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Abstract
Team formation is the problem of selecting a group
of agents, where each agent has a set of skills;
the aim is to accomplish a given mission (a set of
tasks), where each task is made precise by a skill
necessary for managing it. In a dynamic environ-
ment that o↵ers the possibility of losing agents dur-
ing a mission, e.g., some agents break down, the ro-
bustness of a team is crucial. In this paper, the focus
is laid on the mission oriented robust multi-team
formation problem. A formal framework is defined
and two algorithms are provided to tackle this prob-
lem, namely, a complete and an approximate al-
gorithm. In the experiments, these two algorithms
are evaluated in RMASBench (a rescue multi-agent
benchmarking platform used in the RoboCup Res-
cue Simulation League). We empirically show that
(i) the approximate algorithm is more realistic for
RMASBench compared to the complete algorithm
and (ii) considering the robust mission multi-teams
have a better control on the fire spread than the so-
phisticate solvers provided in RMASBench.

1 Introduction
Team formation [Liemhetcharat and Veloso, 2012; Nair and
Tambe, 2005; Vidal, 2004] is an important aspect of multi-
agent systems. In many application problems, e.g., RoboCup
Rescue [Kitano and Tadokoro, 2001; James et al., 2015], un-
manned aerial vehicles operations [George et al., 2010], and
team formation in social networks [Lappas et al., 2009], the
groups of agents must coordinate to solve them e↵ectively.
In a dynamic environment that o↵ers the possibility of losing
agents during a mission, e.g., an agent is injured in a rescue
mission, the robustness of a team is crucial. How to form
the robust teams that can continue to perform their missions
(even if some agents break down) is the main purpose of this
work.

In this paper, a novel framework called a mission-oriented
robust multi-team formation problem is defined. In this prob-
lem, a set of agents and a set of missions are given, and the
aim is to form robust teams which can achieve the given mis-
sions even if some agents break down, minimize the total cost
and maximize the robustness of the teams.

Furthermore, two algorithms are provided to tackle this
problem, namely a complete and an approximate algorithms,
and also some heuristics are developed that exploit the speci-
ficities of the problem. The complete algorithm is based on
a branch and bound technique [Lawler and Wood, 1966] and
can guarantee to find all Pareto optimal teams, i.e., trade-o↵
between the cost and robustness of the teams. However, since
the number of Pareto optimal teams is often exponential, find-
ing all Pareto optimal teams becomes easily intractable [Oki-
moto et al., 2012]. Thus, a local search based approximate
algorithm is also provided [Aarts and Lenstra, 2013].

In the experiments, the performances of two algorithms are
evaluated in RMASBench [Kleiner et al., 2013], a testbed
for multi-agent coordination algorithms based on the exist-
ing RoboCup Rescue simulation platform (RSP) [Skinner and
Ramchurn, 2010]. RMASBench provides a library of imple-
mentations of state-of-the-art distributed constraint optimiza-
tion solvers such as DSA [Fitzpatrick and Meertens, 2003]
and MaxSum [Farinelli et al., 2008] and facilities to compare
coordination algorithms. Our local search based approximate
algorithm is then compared with those existing solvers.

As an application domain, we believe that forming rescue
teams is promising. Consider the problem of forming rescue
teams in a disaster area. There are a set of missions to be
accomplished which changes dynamically and a set of res-
cue robots, where each robot has di↵erent skills to achieve
the tasks of a mission, e.g., providing medical treatment, act-
ing as a firefighter and driving a vehicle. Assume that their
current positions are di↵erent. Forming robust and costly res-
cue teams by considering the distance to the disaster area,
amounts to a robust multi-team formation problem.

