. We provide whole rock (WR) data for 16 82 peridotite and two pyroxenite xenoliths from the Obnazhennaya (Obn) kimberlite in the NE 83 Siberian craton (Ionov et al., 2015; Ionov et al., 2018b) as well as for acid leachates and 84 leaching residues of three Obn peridotites that contain metasomatic carbonate. We also report 85 WR data for four refractory non-metasomatised peridotite xenoliths from Tariat in Mongolia 86 (Ionov and Hofmann, 2007) to better define the Ca isotope range in pristine melting residues.

- 87
- 88

2. LOCALITIES AND SAMPLES

89

90 2.1. Obnazhennaya and its mantle xenoliths

91 The ~160 Ma Obnazhennaya kimberlite (70°15' N, 121°35'E) is located in the NE 92 Siberian craton (Fig. 1). It is one of only two kimberlites in Siberia that contain peridotite 93 xenoliths sufficiently large and fresh for WR petro-geochemical studies. Re-Os isotope data 94 suggest that their sources experienced partial melting at ~ 1.9 and 2.8 Gy ago (Ionov et al., 95 2015; Ionov et al., 2018a). Petrographic and chemical data (Ionov et al., 2018b / and 96 references therein) suggest that the Obn xenolith suite is unusual for cratons, with common 97 peridotites rich in clinopyroxene (cpx) and garnet but low in orthopyroxene (opx), no sheared 98 rocks, and low P-T values suggesting a very thin mantle lithosphere (≤ 100 km). Some 99 samples contain alteration products (mainly serpentine at grain boundaries and veins in 100 olivine), but they are less common than in most cratonic suites elsewhere.

101 The Obn peridotites have protogranular to mosaic-equigranular microstructures and are 102 grouped into four series (Table 1): (1) low-cpx spinel harzburgites and dunites; (2) 103 phlogopite- and carbonate-bearing, Ca-rich rocks with low to moderate Al; (3) peridotites 104 with low to moderate Al, rich in Ca and cpx; (4) Ca-Al-rich lherzolites rich in pyroxenes \pm 105 garnet. They are distinguished from typical cratonic xenolith suites by the rarity of 106 harzburgites and by gradual modal variations of olivine, pyroxenes and garnet between 107 peridotites and pyroxenites. In some of these rocks opx is replaced with late-stage cpx \pm 108 phlogopite (Fig. 2a). Three peridotites contain pockets of carbonate (Mn-Mg-bearing calcite) 109 texturally equilibrated with garnet and olivine (Fig. 2c, d); these rocks are unique because 110 peridotite xenoliths containing carbonates of mantle origin are extremely rare (e.g., Ionov et 111 al., 1993). Pyroxenites (websterites) occur as discrete xenoliths (O-1080) and veins in 112 peridotites (Obn 58-13 and 68-13; Fig. 2b). 113 The majority of the Obn xenoliths have low Al_2O_3 (≤ 1.9 wt.%) and high MgO (>42%), 114 consistent with an origin as residues of high-degree partial melting because these oxides are 115 considered to be robust melt extraction indices, and because they plot on the Al-Mg trend 116 defined by experimental and natural (Tariat) melting residues (Fig. 3a). Yet the Obn xenoliths 117 also show petrographic and chemical features that cannot be explained by melt extraction 118 alone, in particular anomalously high CaO at given Al₂O₃ (Fig. 3b). As a result, the Ca/Al 119 ratios of nearly all Obn peridotites in this study are much higher than in the primitive mantle 120 (McDonough and Sun, 1995) and in residual mantle peridotites (Ionov and Hofmann, 2007; 121 Palme and Nickel, 1985) (1.6–8.0 vs. 1.0–1.5; Fig. 3c). These and other data suggest that the 122 Obn xenoliths initially formed as refractory melting residues, but were reworked by silicate 123 and/or carbonatite metasomatism with significant Ca input. The Ca-Al-rich rocks formed by 124 reaction and mingling with large amounts of silicate melts. The three Series 1 peridotites low 125 in both Ca and Al are melt-channel materials (Ionov et al., 2018b).

Another four peridotite xenoliths are from late Cenozoic (~0.5 Ma) alkali basaltic breccia at Shavaryn-Tsaram in the Tariat district of central Mongolia (Ionov 2007) within the Central Asian orogenic belt. The samples are cpx-poor lherzolites or cpx-bearing spinel harzburgites with modal and major oxide compositions typical for refractory melting residues, and no evidence for metasomatism (Ionov and Hofmann, 2007). Their Al₂O₃ range (1.0–2.1 wt.%; Table 1) is similar to that for the Obn peridotites, but the Tariat peridotites show no Ca enrichments and no anomalous Ca/Al ratios (Fig. 3).

133

134 **2.2. Sample selection and treatment**

135 The samples (aliquots of those reported by Ionov et al., 2018b and Ionov and Hofmann,

136 2007) are listed in Table 1 that provides a summary of essential petrologic and chemical data.

137 The xenoliths are 10–30 cm in size. Their rinds were removed by sawing. Slabs of fresh

138 material from xenolith cores were inspected to make sure they contain no host lava, veins or

139 modal gradations. A large amount of fresh material (normally >100 g) was taken to provide

140 representative WR samples and crushed to <5-10 mm in a steel jaw crusher carefully cleaned

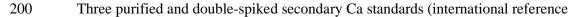
141 to avoid cross-contamination. Splits of crushed material (50–100 g) were ground to fine

142 powder in agate.

143 Three carbonate-bearing Obn peridotites (8-13, 22-13 and 39-13) were acid-leached to

144 dissolve metasomatic calcite and analyze the resulting solution and the residue after leaching.

145 Aliquots of crushed (≤ 2 mm) rocks were treated with 5 ml of 10% HNO₃ for 2 minutes at


146 room temperature, which produced CO_2 bubbles for less than a minute. The solution was

147 extracted, the residue washed with 2 ml milli-Q water four times, and the wash water was

- 148 added to the acid-leach solution for analysis. The residues were dissolved using the same
- 149 procedure as for WR powders (described below). Previous work showed that leaching of
- 150 silicate minerals (including phlogopite and amphibole) and glass from mantle xenoliths with

151	diluted cold HNO ₃ for a few minutes does not destroy these phases nor affect their surfaces
152	(e.g., Ionov and Hofmann, 1995; Ionov et al., 1993).
153	
154	3. ANALYTICAL PROCEDURES AND DATA QUALITY
155	
156	Sample dissolution, chemical purification and mass spectrometric analysis of Ca were
157	done at Arizona State University (ASU) following procedures defined by Romaniello et al.
158	(2015). Briefly, 10–60 mg of rock powder was digested using a mixture of concentrated HF
159	and HNO ₃ (5:1) in a 7 mL Savillex TM PFA beaker on hot plate at 110°C for 2–3 days. After
160	the digestion, the samples were dried at 80° C and refluxed with 6M (mol/L) HCl several
161	times to remove precipitated CaF ₂ until completely dissolved, then evaporated to dryness. The
162	dried material was dissolved in 2M HNO ₃ for column chemistry.
163	Separation of Ca from sample matrix was performed automatically using the prepFAST
164	MC (ESI, Omaha, NE, USA) and the supplied 1 mL Sr-Ca column (part number CF-MC-
165	SrCa-1000) following the method of Romaniello et al. (2015). Elution uses $2M HNO_3 + 1$
166	wt.% H_2O_2 to remove most major and trace matrix elements. Sr is eluted in 6M HNO ₃ and Ca
167	with 12M HNO ₃ . In the final step, 10 mL of 1M HF is used to remove all remaining elements
168	from the resin (REE, Hf, Cd and U). The Ca yield of the column chemistry, calculated by
169	comparing the amount of Ca before and after the column procedure, ranged from 90% to
170	93%. Romaniello et al. (2015) found no detectable Ca isotope fractionation at Ca yields as
171	low as 75%. The concentrations of Ca and other elements were measured using an ICAP-Q
172	quadrupole inductively-coupled plasma mass spectrometer (ICP-MS: Thermo Scientific,
173	Bremen, Germany) at ASU following the method of Romaniello et al. (2015).
174	Calcium isotope compositions were measured on a Neptune multi-collector (MC) ICP-MS
175	(Thermo Scientific, Bremen, Germany) at ASU equipped with a Jet sample cone, an H-

