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Abstract: Out-of-equilibrium systems exhibit complex spatiotemporal behaviors when they present
a secondary bifurcation to an oscillatory instability. Here, we investigate the complex dynamics
shown by a pulsing regime in an extended, one-dimensional semiconductor microcavity laser whose
cavity is composed by integrated gain and saturable absorber media. This system is known to give
rise experimentally and theoretically to extreme events characterized by rare and high amplitude
optical pulses following the onset of spatiotemporal chaos. Based on a theoretical model, we reveal
a dynamical behavior characterized by the chaotic alternation of phase and amplitude turbulence.
The highest amplitude pulses, i.e., the extreme events, are observed in the phase turbulence zones.
This chaotic alternation behavior between different turbulent regimes is at contrast to what is usually
observed in a generic amplitude equation model such as the Ginzburg–Landau model. Hence, these
regimes provide some insight into the poorly known properties of the complex spatiotemporal
dynamics exhibited by secondary instabilities of an Andronov–Hopf bifurcation.

Keywords: complex dynamics; microcavity laser; spatiotemporal chaos

1. Introduction

Out-of-equilibrium systems exhibit permanent complex dynamical behaviors as a consequence
of the balance between the injection and dissipation of energy, momentum, and particles [1–3].
In particular, nonequilibrium processes often lead in nature to the formation of patterns—dissipative
structures [1]—developed from a uniform state thanks to the spontaneous breaking of symmetries
present in the system under study [1–5]. Close to this spatial instability, one generically observes the
emergence of spatial structures such as stripes and hexagons. As one increases the strength of the
control parameter, these patterns exhibit bifurcations that, for example, generate the emergence of
more complex stationary patterns such as superlattice and quasi-crystals [5]. One strategy that has
allowed a unified description of all these bifurcations and the dynamics of these stationary patterns is
based on the amplitude or envelope equations [5–7]. As the stationary patterns develop more complex
textures, these are described analytically by the inclusion of additional critical amplitudes.

The previous scenario changes radically when the patterns exhibit an oscillatory instability [8],
that is, an Andronov–Hopf bifurcation between a stationary pattern to one of an oscillatory
nature. The oscillatory patterns are characterized by oscillations in a synchronized manner over
a wide range of parameters. By increasing the control parameter, they exhibit a quasi-periodic
behavior through a secondary instability [9–11]. As a consequence, the Fourier transform of the
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amplitude shows multiple peaks with incommensurate frequencies. As the control parameter
is further increased, this quasi-periodic behavior is replaced by spatiotemporal chaotic behavior.
The previous route is known as extended quasi-periodicity [9]. Hence, the pattern exhibits a
complex spatiotemporal behavior characterized by a continuous Lyapunov spectrum. Indeed, small
modifications or disturbances in the initial conditions generate unpredictability. A simple physical
system that presents the former scenario is an extended semiconductor microcavity laser with saturable
gain and absorber layers [10,12]. In this system, it has been shown theoretically that spatiotemporal
chaos emerges through the mechanism of quasiperiodic, extended spatiotemporal intermittency [10].
The onset of spatiotemporal chaos also gives rise almost simultaneously to extreme events in the
form of rare and high amplitude optical pulses. A straightforward correspondence between the
proportion of extreme events and the dimension of the strange attractor was established in [12] by
comparing experimental and numerical results. The universal envelope model, the Ginzburg–Landau
equation [13], which generically describes the dynamics close to an Andronov–Hopf bifurcation, does
not adequately account for the dynamics previously described, even though this equation exhibits
complex and appealing behaviors such as phase turbulence, amplitude turbulence, and spatiotemporal
intermittency [13,14]. Phase turbulence is characterized by a complex dynamics of modes described
by a field phase that exhibits a decaying power law in its power spectrum [15]. The corresponding
dynamics is of spatiotemporal chaos-type, in which the magnitude of the field is never zero, that is,
the real and imaginary parts of the field never cross the zero axis simultaneously. Hence, the field
is said to be free of phase singularity or defects in its magnitude. Amplitude turbulence is also
characterized by a complex dynamics of modes that exhibit a power law in the field energy power
spectrum. However, its main feature is the permanent nucleation of amplitude defects, where the phase
is undeterminate [14]. This dynamics requires a strong coupling between the phase and the module of
the field envelope. Hence, amplitude turbulence exhibits a dynamical behavior of greater complexity
than phase turbulence. The aperiodic emergence of phase singularities characterizes spatiotemporal
intermittence, but unlike the dynamics observed in amplitude turbulence, the disappearance of defects
is governed by self-organization that engenders transitions between coherent and incoherent regions
in the spatiotemporal evolution [14]. Despite the rich dynamics contained in the Ginzburg–Landau
equation, this model fails in the adequate physical description of the microcavity laser due to the
assumption that the envelope is a slow spatiotemporal variable compared to the wavelength of the
underlying pattern. As a consequence of this type of scale mismatch, amplitude equations do not
describe several physical phenomena, such as the pinning effect of fronts [16], noise-induced front
propagation [17], and the homoclinic snaking bifurcation of localized patterns [18,19].