Compared to [Okimoto et al., 2015], the aim of our frame-
work is to form multiple robust teams. Also, this paper pro-
poses e�cient algorithms and evaluates them on RoboCup
Rescue simulations, while [Okimoto et al., 2015] provides a
standard algorithm and evaluates it with random problems.
Our framework is similar to the multi-set multi-cover prob-
lem [Hua et al., 2009] where the authors proposed an algo-
rithm in which multiple sets can cover a multi-set. If we
consider a mission as a set of tasks, finding a robust team
to achieve the mission is equivalent to trying to cover the set
of tasks multiple times. Compared to [Hua et al., 2009], this
paper considers the robustness and the cost of each team si-
multaneously (i.e. bi-objective optimization).
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2 Mission-Oriented Robust Multi-Team
Formation

In this section, a formal framework for mission-oriented ro-
bust multi-team formation is defined. Furthermore, the bi-
objective optimization problem for this framework is pointed
out, i.e., finding out every multi-team, which is optimally ro-
bust and/or cheap. The following definitions are similar to the
definitions provided in [Okimoto et al., 2015].
Definition 1 (Multi-Team Formation Problem) A multi-
team formation problem description is defined by a tuple
MT F = hA, S ,M, cost, skilli, where A = {a1, ..., an} is a
set of agents, S = {s1, ..., sm} is a set of skills (of agents),
M = {m1, ...,mg} is a set of missions where mi ✓ 2S for
1  i  g, cost : 2A ⇥M ! N is a cost function, and skill is a
mapping from A to 2S . A set of agents T ✓ A is said to be a
team and a pair (T,m) is called a mission team where m 2 M.

In the following, two standard properties and the robust-
ness of a mission team are defined.
Definition 2 (Mission Team Cost) Let MT F = hA, S , M,
cost, skilli be a multi-team formation problem description.
Given a mission team (T,m) and a non-negative integer c,
(T,m) is called c-costly, if the cost of (T,m) is less than c :

cost (T,m)  c.
Definition 3 (Mission Team Validity) Let MT F = hA, S ,
M, cost, skilli be a multi-team formation problem descrip-
tion. Given a mission team (T,m), the mission team is said to
be valid w.r.t. m, if (T,m) can accomplish m :

m ✓
[

ai2T
skill (ai).

Definition 4 (Mission Team Robustness) Let MT F = hA,
S , M, cost, skilli be a multi-team formation problem descrip-
tion. Given a mission team (T,m) and a non-negative integer
k, (T,m) is said to be k-robust w.r.t. m, if for every set of
agents T 0 ✓ T , such that |T 0|  k, (T \ T 0,m) is valid w.r.t. m.

Now, a mission multi-team for multi-team formation and
its properties are defined, i.e., cost, validity and robustness.
Definition 5 (Mission Multi-Team) Let MT F = hA, S ,M,
cost, skilli be a multi-team formation problem description. A
set of mission teams is said to be a mission multi-team de-
noted MMT .

MMT = {(Ti,mi) | Ti ✓ A,mi 2 M,
\

1ig
Ti = ;, 1  i  g}.

Definition 6 (Mission Multi-Team Cost) Let MT F = hA,
S , M, cost, skilli be a multi-team formation problem descrip-
tion. Given a mission multi-team MMT and a non-negative
integer cM , MMT is said to be cM-costly if the sum of the
costs of all (Ti,mi) 2 MMT , (1  i  g), is less than cM :

X

1ig
cost (Ti,mi)  cM .

Definition 7 (Mission Multi-Team Validity) Let MT F =
hA, S , M, cost, skilli be a multi-team formation problem de-
scription. Given a mission multi-team MMT , MMT is said
to be valid w.r.t. M, if each mission team (Ti,mi) of MMT is
valid w.r.t. mi where 1  i  g.

Definition 8 (Mission Multi-Team Robustness) Let MT F
= hA, S , M, cost, skilli be a multi-team formation problem
description. Given a mission multi-team MMT and a non-
negative integer kM , MMT is said to be kM-robust w.r.t. M,
if for every mission team (Ti,mi) 2 MMT where 1  i  g,
(Ti,mi) is at least kM-robust w.r.t. mi, i.e., for every ki-robust
mission team (Ti,mi) of MMT ,

kM = min{ki | 1  i  g}.
When we consider the cost and the robustness of a mission

multi-team together, we can view a multi-team formation as
a bi-objective optimization problem. In this problem, gen-
erally, since trade-o↵s exists between two objectives, there
does not exists an ideal mission multi-team which minimizes
the cost cM and maximizes the robustness kM simultaneously.
Therefore, the “optimal” mission multi-team of this problem
is characterized by using the concept of Pareto optimality.