176 skimmer cone, and an Apex-Q desolvating nebulizer (ESI, Omaha, NE, USA). Measurements 177 were done using the double spike method with sample-standard bracketing. The Ca double 178 spike was prepared from two isotopically enriched CaCO₃ powders (Isoflex USA) containing ⁴³Ca (62.20 atom %) and ⁴⁶Ca (15.90 atom %), respectively. The isotope 179 180 compositions of the double spike and the in-house natural isotope standard ("ICP1" NIST 181 10000 ppm ICP Ca standard, lot #X-10-39A) were calibrated using MC-ICP-MS. The double-182 spike solution was added as 2% of the total Ca concentration in samples \geq 24 hours before the 183 isotope analysis to allow full spike-sample equilibration. 184 The samples and standards were measured in high-resolution mode with a mass resolution 185 of \geq 8000 (measured as M/ Δ M, where Δ M is the mass difference at 5% and 95% peak height). Optimized instrument operating parameters were: sample gas, 0.9 L min⁻¹; auxiliary gas, 0.9 186 L min⁻¹; cooling gas, 14.50 L min⁻¹, and N₂ of 2–5 mL min⁻¹. Ca samples were introduced at a 187 concentration of 3 μ g/g and flow rate of 200 mL min⁻¹ yielding a sensitivity of ~3.3 V 44 Ca⁺ 188 per $\mu g/g$ Ca. Faraday cups were positioned to measure ${}^{42}Ca^+$, ${}^{43}Ca^+$, ${}^{44}Ca^+$, ${}^{45}Sc^+$, ${}^{46}Ca^+$, ${}^{47}Ti^+$, 189 190 and ⁴⁸Ca⁺. ⁴⁵Sc was measured to align the uninterfered low-mass shoulder of the Ca and Ti 191 isotopes with its peak center. Once aligned, the center cup was set to measure an optimal position on the uninterfered low-mass peak shoulder of Ca isotopes. ⁴⁷Ti was monitored to 192 correct for the isobaric interference of 48 Ti on 48 Ca. Doubly charged Sr²⁺, which is a common 193 194 isobaric interference for Ca isotopes, was monitored for all samples and standards using a 195 sub-configuration of Faraday cups. Details of the cup configuration and interference 196 corrections are given in Romaniello et al. (2015). Double-spiked Ca samples were run in 197 sequence with every two samples bracketed by the equivalently spiked ICP1 in-house 198 standard. Mass bias and corrected isotopic ratios were calculated using the Newton-Rhapson 199 procedure (Albarède and Beard, 2004).

201	materials NIST SRM 915a, NIST SRM 915b, and IAPSO: h	ittp:	://www.ciaaw.org/calcium-
-----	--	-------	---------------------------

- 202 references.htm) were measured every 10-14 samples in each analytical session to check if the
- 203 method consistently produces accurate and precise values. NIST SRM915a and SRM915b are
- 204 carbonate reference materials, and IAPSO is seawater; all secondary standards were purified
- 205 using the same procedure as the samples. The Ca isotope ratios are calculated in delta notation

...

 $(\delta^{44/42}Ca_{SRM915a}, \delta^{44/42}Ca (\%) = [({}^{44}Ca/{}^{42}Ca)_{sample}/({}^{44}Ca/{}^{42}Ca)_{NIST SRM 915a} - 1].$ Final data are 206

207 reported as
$$\delta^{44/40}Ca_{SRM915a}$$
 ($\delta^{44/40}Ca$ (‰) = [($^{44}Ca/^{40}Ca$)_{sample}/($^{44}Ca/^{40}Ca$)_{NIST SRM 915a} -1]

- obtained by multiplying $\delta^{44/42}$ Ca_{SRM915a} by a scaling factor of 2.049 based on kinetic mass 208
- 209 dependent fractionation (Young et al., 2002) (Table 2).
- 210 All samples were measured at least 3 times; the analytical error is reported as 2 standard
- deviations (2SD) of replicate measurements. Long-term external precision (2SD of $\delta^{44/42}$ Ca in 211

SRM915a) during this study was 0.08‰ (n=24), and the precision for $\delta^{44/40}$ Ca can be 212

- propagated as $0.08 \times 2.049 \approx \pm 0.16$ %. Mean $\delta^{44/40}$ Ca values (relative to SRM915a) for 213
- 214 reference samples run in the same session (Table 2) are: SRM915a, 0.00±0.16‰ (n=24);
- 215 SRM915b, 0.70±0.16‰ (n=20); IAPSO Seawater, 1.82±0.16‰ (n=17); BHVO-2,
- 216 $0.82\pm0.10\%$ (n=3); PCC-1, $1.29\pm0.02\%$ (n=3). These values agree with data in the literature,
- 217 for example He et al. (2017) reported $0.79\pm0.09\%$ (n=7) for in BHVO-2 and Liu et al. (2017)
- 218 reported 1.15±0.09‰ (n=7) for peridotite PCC-1 (see also Feng et al., 2016; Valdes et al.,
- 219 2014; Amsellem et al., 2017) confirming the robustness of our analytical procedure. In
- 220 addition, full duplicates of sample Obn 8-13 obtained by digestion of two batches of powder
- 221 reproduced within the analytical error (Table 2).
- 222
- 223

4. RESULTS

224

225 4.1. Ca isotopes in whole-rock xenoliths

226	The $\delta^{44/40}$ Ca values in the WR xenoliths from the Obn suite (Table 2) range from 0.56 to
227	1.38‰, but the range is much more narrow (0.74–0.97‰) for 15 out of 18 samples analyzed
228	(Fig. 4). These 15 samples are mainly harzburgites, but also include spinel and garnet
229	lherzolites, wehrlites and pyroxenites, i.e. all main rock types in the Obn suite (Ionov et al.,
230	2018b). The three outliers are xenoliths with unusual rock types or major oxide compositions.
231	The highest $^{44/40}$ Ca (1.38 ± 0.04‰) is in Obn 68-13, the only peridot it e sample
232	in the suite taken close to contact with a pyroxenite vein (Fig. 2b). The other sample with
233	high $\delta^{44/40}$ Ca (1.22 ± 0.07‰) is a spinel dunit e (melt channel material
234	consisting of olivine and accessory chromite) with the lowest Al_2O_3 (0.14 wt.%)
235	among our samples. The lowest $\delta^{44/40} Ca$ value (0.56 \pm 0.03‰) is for peridot it e Obn 24-
236	13, in which coarse opx is replaced with fine-grained pockets of cpx, phlogopite
237	and Four confifter and particulate the constant of the constan
238	lherzolites) have $\delta^{44/40}$ Ca values from 0.96 to 1.12‰. Their range overlaps the highest $\delta^{44/40}$ Ca
239	values found in four out of 15 "conventional" Obn xenoliths (0.96–0.97‰), but is
240	considerably higher than $\delta^{44/40}$ Ca in the remaining 11 Obn samples (0.74–0.88‰) (Fig. 4).
241	
242	4.2. Ca isotope data from acid-leaching experiments
243	Leaching by diluted HNO ₃ done on crushed (but not ground) aliquots of three xenoliths

should dissolve metasomatic calcite, but leave intact the silicate and oxide minerals. For one

sample (Obn 8-13, Fig. 2c) the WR powder was analyzed in duplicate. The additional $\delta^{44/40}$ Ca

246 values determined for the leachate and residue, as well as bulk $\delta^{44/40}$ Ca values calculated

- using the Ca proportions in the leachate and residue for each sample, are given in Table 3.
- All four analyses obtained on sample Obn 8-13 are within analytical uncertainty, with
- 249 $\delta^{44/40}$ Ca values of 0.88 ± 0.04‰ and 0.83 ± 0.12‰ for the WR duplicates, 0.82 ± 0.01‰ for
- 250 the leachate and $0.84 \pm 0.06\%$ in the residue. The differences between the leachate and

251	residue for two other samples are insignificant as well: $0.84 \pm 0.04\%$ for the leachate and
252	$0.70\pm0.12\%$ for the residue of Obn 22-13, and 0.83 \pm 0.06‰ for the leachate and 0.81 \pm
253	0.08‰ for the residue of Obn 39-13. To sum up, the $\delta^{44/40}$ Ca values of the leachates and
254	residues are essentially the same within analytical uncertainty suggesting that the metasomatic
255	carbonates do not differ significantly in $\delta^{44/40}$ Ca from the host rock.
256	
257	5. DISCUSSION
258	
259	5.1 $\delta^{44/40}$ Ca in refractory, melt-depleted peridotite mantle
260	The Obn and Tariat peridotite xenoliths are fragments of the lithospheric mantle, which is
261	believed to form from the asthenosphere either by conductive cooling or, most commonly, by
262	additions of solidified melt extraction residues. Kang et al. (2017) estimated the $\delta^{44/40}$ Ca
263	value in the bulk silicate Earth (BSE; $0.94 \pm 0.05\%$) from data for fertile off-craton lherzolite
264	xenoliths, which experienced no or only very low degrees of partial melting, and have major
265	oxide compositions (MgO, Al ₂ O ₃ , CaO etc.) similar to those of the primitive mantle (PM).
266	They further argued that $\delta^{44/40}$ Ca values for refractory peridotites (formed by high degrees of
267	melt extraction from fertile mantle) are somewhat higher $(1.06 \pm 0.04\%)$ if they are not
268	significantly affected by post-melting metasomatism (Fig. 4).
269	The $\delta^{44/40}$ Ca values of the four melt-depleted peridotites from Mongolia (0.96–1.12‰)
270	follow the trends defined by the samples reported by Kang et al. (2017) in plots vs. Al_2O_3 and
271	CaO (Fig. 4a, b). Their averages (1.04 \pm 0.08‰ for all four, and 1.10 \pm 0.03‰ for two most
272	refractory samples with the lowest Al and Ca) are consistent with the conclusion of Kang et
273	al. (2017) on the effects of melting on $\delta^{44/40}$ Ca in residues. Combining the data on peridotites
274	with $Al_2O_3 < 2$ wt.% from the study of Kang et al. (2017) and this work yields an average of
275	$1.08 \pm 0.03\%$ for refractory mantle, i.e. ~0.14‰ heavier than the BSE estimate.