Definition 9 (Dominance) Let MT F = hA, S , M, cost,
skilli be a multi-team formation problem description and
MMT and MMT 0 be two mission multi-teams, where MMT
is cM-costly and kM-robust and MMT 0 is c0M-costly and k0M-
robust. MMT dominates MMT 0 if and only if kM � k0M and
cM < c0M , or kM > k0M and cM  c0M .

Definition 10 (Pareto optimality) Let MT F = hA, S , M,
cost, skilli be a multi-team formation problem description
and MMT be a mission multi-team. MMT is said to be a
Pareto optimal mission multi-team if there exists no mission
multi-team MMT 0 that dominates MMT .

Definition 11 (Bi-objective optimization problem)
Input: A multi-team formation problem description MT F =

hA, S , M, cost, skilli.
Output: Find all Pareto optimal mission multi-teams (T,m).

3 Algorithms for Mission-Oriented Robust
Multi-Team Formation

In this section, two algorithms for solving a mission oriented
robust multi-team formation problem are proposed, namely
complete and approximate algorithms. The former can guar-
antee to find all Pareto optimal mission multi-teams, while
the latter can find good mission multi-teams very quickly.

3.1 Complete Algorithm
The complete algorithm is based on a branch and bound tech-
nique [Lawler and Wood, 1966] and can guarantee to find
all Pareto optimal teams, i.e., trade-o↵ between the cost and
robustness of the teams. In this algorithm, we exploited the
specificities of the multi-team formation problem MT F to de-
sign dedicated heuristics and consider each agent as a vari-
able whose each domain value corresponds to a mission. Al-
gorithm 1 shows the initialization of this algorithm. In the
pseudo-code, S and As are initialized (i.e., we set them as
empty), where S is a set of MMT s and As represents an
MMT (line 3-6). At the beginning, agents are not assigned
to any mission, i.e., each mission multi-team is the empty set
(line 8). In this algorithm, in order to create a search-tree, we
assume that the ordering among agents is lexicographically
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Algorithm 1 Multi-Teams Formation Branch & Bound
1: INPUT : A multi-team formation problem MT F =
<A, P,M, cost, skill>.

2: OUTPUT : the set of all Pareto optimal mission multi-teams S

3: S : a set of MMTs // All Pareto optimal solutions
4: S  ;
5: As: a MMT // Current assignments
6: As ;
7: for each mission m of M do
8: As As [ {(;,m)} // All missions are added to As
9: end for

10: solve(1, As, S ,MT F)
11: Return S

given. The solving starts with the first agent of the ordering
among agents, i.e., root node in the search tree (line 10).

Algorithm 2 shows the details of the solving part. It takes
an integer N as a parameter and tries to assign the N-th agent
of A to each possible mission M (line 11,12). When an agent
cannot perform any task of the mission m, this mission is
ignored. Otherwise, the agent is added to the team T of
(T,m) 2 As (line 13-16). If the team cost of As is larger
than the cost bound by adding the agent in T , the next mis-
sion is considered (line 17-20). Then, it checks the validity
of As (line 21-32). In this part, the basic idea is to detect the
case when the current partial team assignment As cannot lead
to a valid completion. To form a k-robust mission team for a
mission, we need at least k + 1 agents. Thus, it can compute
the minimal number of agents required to obtain a valid mis-
sion team for each remaining missions (line 22-29). When
the number of remaining unassigned agents is lower than this
minimal value, it is not possible to find a mission team with
the current partial assignment. (|A| � N) is the maximal num-
ber of agents that can still be added in a mission team. If this
number is less than the minimal required MinAgent, it is use-
less to continue with the current mission teams. It cancels the
last choice of adding agent (T  T \ {a}), and continues with
the next agent (line 30-32). This allows us to branch before
assigning all agents and reduces the search space. If the cur-
rent assignment passed all checks, it continues to solve with
the next agent (line 34). When the last agent of A has been
assigned in As, it provides a complete assignment. If As is
valid and not (Pareto) dominated, As is added to S (line 2-9).
When the previous mission teams of S are dominated by the
current mission team As, they are removed from S . Finally, it
backtracks (line 9 and 35) and continues the search (line 12).