276	The Obn peridotites studied here, however, are neither fertile mantle samples, nor pristine
277	melting residues because their modal and chemical compositions have been strongly affected
278	by melt metasomatism (Ionov et al., 2018b). The dunites (low-Ca-Al peridotites) appear to be
279	melt channel materials formed by reaction of peridotites with mafic melts, while the
280	ubiquitously high CaO and Ca/Al (Fig. 3b, c), as well as occasional carbonates and late-stage
281	cpx, in the remainder of the peridotite suite suggest important Ca input, most likely by
282	carbonate-rich melts. The effects of melt extraction on Ca isotope ratios in these samples must
283	have been obscured by the later processes.
284	
285	5.2 Ca-isotope signatures of mantle metasomatism

286 5.2.1 $\delta^{44/40}$ Ca in carbonate-bearing xenoliths

287 The effects of carbonatite metasomatism on $\delta^{44/40}$ Ca of mantle peridotites are examined

288 here directly using analyses of natural carbonate-bearing xenoliths, which are very rare

worldwide (e.g. Ionov et al., 1993). The precursors of Ca-rich, low-Al (0.4–1.9 wt.% Al₂O₃)

290 Obn peridotites were refractory melting residues, possibly akin to melt-depleted Tariat

291 peridotites (section 5.1), assuming that Al concentrations are not affected by the

292 metasomatism. The $\delta^{44/40}$ Ca values of WR Obn xenoliths containing metasomatic carbonates

293 (0.74–0.88‰) are consistently lower (by 0.2–0.3‰) than for their likely residual protoliths

294 $(1.08 \pm 0.03\%)$ as discussed in the previous section). It follows that the metasomatism of the

- 295 Obn peridotites by carbonate-rich media reduced $\delta^{44/40}$ Ca values, but the Ca isotope change is
- moderate.
- 297 Mass balance estimates using modal abundances (Table 1) and observed Ca concentrations
- in minerals (Ionov et al., 2018b) show that calcite hosts 75–85% of Ca in these rocks. The
- 299 fact that $\delta^{44/40}$ Ca values are similar for acid-leachates (i.e. dissolved carbonates) and leaching
- 300 residues (silicates) for all the samples may indicate that the carbonates are close to isotope

301 equilibrium with Ca-bearing silicates (mainly garnet and cpx) in the host peridotites. This 302 must be the case for garnet, which is texturally equilibrated with calcite in pockets formed by 303 reaction of metasomatic liquids with opx and spinel (Fig. 2c, d). In contrast, cpx in these 304 rocks only occurs outside the calcite- and garnet-bearing pockets and may have existed before 305 their formation. Trace element data (Ionov et al., 2018b) suggest that the cpx may not be fully 306 equilibrated with the garnet in the metasomatic pockets. 307 Another xenolith strongly reworked by the carbonatite-type metasomatism is Obn 24-13, 308 in which much of the opx is replaced with cpx-phlogopite pockets (Fig. 2a; Ionov et al., 2018b). This sample has the lowest $\delta^{44/40}$ Ca (0.56‰) for this study, i.e. $\geq 0.2\%$ lower than for 309 310 the carbonate-bearing Obn peridotites and ~0.5‰ lower than for unmetasomatized Tariat 311 peridotites. This peridotite contains very little Al_2O_3 (0.41 wt.%) and has a very high Ca/Al of 312 8, suggesting that its Ca budget is dominated by metasomatic Ca input (Fig. 3c). 313 It appears that, in general, the greatest metasomatism-induced Ca isotope offsets in the 314 Obn suite are for rocks initially very low in Ca that experienced high Ca additions relative to 315 their Ca contents before the metasomatism, and developed high Ca/Al ratios. The Obn suite defines a negative Ca/Al vs. $\delta^{44/40}$ Ca trend (Fig. 4c), which remains significant (linear 316 317 correlation coefficients of 0.4–0.7) also without the two samples with the highest Ca/Al (5.9 318 and 8.0). Thus, assuming that all the Ca-rich, low-Al Obn peridotites were metasomatized by the same liquid the $\delta^{44/40}$ Ca of such a liquid could be close to 0.5‰, like in Obn 24-13. 319 320 Alternatively, xenolith Obn 24-13 may have been metasomatized by a batch of Ca-rich liquid with lower $\delta^{44/40}$ Ca than for other Obn peridotites. It is also likely that the $\delta^{44/40}$ Ca in the 321 322 metasomatic media evolved as they percolated through the residual mantle with higher $\delta^{44/40}$ Ca. 323

We infer that the metasomatism of the type that produced the carbonate-bearing Obn xenoliths tends to decrease the $\delta^{44/40}$ Ca values of residual mantle rocks, but its effects are

- usually limited ($\leq 0.3\%$) even in cases of strong Ca enrichments and apparent Ca isotope
- 327 equilibration between the metasomatic media and the reworked peridotites.
- 328

329 5.2.2 Ca isotope signatures of "carbonatite" vs. "silicate" metasomatism

- 330 Kang et al. (2017) reported $\delta^{44/40}$ Ca ranging from 0.25 to 0.96‰ for six harzburgites and
- 331 low-cpx lherzolites with "carbonatite-type" metasomatism (inferred from WR and cpx REE
- 332 patterns) from the Udachnaya kimberlite in the central Siberian craton and from Tariat (Fig.
- 1; Doucet et al., 2012; Ionov et al., 2010). They found the lowest $\delta^{44/40}$ Ca of 0.25% in a single
- sample extremely low in Al₂O₃ (0.09 wt.%) and with high Ca/Al (3.9), but other low- $\delta^{44/40}$ Ca
- 335 (0.55–0.79%) xenoliths from Kang et al. (2017) have both low CaO and low Ca/Al (Fig. 4b,
- c), unlike those in this study. Furthermore, Kang et al. (2017) reported $\delta^{44/40}$ Ca of 0.83 to

337 0.89‰ for three Ca-Al-rich lherzolites affected by "silicate-melt" metasomatism (Fig. 4),

338 which overlap the $\delta^{44/40}$ Ca range for the carbonate-bearing Obn xenoliths.

339 The $\delta^{44/40}$ Ca range for eight out of nine metasomatized xenoliths from Kang et al. (2017)

- 340 (0.55–0.96‰) is nearly the same as for the Obn xenoliths studied here apart from two unusual
- 341 Obn peridotites (see next section) with high $\delta^{44/40}$ Ca (Fig. 4). In particular, the $\delta^{44/40}$ Ca range

in the Udachnaya and Tariat xenoliths presumably affected by the silicate-melt metasomatism

343 (0.83–0.89‰) overlaps the $\delta^{44/40}$ Ca range in the carbonate-bearing and other Ca-rich Obn

344 xenoliths of this study. We conclude that $\delta^{44/40}$ Ca cannot be used to robustly distinguish

- between "carbonatite" and "silicate" metasomatism. It appears, however, that the lowest
- 346 $\delta^{44/40}$ Ca in the lithospheric mantle may be found mainly in the most refractory, low-Al

347 peridotites.

348

349 5.3 Peridotites with high $\delta^{44/40}$ Ca

350	The $\delta^{44/40}$ Ca of 1.22 and 1.38‰ in two Obn xenoliths are enigmatic because they are too
351	high to be attributed either to melt extraction from fertile mantle (section 5.1) or to reaction
352	with the same Ca-rich metasomatic media that affected the other Obn xenoliths (which have
353	lower $\delta^{44/40}$ Ca). Metasomatized Tariat xenoliths have lower $\delta^{44/40}$ Ca as well (<i>section 5.2.2</i>).
354	Alternative explanations could take into account the evidence that both anomalous Obn
355	samples were affected by silicate melt percolation. Figure 2b shows that peridotite Obn 68-13
356	was sampled close (1–2 cm) to a websterite vein, composed of opx and cpx with minor
357	olivine and spinel. Fine-grained spinel websterite veins with gradational contacts in this and
358	other Obn xenoliths formed shortly before the kimberlite eruption because long residence in
359	the mantle leads to recrystallization to more coarse and texturally equilibrated rocks (Ionov et
360	al., 2018b). Furthermore, the absence of sharp contacts with host peridotites excludes an
361	origin by intrusion of the kimberlite magma that carried the xenoliths.
362	It is conceivable that the silicate liquid, which formed the pyroxenite vein, had a high
363	$\delta^{44/40}$ Ca and conveyed this Ca-isotope signature to the host peridotite by infiltration. This
364	hypothesis cannot be tested directly because we have no Ca-isotope data on the vein, but it
365	does not appear likely. First, $\delta^{44/40}$ Ca values for erupted continental and oceanic basaltic
366	magmas are <1.2‰ (e.g. Zhu et al., 2018). Second, the WR trace element pattern of Obn 68-
367	13 is very similar to that of other Obn peridotites in this study (Ionov et al., 2018b) that show
368	much lower $\delta^{44/40}$ Ca. Finally, two pyroxenites analyzed in this study, including another fine-
369	grained websterite, show lower $\delta^{44/40}$ Ca (0.74–0.93‰; Table 2) further arguing against a
370	source liquid with an anomalously high $\delta^{44/40}$ Ca.
371	A detailed study, with analyses of the vein and of the host peridotites at different distances
372	from the vein, is needed to examine the high $\delta^{44/40}$ Ca in Obn 68-13. However, a viable
373	alternative could be diffusion-driven kinetic fractionation of Ca isotopes at the melt-rock
374	boundary, similar to that invoked to explain experimentally produced $\delta^{44/40}$ Ca fractionation of

375	6‰ at the interface of molten basalt and rhyolite (Richter et al., 2003) or anomalous Cr
376	isotope ratios in veined Tariat xenoliths (Xia et al., 2017). A diffusion-controlled process may
377	have also enriched dunite Obn 59-13 (likely of melt-channel origin) in heavy Ca isotopes.
378	Kinetic fractionation of metal stable isotopes during melt-rock reaction and melt
379	percolation was earlier invoked for Li, Fe, Mg (Foden et al., 2018; Pogge von Strandmann et
380	al., 2011; Teng et al., 2011; Weyer and Ionov, 2007; Wu et al., 2018; Xiao et al., 2013) and
381	other elements. Evidence for diffusion-controlled Ca isotope fractionation has been
382	previously reported for a suite of peridotite xenoliths from North China that show
383	anomalously low $\delta^{44/40}$ Ca (-0.08 to 0.92‰) and $\delta^{57/54}$ Fe (Zhao et al., 2017). Variable, but
384	generally low, Mg# in those xenoliths are attributed to percolation of evolved basaltic liquids
385	and possibly compositional effects of Ca isotopic fractionation between co-existing cpx and
386	opx, supported by numeric modeling (Huang et al., 2010; Wang et al., 2017). Mass balance
387	considerations suggest that if such a process produces a low- $\delta^{44/40}$ Ca component, it should
388	also produce a complementary high- $\delta^{44/40}$ Ca component, which might explain the high-
389	$\delta^{44/40}$ Ca values in the two Obn samples.

391 5.4 Ca isotopes as tracers of Ca recycling

392 Mantle metasomatism by carbonatite and carbonate-rich silicate liquids extracted from 393 subducted slabs that contain sedimentary carbonates has been repeatedly invoked for 394 lithospheric erosion and reworking of the mantle lithosphere, in particular beneath the North 395 China craton (e.g. Chen et al., 2018). Our study, however, finds no coherent and significant 396 Ca isotope variations in mantle xenoliths that could be seen as robust evidence either for 397 carbonatite metasomatism or links to subduction-related materials and tectonic settings. Kang et al. (2017) speculated that low $\delta^{44/40}$ Ca values in metasomatized mantle xenoliths 398 399 may be linked to recycled crustal materials because the Ca isotope compositions of

sedimentary carbonates are highly heterogeneous and many of these rocks have lower $\delta^{44/40}$ Ca than BSE estimates (e.g. Fantle and Tipper, 2014; Farkaš et al., 2016; Griffith et al., 2015;

402 Husson et al., 2015). In particular, Fantle and Tipper (2014) reported a $\delta^{44/40}$ Ca range from -

403 1.1 to 1.8‰ for 1301 carbonate rocks (with 95% of data from -0.2 to +1.3%) and a mean of

404 $0.60 \pm 0.02\%$, which is lower than the mean (0.94 $\pm 0.04\%$) they obtained for 153 silicate

405 rocks and minerals. Earlier, Huang S. et al. (2011) attributed ~0.3‰ variation in $\delta^{44/40}$ Ca for

406 11 Hawaiian tholeiites (0.75–1.05‰) to addition of up to 4% of hypothetical recycled marine

407 carbonates with $\delta^{44/40}$ Ca of 0.2‰ to a plume component with $\delta^{44/40}$ Ca of 1.05‰.

408 In contrast, a more recent data compilation for 505 Precambrian (0.54–3.0 Ga) carbonates

409 (Blättler and Higgins, 2017) yielded an average $\delta^{44/40}$ Ca of 0.94‰ and showed that the means

410 for samples from 12 time intervals with >10 analyses did not exhibit a persistent temporal

411 trend. Blättler and Higgins (2017) argued that the mean of the available carbonate sediment

412 dataset is indistinguishable from $\delta^{44/40}$ Ca estimates for the BSE within uncertainty. Blättler

413 and Higgins (2017) also reported a $\delta^{44/40}$ Ca range of 0.5–1.3‰ for carbonate veins from a

414 drilled section of 170 Ma altered oceanic crust, with the majority of the data between 0.88 and

415 1.28‰. They noted that the average for veins from this and the majority of other drilled sites

416 are higher than BSE estimates, which implies that alteration of oceanic crust may not produce

417 low $\delta^{44/40}$ Ca values in subducted slabs.

Two aspects of the data in this study are consistent with the contention that sediment recycling and subduction of oceanic crust may not produce significant bulk changes in the Ca isotope composition of the mantle. The first is that metasomatism does not appear to produce considerable $\delta^{44/40}$ Ca shifts from the BSE value in the majority of studied mantle peridotites. This is expected if the mean $\delta^{44/40}$ Ca of recycled crustal materials is similar to that of the convecting mantle. The second argument is the lack of clear differences in the $\delta^{44/40}$ Ca values of mantle xenoliths affected by "carbonatite" vs. "silicate" mantle metasomatism (*section*

425	5.2.2). The opposite should be observed if carbonatite liquids are derived from the recycling
426	of sedimentary carbonates with $\delta^{44/40}$ Ca distinct from those of mafic silicate melts, which are
427	thought to be derived by low-degree melting and fractionation in upwelling deep mantle.
428	It is difficult, however, to assess how spatially heterogeneous and extreme could be the
429	$\delta^{44/40}$ Ca values of subducted carbonate sediments and their derivates on a local or a regional
430	scale. Blättler and Higgins (2017) reported standard deviations ranging from 0.03 to 0.27‰
431	for mean $\delta^{44/40}$ Ca values of individual sections/formations (with ≥ 10 analyses) of their
432	carbonate dataset, which may reflect Ca isotope variability within the formations. Mingling of
433	fluids expelled from different parts of subducted slab (e.g. various sediments and altered
434	oceanic crust) may further reduce Ca isotope variability in the metasomatic media injected to
435	the mantle. Although one cannot rule out that recycling of sedimentary units with anomalous
436	$\delta^{44/40}$ Ca values could locally introduce to the mantle carbonate-rich fluids or liquids that differ
437	from the BSE estimate (0.94 \pm 0.05‰) by >0.5‰ (highest 2SD values for individual
438	formations reported by Blättler and Higgins, 2017), such cases may be rare.
439	This contention is supported by the limited currently available Ca-isotope data on mantle
440	rocks. The $\delta^{44/40}$ Ca values in carbonate-bearing Obn xenoliths are just 0.10–0.15‰ lower than
441	the BSE estimate. Only one out of 50 samples from six eruption centers reported here and by
442	Kang et al. (2017) deviates by >0.5‰ from the BSE value. This speaks for limited Ca isotope
443	variability in liquids expelled from subducted slabs, and/or effective homogenization of their
444	compositions on the way to the mantle domains studied so far. Stronger $\delta^{44/40}Ca$ deviations by
445	metasomatism cannot be ruled out at present, but may be rare; in some cases they may be due
446	to kinetic isotope fractionation rather than exotic source compositions (section 5.3). Overall, it
447	appears that Ca isotopes have little use as a tracer of carbonate recycling.
448	Chen et al. (2018) reported a $\delta^{44/40}$ Ca range of 0.8–1.2‰ in pyroxenes (cpx and opx)
449	from metasomatized peridotite xenoliths at Fanshi in NE China. This range extends to higher

450 values than for the peridotites reported in this study and the literature (Kang et al., 2017; Zhao