Theorem 1 For the proposed complete algorithm, it holds (i)
the required memory belongs to O(n(m + 1)n) and (ii) the re-
quired computation time belongs to O(n(m + 1)n+2), where m
is the number of missions and n is the number of agents.

Let us proof (i). In the worst case, all possible mission
multi-teams are Pareto optimal, i.e., there exists (m + 1)n

Pareto optimal mission multi-teams: each agent can belong
to every possible teams or no team. A mission multi-team is
composed by an assignment and a pair of integers: the cost
and the robustness of it. Since an agent can only belong to one
mission team, an assignment can be represented by a vector
of integers of size n were each component encodes the team

Algorithm 2 solve(N, As, S , MT F)
1: INPUT : An integer N, As an MMT , a set of mission

multi-teams T and a multi-teams formation problem MT F =
<A, P,M, cost, skill>.

2: // 1) All agents have been assigned
3: if N > |A| then
4: if As is not valid then
5: Return
6: if As is not dominated by any element of S then // Check

As is dominated by the elements of S
7: Remove all MMT from S which are dominated by As //

Check As dominates the elements of S
8: S  S [ {As}
9: Return

10: a: the Nth agent of A

11: // 2) Assign agent N to a mission
12: for each (T,m) of As do
13: // 3) Check if a can accomplish a task of m
14: if skill(a) \ m == ; then
15: Continue
16: T  T [ {a}
17: // 4) Check the cost bound
18: if cost(As) > maxCost then
19: T  T \ {a}
20: Continue
21: // 5) Check the validity
22: MinAgent : 0
23: for each pair (Ti,mi) of As do
24: k : the required robustness for mi
25: if Ti is not valid w.r.t. m then
26: MinAgent  MinAgent + k + 1
27: if Ti is k0-robust w.r.t. m and k0 < k then
28: MinAgent  MinAgent + (k � k0)
29: end for
30: if (|A| � N) < MinAgent then
31: T  T \ {a}
32: Continue
33: // 6) Continue the search with the next agent
34: solve(N + 1,As, S , MT F)
35: T  T \ {a}
36: end for
37: Return

of one agent. In order to compute the robustness, for each pair
(T,m0) 2 As, we store a vector where each component corre-
sponds to a skill s of m0 and the value of the component is the
number of agents a0 of T such that s 2 skill(a0). The memory
size of the Pareto optimal mission multi-teams is then bound
by O((2 + 2n)(m + 1)n) = O(n(m + 1)n). Since the complete
algorithm only requires to store them during the solving, the
required memory is bound by O(n(m + 1)n).

Next, let us proof (ii). Let S T be the number of partial
assignments of MT F and j be a non-negative integer (1 
j  n). Consider that only one agent can change its mission
team at a given time. When no pruning occurs, and since
there are (m + 1) j possible assignments for the first j agents
in the ordering, the number of partial assignments is given

by
Pn

j=1(m + 1) j =
(m + 1)n+1 � 1

m + 1 � 1
� 1 =

(m + 1)n+1 � 1
m

� 1

that is bound by O((m + 1)n+1). In each time, a new mission
team (T,m0) is assigned to an agent a in the current partial
assignment As, the complete algorithm:
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Algorithm 3 Multi-Teams Formation Local Search
1: INPUT: A multi-teams formation problem MT F =
<A, P,M, cost, skill> and MaxNeighbor a non-negative
integer

2: OUTPUT : the best MMT found
3: try 0
4: Create a MMT As randomly until As is valid
5: // Phase 1: Random search
6: do
7: As0  As
8: do// 1.1) Generate a neighbor of As
9: Select an agent a randomly

10: m1  the mission of a
11: Remove a from T1 in (T1,m1) 2 As0
12: Select a mission m2 randomly
13: Add a to T2 in (T2,m2) 2 As0
14: while As0 is not valid
15: if As0 dominates As then // 1.2) Better solution
16: As As0
17: try 0
18: else// 1.3) Try another neighbor
19: try try + 1
20: while try < MaxNeighbor

21: // Phase 2: Systematic search
22: do
23: As0  As
24: improvement  False
25: for each agent a of A do
26: m1  the mission of a
27: Remove a from T1 in (T1,m1) 2 As0
28: for each mission m in M do
29: Add a to T in (T,m) 2 As0
30: if As0 dominates As then
31: As As0
32: improvement  True
33: Break
34: end for
35: if improvement == True then
36: Break
37: end for
38: while improvement == True

39: return As

• checks if the agent a can accomplish m0. This operation
is linear and only requires to check if skill(a) \ m0 , ;,
i.e., it has a cost of the number of skills in the worst case.
• computes the new cost cost (As). This operation is con-

stant and just removes the cost of the previous team as-
signed to a and add one of the new assigned team.
• updates the robustness of T . This operation is linear.

As stated before, T has a vector where each component
corresponds to a skill s of m0 and the component value
is the number of agents a0 of T such that s 2 skill (a0),
i.e. this requires at most s operations.
• checks the cost bound. This operation is constant.
• checks the validity of As. This operation requires to

compute the minimum number of agents needed to make
T valid for each mission team (T,m0).

This number is the di↵erence between the current robust-
ness k0 of T and the required robustness k. Both k0 and k
are known, so that the whole operation has a linear com-
plexity, i.e., O(m). In case no pruning occurs, S T represents
the maximal occurrences of the five above operations. Solv-
ing a MT F with this complete algorithm is then bound by

|S T | ⇥ (t + 1 + s + 1 + m) = O((m + 1)n+1 ⇥ (t + s + m))
where t is the number of skills. Finally, when As is a com-
plete assignment, the algorithm checks if As is dominated by
the current Pareto optimal mission multi-teams. This oper-
ation is linear in the size of them, i.e., it compares the pair
(cost (As), k) with all elements of them, which has a com-
plexity of O(2n(m + 1)n). Thus, the runtime complexity is
bounded by O((m + 1)n+1 ⇥ (t + s + m)) + 2n(m + 1)n) which
belongs to O(n(m + 1)n+2).

3.2 Approximate Algorithm
Since the complexity of the complete algorithm is exponential
in the number of agents (in the worst case), an approximate
algorithm is also provided that is based on local search tech-
nique. Algorithm 3 shows the pseudo-code of it. The input
is a multi-teams formation problem MT F and a non-negative
integer MaxNeighbor which is used to limit the search. First,
it generates a MMT randomly until a valid one is found (line
4). Then, a neighbor MMT is computed by randomly switch-
ing the mission team of an agent (line 9-13). If the selected
MMT is not valid, another neighbor is generated. When a
valid neighbor dominates the current candidate, i.e., both its
cost and its robustness are better, it becomes the new candi-
date (line 15-17) and the search continues. Otherwise, an-
other neighbor MMT is considered (line 18-19). The phase 1
terminates after MaxNeighbor improvement failures (line 5-
20). The phase 2 is a systematic search which ensures to reach
a local optimal (line 21-38). It avoids to miss a good mission
multi-team that will happen to be near the current candidate.
In this phase, every neighbors assignments is checked and
the current candidate is changed to its neighbor when a bet-
ter candidate is found. The search continues until the current
candidate is not dominated by any of its direct neighbor. Fi-
nally, it outputs the local optimal mission multi-team.

4 Evaluation
In this section, the complete and approximate algorithms are
evaluated with RMASBench [Kleiner et al., 2013], bench-
marking platforms for agent-based system. RMASBench is a
testbed for multi-agent coordination algorithms based on the
existing RoboCup Rescue simulation platform (RSP) [Skin-
ner and Ramchurn, 2010]. It simulates urban searches and
rescue scenarios using real city maps. Figure 1 shows one of
the representative scenarios, where Paris is the playground.
In fig. 1, the 18 red points are the firemen agents and the 5
black crosses locate the initial ignition points where the fire
start to spread. The RMASBench simulation platform intro-
duces a generic API for multi-agent coordination, which es-
sentially provides facilities for exchanging messages among
agents and decisions making. It provides a library of imple-
mentation of state-of-the-art solvers, e.g., DSA [Fitzpatrick
and Meertens, 2003] and MaxSum [Farinelli et al., 2008], as
well as facilities to compare coordination algorithms.