451 et al., 2017). Chen et al. (2018) contended that the heavy Ca isotope compositions are

452 inconsistent with low $\delta^{44/40}$ Ca in carbonated sediments from the Paleo-Asian ocean and

453 attributed the high $\delta^{44/40}$ Ca to Ca isotope fractionation during subduction of carbonated

- 454 sediments. The latter argument, however, may be at odds with their conclusion that Ca455 isotopes can be used to detect recycled crustal materials in the mantle.
- 456 To sum up, our data show no clear evidence that subduction and recycling of surface 457 carbonates were responsible for mantle metasomatism and lithospheric erosion beneath 458 Obnazhennaya. Overall, we see no evidence that Ca isotopes are robust and unequivocal 459 tracers of recycling of surface carbonates to the mantle. It appears that although the Ca 460 isotope range in some sedimentary carbonate suites is broad, their global, regional and temporal averages may not be very different from $\delta^{44/40}$ Ca in the BSE (Blättler and Higgins, 461 462 2017) and the most common mantle peridotites. It is also possible that local Ca 463 isotope heterogeneities in subducted rocks are leveled out during the extraction of carbonate-464 rich fluids from the slab, and mingling and transport of the fluids/melts to the mantle 465 lithosphere. Finally, while fluids released from subducted slabs impact the mantle wedge, the 466 subducted sediments are ultimately stored in the deep mantle where they contribute to plume 467 sources (e.g. Zeng et al., 2010). In such a case, Ca isotope signatures of melts and fluids 468 generated by recent subduction events may be similar to those of plume-related magmatism. 469
- 470

6. SUMMARY OF CONCLUSIONS

471 The scope and the origin of Ca isotope variations in the lithospheric mantle are examined 472 using analyses of 22 mantle xenoliths, including the first data on carbonate-bearing mantle 473 rocks, as well as literature results. The $\delta^{44/40}$ Ca range of $1.10 \pm 0.03\%$ determined for 474 refractory, non-metasomatized off-craton peridotites is higher than the BSE estimate (0.94 ±

475 0.05‰) based on fertile lherzolites (Kang et al., 2017) due to isotope fractionation during
476 melt extraction.

The $\delta^{44/40}$ Ca range for the majority of metasomatized peridotites from the Obnazhennaya 477 478 kimberlite on the SE Siberian craton is narrow (0.74–0.97‰) and overlaps the BSE value. 479 Bulk $\delta^{44/40}$ Ca in Obn peridotites containing metasomatic calcite ranges from 0.81 to 0.83‰, 480 with similar values in acid-leachates (carbonates) and leaching residues. Metasomatism tends to decrease the $\delta^{44/40}$ Ca values of the affected mantle rocks, but the effects are usually limited 481 482 $(\leq 0.3\%)$. Peridotites that were refractory and Ca-poor before the metasomatism, and which received the greatest relative Ca input (seen as high Ca/Al) usually have the lowest $\delta^{44/40}$ Ca. 483 We find no evidence that $\delta^{44/40}$ Ca can robustly distinguish between "carbonatite" and 484 485 "silicate" metasomatism, or that recycling of crustal carbonates may greatly affect Ca isotope 486 compositions in the global mantle. The latter may not be very different from the global mean $\delta^{44/40}$ Ca of subducted sedimentary carbonates implying that Ca isotopes have little use as a 487 tracer of carbonate recycling. It is conceivable, however, that anomalous $\delta^{44/40}$ Ca values are 488 489 produced locally by kinetic isotope fractionation during intrusion and percolation of melts in 490 channels and host peridotites. Ca isotope signatures of melts and fluids generated by recent 491 subduction events may be similar to those of plume-related magmatism containing sediments 492 subducted long time ago.

493

494

ACKNOWLEDGEMENTS

495 DAI acknowledges the Chinese Academy of Sciences President's International Fellowship Initiative

496 (PIFI) for Visiting Scientists in 2017-18 taken up at GIG (Guangzhou). AVG and OBO were

497 supported by Russian Federation state assignment projects No. 0330-2019-0009 and No. 0381-2016-

498 0003. Stephen Romaniello and Gwyneth Gordon provided assistance with isotope analysis. We thank

- 499 three anonymous reviewers for extensive comments that helped us to improve the manuscript, and
- 500 Mark Rehkämper for valuable advice and efficient editorial handling.

502

APPENDIX. SUPPLEMENTARY MATERIAL

503 Supplementary data associated with this article can be found, in the online version, at

504 http://dx.doi.org/...

505

506 **Figure captions**

507 **Fig. 1.** Locality map for the Obnazhennaya (Obn) and Udachnaya (Ud) kimberlite pipes on

508 the Siberian craton, and the Cenozoic Tariat (Tar) volcanic field in central Mongolia.

509 Fig. 2. Photomicrographs in transmitted plane-polarized light (a-c), and a back-scattered

510 electron (BSE) image (d) of Obnazhennaya peridotite xenoliths. Abbreviations: Carb,

511 carbonate; Cpx, clinopyroxene; Phl, phlogopite; Spl, spinel; Gar, garnet; Ol, olivine. (a)

512 Pocket of Cpx, Phl and Cr-spinel in Obn 24-13, likely formed by reaction of carbonate-rich

513 media with orthopyroxene. (b) Websterite vein in fine-grained, mosaic, spinel peridotite Obn

514 68-13; thin dark veinlet in the peridotite is chlorite, a Ca-free alteration mineral. (c) Carb-Gar-

515 Ol-Spl pocket similar to that shown in detail in d. (d) Carbonate (Mg-Fe-Mn-bearing calcite)

516 texturally equilibrated (straight grain boundaries) with garnet and olivine.

517 Fig. 3. Co-variation plots of MgO (a), CaO (b) and Ca/Al (c) vs. Al₂O₃ (wt.%) in whole-

518 rock (WR) peridotite xenoliths from Obnazhennaya (Obn, large circles; Obn 21-13 with ~8

519 wt.% Al₂O₃ is beyond the scale) and Tariat ("Tar", triangles). Also shown (small rhombs) are

520 additional Tariat samples from the literature (Ionov (2007); Ionov and Hofmann (2007)),

521 which were not analyzed for Ca isotopes, and primitive mantle (PM) after McDonough and

522 Sun (1995); PM is a term used in studies of chemical composition of mantle xenoliths, which

- 523 is essentially equivalent to BSE commonly used in isotope studies. The Obn peridotites plot
- 524 close to the melt extraction trend defined by the literature data for Tariat xenoliths on the Al-
- 525 Mg diagram (a); this is because both Al and Mg are robust melt extraction indices and are

526 little affected by metasomatism. In contrast, the majority of the Obn peridotites have much 527 higher CaO and Ca/Al due to post-melting Ca enrichments. The highest Ca/Al ratios are in 528 $low-Al_2O_3$ (<1.5 wt.%) rocks, i.e. residues of high degrees of melt extraction initially strongly 529 depleted in Ca, for which the metasomatic input dominates the WR Ca budget. Fig. 4. Co-variation plots of $\delta^{44/40}$ Ca vs. (a) Al₂O₃, (b) CaO and (c) Ca/Al (wt.%) in whole-530 531 rock peridotite xenoliths from Obnazhennaya and Tariat. Large filled symbols, data from this 532 study (circles, non-metasomatized melt-depleted Tariat peridotites; rhombs, metasomatized 533 Obn xenoliths; triangle, Obn peridotite next to a vein); small empty symbols, data from Kang 534 et al. (2017) for residual (KangRes, circles) and metasomatized (KangMet) peridotite 535 xenoliths. Abbreviations: L, low (<2 wt.%); H, high; BSE, bulk silicate Earth (primitive 536 mantle). Also shown are co-variation trends (best-fit lines: exponential in a-b and linear in c) and coefficients (R^2) for residual, non-metasomatized Tariat peridotites from this study 537 538 combined with those from Kang et al. (2017). The metasomatized peridotites tend to have lower $\delta^{44/40}$ Ca than pristine melting residues, but the difference is small except for some 539 samples with very low CaO and Al₂O₃ (\leq 1 wt.%). The $\delta^{44/40}$ Ca are correlated with Ca/Al in 540 541 the Obn suite, but not for xenoliths from the Udachnaya kimberlite (small rhombs, Kang et 542 al., 2017).

543

544

545 **REFERENCES**

Albarede F. and Beard B. (2004) Analytical Methods for Non-Traditional Isotopes. *Rev. Mineral. Geochem.* 55, 113-152.

548 Amini M., Eisenhauer A., Böhm F., Holmden C., Kreissig K., Hauff F. and Jochum K. P. (2009)

549 Calcium isotopes ($\delta^{44/40}$ Ca) in MPI DING reference glasses, USGS rock powders and various rocks:

550 Evidence for Ca isotope fractionation in terrestrial silicates. *Geostand. Geoanal. Res.* 33, 231-247.

551 Blättler C. L. and Higgins J. A. (2017) Testing Urey's carbonate–silicate cycle using the calcium

isotopic composition of sedimentary carbonates. *Earth Planet. Sci. Lett.* **479**, 241-251.