4.1 Context
In RMASBench, the coordination problem is about assigning
fire brigades to fires in order to mitigate damages on build-
ings and try to stop fires propagation. The benchmark poses
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Figure 1: Initial state of the Paris map scenario with 18 fire-
men and 5 ignition points. Red points are firemen and crosses
are ignition points.

crucial challenges for coordination. The agents evolve in a
dynamic environment where a set of fires to be extinguished
varies over the time. Fires may spread to neighboring build-
ings and grow in intensity as time goes, making them harder
to extinguish and more likely to spread. The simulation is
turn based (i.e. in each turn, the complete state of the world
is known). It includes the positions of agents, the fires lo-
cations and the blockades places. Given the information, in
each turn, the solver has to assign a target to each agent, i.e.,
a fire for each fireman and a blockade for each policeman. It
has a strong spacial aspects: a fire brigade agent can operate
on a given fire only if it is physically located in the proximity
of that fire, hence agents must consider their travel time when
coordinating. Moving to a distant location takes several turns,
during which the state of the world changes. Agents have to
change target because of the blockades appearance or build-
ings destruction. It includes the coalitional e↵ects: several
agents can work on the same fire, and the more agents work
on the same fire the faster the fire can be extinguished. How-
ever, if too many units are allocated to the same fire, they
might hinder each other or ignore other fires. The optimal
mission teams of firemen have to be balanced, i.e., enough
agents to fight the fire but not too many to avoid hinder.

An instance of the RMASBench can be modeled as a multi-
team formation problem as follows. The set of agents con-
tains only two kinds of agents, namely firemen and police-
men. For each fireman agent ai, skill (ai) = { f ire} and for
each policeman agent a j, skill (a j) = {blockades}. Each
building on fire is represented by a mission mf = { f ire} and
each blockade by a mission mb = {blockade}. For each mis-
sion, the required k-robustness is the fire intensity. The cost
of a team is the sum of the distances that its members need
to travel in order to reach the target. Since the number of
missions explodes because of fire spread, it appends quickly
that there is more missions than agents. In this case, it is not
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Figure 2: Run time of the complete algorithm.
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Figure 3: Run time of the approximate algorithm.

possible to assign a valid mission multi-team to each mission.
To tackle this problem, we consider the number of unsatisfied
missions during solving. For each turn, our two algorithms
compute the mission multi-team so that the travel of team
members is minimized and the fire fighting is maximized.

4.2 Experimental results
To evaluates the performances of complete and approximate
algorithms, we focused on the benchmark scenario provided
by RMASBench. Each experiment has been run on a com-
puter Macbook Pro 13-inch mid 2010 (Intel(R) Core(TM) 2
Duo 2.4 GHz P8600). The scenario takes place on the map of
Paris with 5 ignition points at start and 18 fire brigade agents
(see Figure 1). The results show the simulation run for 300
turns and fire brigades remain idle for 23 turns before they
become aware of all fires.

Figure 2 and 3 show the evolution of run time during the
simulation. Solving time of our two algorithms are compared
regarding the number of missions, i.e., the number of build-
ings on fire. We can see that the run time of the complete
algorithm increases exponentially when the number of mis-
sions increases. This is why the number of solutions (mission
multi-teams) increases exponentially. Compared to these re-
sults in fig.2, the approximate algorithm is more e�cient. In
this problem, the approximate algorithm re-uses the previous
solution to start solving, and it allows us to generate a good
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solutions quickly1. In the simulation, the number of fire in-
creases quickly, thus the complete algorithm is too slow to
solve a new problem for each turn. On the other hand, the
approximate algorithm is a more realistic approach when it
requires to solve the problem in a small amount of time.

Figure 4 shows the evolution of the number of buildings
on fire during the simulation on the Paris scenario of fig.1.
In these experiments, two versions of the approximate algo-
rithms (i.e. k-robust MTF and 0-robust MTF) are compared
with the five algorithms provided by RMASBench, namely
BMS, DSA, Closest, Greedy and Random. The following is
the quick explanations of those algorithms:
• The Random algorithm just assigns each agent to a fire

location randomly.
• The Closest algorithm assigns each agent to its nearest

fire.
• The Greedy algorithm does the same as Closest but con-

siders the intensity of the fire and avoids to put many
agents on the same target, i.e., when there is a fire with
an intensity k and k agents assigned to it, it will prefer to
assign the next agent to another fire location.
• BMS and DSA are the state-of-the-art solvers. These

two algorithms optimize both the distance and the ex-
pected e�ciency of each agent for each fire regarding its
intensity. In those approaches, two metrics are combined
into one value (scalarization) and they try to maximize
this value.

The k-robust MTF approach uses the fire intensity k as
the required robustness for each corresponding mission, as
explained before, whereas the 0-robust MTF approach only
requires one agent per fire. Both algorithms optimize the
distance (i.e. the cost) and the robustness of each mis-
sion multi-team simultaneously. At each turn, we compute
100 local optimal solutions (i.e. mission multi-teams) and
limit the local search by allowing 100 improvement failures
(MaxNeighbor = 100 in Algorithm 3). One of the non

1The run time depends on the previous solution and the current
situation that is given randomly.

dominated mission multi-team we found is randomly selected
amount those mission multi-teams.

In the experiments, the Random approach is the only one
that did not succeed to stop the fire spread. The k-robust MTF
succeeds to extinguish all fires after 66 turns, while Closest
and Greedy need 92 and 108 turns respectively. The perfor-
mances of 0-robust MTF are similar to those of Closest which
finished in 92 turns, where 0-robust MTF finished in 91. BMS
and DSA are the fastest to extinguish all fires, i.e., 63 and 64
turns. However, regarding the control of the fire spread, k-
robust MTF gives better results. Indeed, the number of build-
ings on fire at the same time is lower for this algorithm: never
exceeds 20 buildings where it reached 25 buildings for BMS
and 30 buildings for DSA. Also, the k-robust MTF outper-
forms 0-robust MTF on both time and fire control. In Sum-
mary, these experimental results reveal that (i) our algorithm
is more realistic for RMASBench compared to the complete
algorithm and (ii) we empirically show that our algorithm can
compete with the state-of-the-art solvers provided in RMAS-
Bench and considering the robust mission multi-teams (i.e.
k-robust MTF) have a better control on the fire spread than
the state-of-the-art solvers 2.

5 Conclusions & Future Works
In this paper, a novel framework for mission-oriented robust
multi-team formation is introduced. The aim of this prob-
lem is to form robust teams which can achieve the given mis-
sions even if some agents break down, minimize the total
cost and maximize the robustness of the teams. Furthermore,
two algorithms for solving this problem is provided, namely,
complete and approximate algorithms. Also, the complexity
of the complete algorithm is discussed. In the experiments,
these two algorithms are evaluated in RMASBench which is
a testbed for multi-agent coordination algorithms based on
the existing RoboCup Rescue simulation platform. Also, the
performances of the approximate algorithm is compared with
the existing solvers provided in RMASBench algorithms. We
empirically showed that (i) the approximate algorithm is more
realistic for RMASBench compared to the complete algo-
rithm and (ii) our algorithm can compete with the state-of-
the-art solvers provided in RMASBench and considering the
robust mission multi-teams have a better control on the fire
spread than the state-of-the-art solvers.

As a perspective for future research, we will develop e�-
cient heuristics and algorithm which is specialized to the ap-
plication problems. Also, we intend to apply our approach to
some real-world problems, e.g., disaster medical assistance
team formation and nurse rescheduling problem [Maenhout
and Vanhoucke, 2011]. Moreover, we will consider to ex-
tend our framework to incorporate the solving of the job shop
scheduling problem induced by the tasks of a mission. Given
a limited amount of time for each mission, we could form
robust mission multi-teams that can schedule their actions in
order to accomplish their missions within the corresponding
time limitations.

2We observed that the essential result does not change in Kobe
map scenario.
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