553 Chen C., Liu Y., Feng L., Foley S. F., Zhou L., Ducea M. N. and Hu Z. (2018) Calcium isotope

554 evidence for subduction-enriched lithospheric mantle under the northern North China Craton.

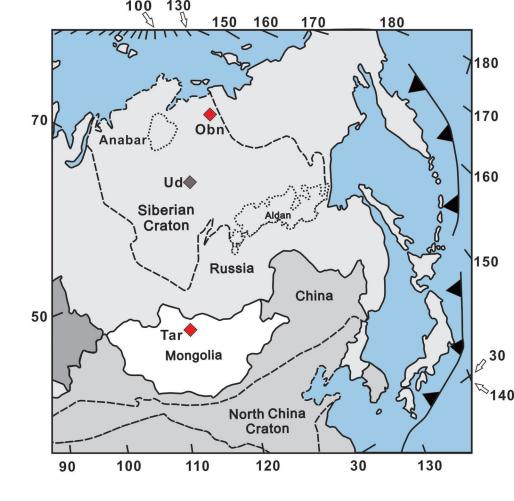
555 *Geochim. Cosmochim. Acta* 238, 55-67.

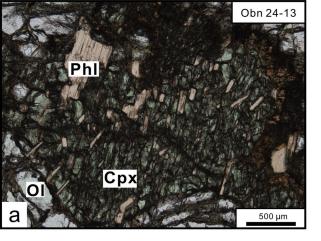
- 556 Doucet L. S., Ionov D. A., Golovin A. V. and Pokhilenko N. P. (2012) Depth, degrees and tectonic
- settings of mantle melting during craton formation: inferences from major and trace element
- 558 compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth

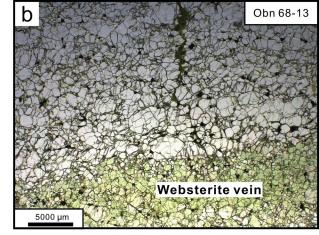
559 Planet. Sci. Lett. **359–360**, 206-218.

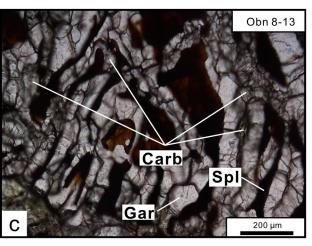
- 560 Fantle M. S. and Tipper E. T. (2014) Calcium isotopes in the global biogeochemical Ca cycle:
- 561 Implications for development of a Ca isotope proxy. *Earth-Sci. Rev.* **129**, 148-177.
- 562 Farkaš J., Frýda J. and Holmden C. (2016) Calcium isotope constraints on the marine carbon cycle
- and CaCO₃ deposition during the late Silurian (Ludfordian) positive δ^{13} C excursion. *Earth Planet. Sci.*

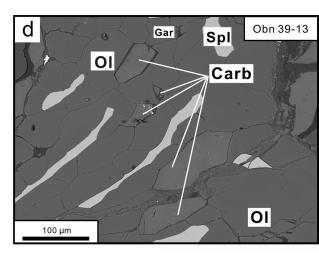
564 *Lett.* **451**, 31-40.

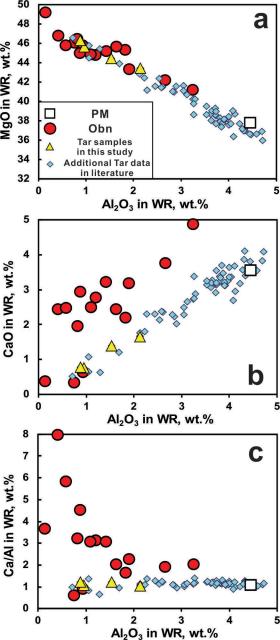

- 565 Feng L. P., Zhou L., Yang L., DePaolo D. J., Tong S. Y., Liu Y. S., Owens T. L. and Gao S. (2016)
- 566 Calcium isotopic compositions of sixteen USGS reference materials. *Geostand. Geoanal. Res.* **41**, 93-567 106.
- 568 Foden J., Sossi P. A. and Nebel O. (2018) Controls on the iron isotopic composition of global arc
- 569 magmas. *Earth Planet. Sci. Lett.* **494**, 190-201.
- 570 Griffith E. M., Fantle M. S., Eisenhauer A., Paytan A. and Bullen T. D. (2015) Effects of ocean
- acidification on the marine calcium isotope record at the Paleocene–Eocene Thermal Maximum. *Earth*
- 572 Planet. Sci. Lett. **419**, 81-92.
- 573 He Y., Wang Y., Zhu C., Huang S. and Li S. (2016) Mass independent and mass dependent Ca
- 574 isotopic compositions of thirteen geological reference materials measured by thermal ionisation mass
- 575 spectrometry. *Geostand. Geoanal. Res.* **41**, 283-302.
- 576 Heuser A., Eisenhauer A., Gussone N., Bock B., Hansen B. T. and Nägler T. F. (2002)
- 577 Measurement of calcium isotopes (δ^{44} Ca) using a multicollector TIMS technique. *Int. J. Mass*
- 578 Spectrom. 220, 385-397.
- 579 Huang F., Zhang Z., Lundstrom C. C. and Zhi X. (2011) Iron and magnesium isotopic
- 580 compositions of peridotite xenoliths from Eastern China. *Geochim. Cosmochim. Acta* **75**, 3318-3334.
- 581 Huang S., Farkaš J. and Jacobsen S. B. (2010) Calcium isotopic fractionation between
- 582 clinopyroxene and orthopyroxene from mantle peridotites. *Earth Planet. Sci. Lett.* 292, 337-344.
- 583 Huang S., Farkaš J. and Jacobsen S.B. (2011) Stable calcium isotopic compositions of Hawaiian
- 584 shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. *Geochim.*
- 585 *Cosmochim. Acta* **75**, 4987-4997.
- 586 Husson J. M., Higgins J. A., Maloof A. C. and Schoene B. (2015) Ca and Mg isotope constraints
- 587 on the origin of Earth's deepest δ^{13} C excursion. *Geochim. Cosmochim. Acta* **160**, 243-266.
- 588 Ionov D. A. (2007) Compositional variations and heterogeneity in fertile lithospheric mantle:
- 589 peridotite xenoliths in basalts from Tariat, Mongolia. Contrib. Mineral. Petrol. 154, 455-477.
- 590 Ionov D. A., Carlson R. W., Doucet L. S., Golovin A. V. and Oleinikov O. B. (2015) The age and

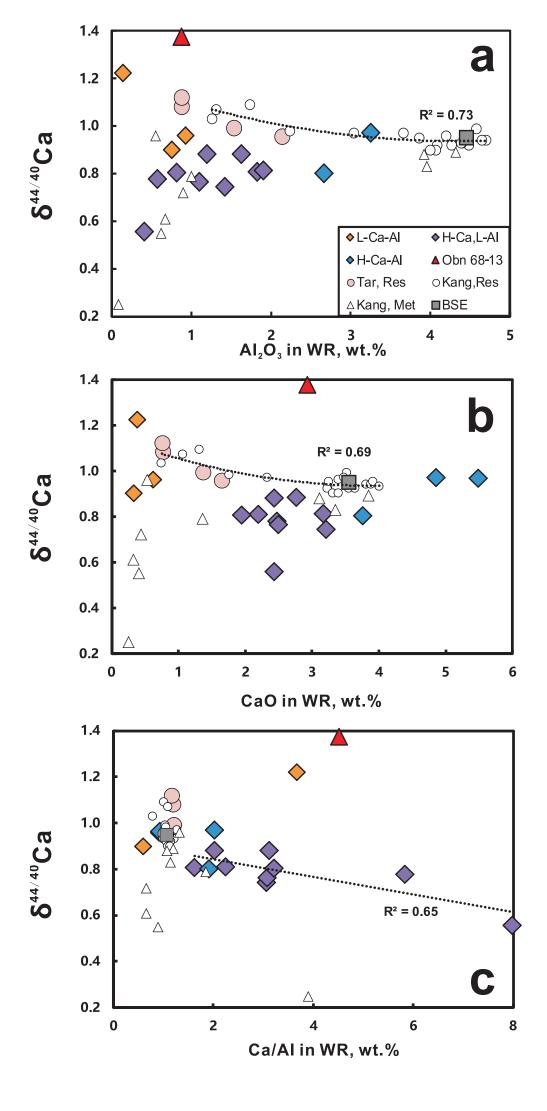

- 591 history of the lithospheric mantle of the Siberian craton: Re–Os and PGE study of peridotite xenoliths
- from the Obnazhennaya kimberlite. *Earth Planet. Sci. Lett.* **428**, 108-119.
- 593 Ionov D. A., Doucet L. S. and Ashchepkov I. V. (2010) Composition of the lithospheric mantle in
- the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. *J. Petrol.*51, 2177-2210.
- 596 Ionov D. A., Doucet L. S., Carlson R. W., Golovin A. V. and Oleinikov O. B. (2018a) Lost in
- 597 interpretation: Facts and misconceptions about the mantle of the Siberian craton. A comment on:
- 598 "Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from
- peridotites in the Obnazhennaya kimberlite" by Sun et al. (2017). *Lithos* **314-315**, 683-687.
- 600 Ionov D. A., Doucet L. S., Xu Y., Golovin A. V. and Oleinikov O. B. (2018b) Reworking of
- 601 Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence
- from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite.
- 603 Geochim. Cosmochim. Acta 224, 132-153.
- Ionov D. A., Dupuy C., O'Reilly S. Y., Kopylova M. G. and Genshaft Y. S. (1993) Carbonated
- peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate
 metasomatism. Earth Planet. Sci. Lett. 119, 283-297.
- 607 Ionov D. A. and Hofmann A. W. (2007) Depth of formation of sub-continental off-craton
- 608 peridotites. *Earth Planet. Sci. Lett.* **261**, 620-634.
- 609 Ionov D.A. and Hofmann A.W. (1995) Nb-Ta-rich mantle amphiboles and micas: Implications for
- 610 subduction-related metasomatic trace element fractionations. *Earth Planet. Sci. Lett.* 131, 341-356.
- 611 Kang J.-T., Ionov D. A., Liu F., Zhang C.-L., Golovin A. V., Qin L.-P., Zhang Z.-F. and Huang F.
- 612 (2017) Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca
- 613 isotope composition of the Bulk Silicate Earth. *Earth Planet. Sci. Lett.* **474**, 128-137.
- Kang J.-T., Zhu H.-L., Liu Y.-F., Liu F., Wu F., Hao Y.-T., Zhi X.-C., Zhang Z.-F. and Huang F.
- 615 (2016) Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. *Geochim.*
- 616 *Cosmochim. Acta* **174**, 335-344.
- 617 Liu F., Zhu H.L., Li X., Wang G. Q. and Zhang Z. F. (2017) Calcium isotopic fractionation and
- 618 compositions of geochemical reference materials. *Geostand. Geoanal. Res.* **41**, 675-688.
- 619 Magna T., Gussone N. and Mezger K. (2015) The calcium isotope systematics of Mars. *Earth*
- 620 Planet. Sci. Lett. 430, 86-94.
- 621 McDonough W. F. and Sun S.-s. (1995) The composition of the Earth. *Chem Geol* 120, 223-253.
- 622 Palme H. and Nickel K. G. (1985) Ca/Al ratio and composition of the Earth's mantle. *Geochim.*
- 623 *Cosmochim. Acta* **49**, 2123-2132.
- 624 Pogge von Strandmann P. A. E., Elliott T., Marschall H. R., Coath C., Lai Y.-J., Jeffcoate A. and
- 625 Ionov D. A. (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths.
- 626 *Geochim. Cosmochim. Acta* **75**, 5247-5268.
- 627 Richter, F.M., Davis, A.M., DePaolo, D.J. and Watson, E.B. (2003) Isotope fractionation by


- 628 chemical diffusion between molten basalt and rhyolite. *Geochim. Cosmochim. Acta* 67, 3905.
- 629 Romaniello S. J., Field M. P., Smith H. B., Gordon G. W., Kim M. H. and Anbar A. D. (2015)
- 630 Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J. Analyt. Atom.
- 631 *Spectrom.* **30**, 1906-1912.
- Tappe S., Romer R. L., Stracke A., Steenfelt A., Smart K. A., Muehlenbachs K. and Torsvik T. H.
- 633 (2017) Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon
- 634 cycling, metasomatism and rift initiation. *Earth Planet. Sci. Lett.* 466, 152-167.
- Teng F.-Z., Dauphas N., Helz R. T., Gao S. and Huang S. (2011) Diffusion-driven magnesium and
- 636 iron isotope fractionation in Hawaiian olivine. *Earth Planet Sci Lett* **308**, 317-324.
- 637 Valdes M. C., Moreira M., Foriel J. and Moynier F. (2014) The nature of Earth's building blocks as


638 revealed by calcium isotopes. *Earth Planet. Sci. Lett.* **394**, 135-145.


- 639 Wang W., Zhou C., Qin T., Kang J.-T., Huang S., Wu Z. and Huang F. (2017) Effect of Ca content
- 640 on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene. *Geochim.*
- 641 *Cosmochim. Acta* **219**, 44-56.
- 642 Wang Z.-Z., Liu S.-A., Ke S., Liu Y.-C. and Li S.-G. (2016) Magnesium isotopic heterogeneity
- 643 across the cratonic lithosphere in eastern China and its origins. *Earth Planet. Sci. Lett.* **451**, 77-88.
- 644 Weyer S. and Ionov D. A. (2007) Partial melting and melt percolation in the mantle: The message
- from Fe isotopes. *Earth Planet. Sci. Lett.* **259**, 119-133.
- 646 Wu H., He Y., Teng F.-Z., Ke S., Hou Z. and Li S. (2018) Diffusion-driven magnesium and iron
- 647 isotope fractionation at a gabbro-granite boundary. *Geochim. Cosmochim. Acta* 222, 671-684.
- Kia J., Qin L., Shen J., Carlson R. W., Ionov D. A. and Mock T. D. (2017) Chromium isotope
- 649 heterogeneity in the mantle. *Earth Planet. Sci. Lett.* **464**, 103-115.
- Kiao Y., Teng F.-Z., Zhang H.-F. and Yang W. (2013) Large magnesium isotope fractionation in
- 651 peridotite xenoliths from eastern North China craton: Product of melt-rock interaction. *Geochim.*
- 652 *Cosmochim. Acta* **115**, 241-261.
- 53 Xu Y. (2002) Evidence for crustal components in the mantle and constraints on crustal recycling
- mechanisms: pyroxenite xenoliths from Hannuoba, North China. *Chem. Geol.* 182, 301-322.
- 455 Young E.D., Galy A. and Nagahara H. (2002) Kinetic and equilibrium mass-dependent isotope
- 656 fractionation laws in nature and their geochemical and cosmochemical significance. *Geochim.*
- 657 *Cosmochim. Acta* **66**, 1095-1104.
- Zeng G., Chen L.-H., Xu X.-S., Jiang S.-Y. and Hofmann A. W. (2010) Carbonated mantle sources
- 659 for Cenozoic intra-plate alkaline basalts in Shandong, North China. *Chem. Geol.* 273, 35-45.
- 660 Zhao X., Zhang Z., Huang S., Liu Y., Li X. and Zhang H. (2017) Coupled extremely light Ca and
- 661 Fe isotopes in peridotites. *Geochim. Cosmochim. Acta* 208, 368-380.
- Zhu H., Liu F., Li X., Wang G., Zhang Z. and Sun W. (2018) Calcium isotopic compositions of
- normal mid □ ocean ridge basalts from the southern Juan de Fuca Ridge. J. Geophys. Res.: Solid Earth
- **123**: 1303-1313.





		δ ^{44/40} Ca	Т°С	P, GPa	Whole-ro	ck comp	osition, wi	t.%	OI	Modal c	omposiio	on, %					
Sa. N°	Rock type	SRM 915a	Са-орх	Al-opx	AI_2O_3	CaO	Ca/Al	Mg#	Mg#	OI	Орх	Срх	Sp	Gar	Phl	Carb	PI
Low-Ca-Al o	dunites and harzbui	rgites															
Obn 59-13	Sp Dunite	1.22	n.a.	n.a.	0.14	0.38	3.7	0.915	0.916	98.2	-	1.5	0.4	-	-	-	-
Obn 60-13	Sp-rich Dunite	0.96	n.a.	n.a.	0.93	0.63	0.9	0.888	0.892	94.4	-	2.2	3.3	-	-	-	-
Obn 69-13	Sp Hz	0.90	923	/1.5/	0.76	0.33	0.6	0.918	0.921	74.8	23.8	0.7	0.7	-	-	-	-
Phl-bearing	, mainly carbonate	bearing, Ca-r	ich perido	otites with	low to m	oderate A	V										
Obn 08-13	Gar-Sp-Phl Hz	0.85	729	2.1	1.20	2.77	3.1	0.919	0.921	69.9	20.4	0.8	0.5	2.3	1.6	4.4	-
Obn 22-13	Sp Hz	0.81	1027	/1.5/	1.82	2.20	1.6	0.917	0.920	76.1	15.8	1.9	2.6	-	0.5	3.1	-
Obn 24-13	Sp-Phl Lh	0.56	784	/1.5/	0.41	2.44	8.0	0.918	0.920	84.2	6.6	3.6	0.1	-	2.4	3,1*	-
Obn 39-13	Gar-Sp Hz	0.81	711	1.6	1.90	3.17	2.3	0.918	0.920	66.4	20.7	2.1	1.3	4.0	1.1	4.5	-
Obn 53-13	Gar-Sp-Phl Hz	0.74	767	2.6	1.42	3.22	3.1	0.919	0.924	75.7	12.0	0.5	1.7	2.9	1.8	5.4	-
Ca-rich peri	idotites with low to I	moderate Al															
Obn 12-13	Sp Lh-Wh	0.88	1047	/1.5/	1.63	2.44	2.0	0.920	0.921	84.0	2.6	10.7	2.6	-	-	-	-
Obn 37-13	Sp Lh-Wh	0.78	685	/1.5/	0.57	2.48	5.9	0.915	0.918	85.2	3.9	10.5	0.4	-	-	-	-
Obn 68-13	Sp Wh	1.38	891	/1.5/	0.88	2.94	4.5	0.909	0.912	84.0	2.5	12.4	1.2	-	-	-	-
O-1017	Sp Lh	0.77	706	/1.5/	1.10	2.50	3.1	0.917	0.923	74.8	13.0	11.2	1.0	-	-	-	-
O-1061	Gar-Sp Hz	0.81	716	/1.5/	0.82	1.95	3.2	0.916	0.919	87.7	2.6	4.2	1.3	4.2	-	-	-
Ca,Al-rich Il	herzolites																
Obn 06-13	Sp Lh	0.97	668	/1.5/	3.25	4.86	2.0	0.924	0.924	68.7	5.7	21.7	4.0	-	-	-	-
Obn 21-13	Gar-Sp Lh	0.97	698	2.0	7.98	5.49	0.9	0.900	0.922	44.7	7.0	17.4	1.1	29.8	-	-	-
O-47	Sp Lh	0.80	n.a.	n.a.	2.66	3.76	1.9	0.909	0.908	61.8	22.0	16.2	n.a.	-	-	-	-
Garnet and	plagioclase pyroxe	nites															
Obn 58-13	Sp-PI Wbst vein	0.74	n.a.	n.a.	11.08	3.22	0.4	0.919	-	-	28.9	59.1	7.6	-	-	-	4.5
O-1080	Ol-Gar-Sp Wbst	0.93	729	2.1	7.18	8.02	1.5	0.909	0.922	30.1	12.6	38.1	1.3	17.9	-	-	-
Refractory	Tariat peridotites																
Mo4399-23	Sp Hz	1.08	876	/1.5/	0.88	0.78	1.2	0.912	0.913	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Mo-92	Low-cpx Sp Lh	0.96	898	/1.5/	2.14	1.65	1.0	0.912	0.913	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Mo-94a	Sp Hz	1.12	886	/1.5/	0.96	0.76	1.1	0.910	0.911	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Mo-95	Low-cpx Sp Lh	0.99	868	/1.5/	1.54	1.38	1.2	0.908	0.909	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Table 1. Summary of essential data on xenoliths

See Table 2 for details of Ca isotope data (reproducility, accuracy, analyses of reference samples). Value for Obn 8-13 is an average of two full duplicates. Data on the samples are from lonov et al. (2018b). Sample 58-13 is a vein in a harzburgite.

Ol, olivine; Opx, orthopyroxene; Cpx, clinopyroxene; Sp, spinel; Gar, garnet; Carb, carbonate (calcite); Phl, phlogopite; Pl, plagioclase

Lh, Iherzolite; Hz, harzburgite; Wh, wehrlite; Wbst, websterite; n.a., not available; -, absent.

See lonov et al. (2018b) for opx-based methods used to obtain equilibration temperatures (T) and pressures (P); P=1.5 GPa is assumed for spinel peridotites. Modal estimates obtained by least squares method from whole-rock and mineral analyses, and normalized to 100%.

*Modal carbonate in sample 24-13 is an estimate for a hypothetical calcite component that could react with opx to yield metasomatic Cpx-Spl±Phl pockets

Sa. N°	Rock type	δ ^{44/42} Ca relative to	2SD	δ ^{44/40} Ca relative to	δ ^{44/40} Ca relative to	2SD	n
00.11	Rook type	ICP1	200	SRM 915a	SRM 915b	200	
		Obn low Ca-A	Al dunite a	nd harzburgite			
Obn-59/13	Sp Dunite	0.25	0.03	1.22	0.52	0.07	3
Obn-60/13	Sp-rich Dunite	0.12	0.02	0.96	0.26	0.04	3
Obn-69/13	Sp Hz	0.09	0.09	0.90	0.20	0.18	3
Ob	n Phl-bearing, mainly	r carbonate be	aring, Ca-	rich peridotites v	vith low to mode	erate Al	
Obn-8/13	Gar-Spl-Phl Hz	0.08	0.02	0.88	0.18	0.04	3
Obn-8/13 R		0.06	0.06	0.83	0.13	0.12	3
Obn-22/13	Sp Hz, vermic.	0.04	0.06	0.81	0.11	0.12	3
Obn-24/13	Sp-Phl Lh	-0.08	0.01	0.56	-0.14	0.03	3
Obn-39/13	Gar-Sp Hz	0.05	0.04	0.81	0.11	0.08	3
Obn-53/13	Gar-Sp-Phl Hz	0.01	0.04	0.74	0.04	0.09	3
	Obn	Ca-rich perido	otites with	low to moderate	e Al		
Obn-12/13	Sp Lh-Wh, vermic	0.08	0.05	0.88	0.18	0.11	3
Obn-37/13	Sp Lh-Wh	0.03	0.06	0.78	0.08	0.13	3
Obn-68/13	Sp Wh	0.32	0.02	1.38	0.68	0.04	3
O-1017	Sp Lh	0.02	0.04	0.77	0.07	0.07	3
O-1061	Gar-Sp Hz vermic	0.04	0.07	0.81	0.11	0.14	3
		Obn Ca	, Al-rich lh	erzolites			
Obn-6/13	Sp Lh, protogran	0.12	0.01	0.97	0.27	0.02	3
Obn-21/13	Gar-Sp Lh	0.12	0.03	0.97	0.27	0.06	3
0-47	Sp Lh	0.04	0.07	0.80	0.10	0.14	3
	(Obn garnet an	d plagiocla	ase pyroxenites			
Obn-58/13	Sp-PI Wbst vein	0.01	0.01	0.74	0.04	0.03	3
O-1080	Ol-Gar-Sp Wbst	0.11	0.07	0.93	0.23	0.14	3
		Refracto	ry Tariat p	peridotites			
Mo4399-23	Sp Hz	0.18	0.01	1.08	0.38	0.03	3
Mo-92	Low-cpx Sp Lh	0.12	0.02	0.96	0.26	0.05	3
Mo-94a	Sp Hz	0.20	0.01	1.12	0.42	0.03	3
Mo-95	Low-cpx Sp Lh	0.13	0.02	0.99	0.29	0.05	3
		Internation	al referen	ce samples			
SRM 915a	Carbonate	-0.35	0.08	0	-0.70	0.16	24
SRM 915b	Carbonate	-0.01	0.08	0.70	0	0.16	20
IAPSO	Seawater	0.54	0.08	1.82	1.13	0.16	17
PCC-1	Sp Lh	0.28	0.01	1.29	0.59	0.02	3
BHVO-2	Basalt	0.05	0.05	0.82	0.12	0.1	3

Table 2. Whole-rock Ca isotope compositions of xenoliths and reference samples

ICP1, in-house Ca isotope standard (see text). See Table 1 for other abbreviations.

^aR denotes full procedural replicated sample.

^bCalculated based on the analyses of residue and leachate given in Table 3.

n, number of repeated measurements of the same solution

Table 3. The Ca isotope composition of leachate, residue and calculated bulk rock.

Sa. N°		Ca fraction	δ ^{44/42} Ca relative to ICP1	2SD	δ ^{44/40} Ca relative to SRM 915a	δ ^{44/40} Ca relative to SRM 915b	2SD	n
Obn-8/13	leachate	0.18	0.05	0.00	0.82	0.12	0.01	3
	residue	0.83	0.06	0.03	0.84	0.14	0.06	3
	calculated bulk	1.00			0.83	0.13	0.06	3
Obn-22/13 lechate		0.75	0.06	0.02	0.84	0.14	0.04	3
	residue	0.25	-0.01	0.06	0.70	0.00	0.12	3
	calculated bulk	1.00			0.81	0.11	0.12	3
Obn-39/13	3 lechate	0.75	0.05	0.03	0.83	0.13	0.06	3
	residue	0.25	0.02	0.03	0.77	0.07	0.06	3
	calculated bulk	1.00			0.81	0.11	0.08	3

ICP1, in-house Ca isotope standard (see text)