The characterization of the complex spatiotemporal dynamics exhibited by secondary instabilities
of an Andronov–Hopf bifurcation is an open problem in nonlinear science. This paper aims
to investigate the complex dynamics shown by the patterns in an extended, one-dimensional
semiconductor microcavity laser with an intracavity saturable absorber that displays such secondary
instability. Based on a theoretical model, we reveal a dynamic behavior characterized by the chaotic
alternation of phase and amplitude turbulence. We stress that this type of dynamics is not contained in
the Ginzburg–Landau equation. Interaction and superposition between wave packets characterize
phase and defect turbulence [14]. Phase turbulence is distinguished by exhibiting a cascade of the
power law for energy versus wavenumber [15]. In the case of defects turbulence, it is characterized
by the wave interaction, which permanently gives rise to phase singularities [14]. In the following,
we identify the different turbulent behaviors and give new insights into the physical origin of extreme
events in our system. Moreover, we find that extreme events occur during the phase turbulence zones.

The manuscript is organized as follows: In Section 2, we review the emergence of extreme
events and spatiotemporal chaos in a spatially extended microcavity laser with saturable gain and
absorption media. The theoretical model that describes the laser microcavity is presented and analyzed
in Section 3. Sections 2 and 3 constitute a review of our previous results [10,12]. Alternation of defects
and phase turbulence in an extended microcavity laser is analyzed in Section 4. Section 5 shows
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how the alternation of defects and phase turbulence induces extreme events. Finally, conclusions are
presented in Section 6.

2. Extreme Events in a Microcavity Laser

Extreme events have attracted a great deal of attention lately, in particular in optical systems
where reliable statistics can be obtained and where many different and controlled physical situations
can be explored [20,21]. In dissipative optical systems, extreme events have been found in the intensity
dynamics of fibre lasers [22], semiconductor lasers with injected signal [23], and solid-state lasers
with a saturable absorber [24]. Vertical-cavity surface emitting lasers with an integrated saturable
absorber (VCSEL-SAs) [25,26] are good candidates for studying complex dynamical phenomena and
extreme events in self-pulsing spatially extended systems thanks to their small footprint and high
aspect ratio. Moreover, the fast timescales associated to semiconductor materials allow for gathering a
large amount of information in a short amount of time, which is interesting for statistical analyses and
tracking rare phenomena such as extreme events. Broad-area VCSEL-SAs may also have interesting
applications, e.g., high-power lasers with vertical cavity emission. These laser devices are composed
of two multilayer mirrors, which optimize optical pumping, and of an active zone. This active
zone is made up of two InGaAs quantum wells for the gain section and one InGaAs quantum well
for the saturable absorber section, forming a 2λ optical length cavity (λ = 980 nm). By contrast to
a standard laser composed solely of a gain section, the laser with a saturable absorber can sustain
self-pulsing at the laser threshold [25]. In the limit of a single transverse mode laser (i.e., with a
low aspect ratio cavity), the dynamics is always regular with typical experimental parameters [27].
However, in an extended cavity laser, a more complex dynamics can set in thanks to the interplay
between the system nonlinearity and spatial coupling through the light diffraction inside the cavity.
In addition, while the typical timescale for the intracavity electromagnetic field is of the order of
several picoseconds, the material excitation timescale is much longer (typically the non-radiative
recombination of semiconductor carriers is of the order of 1 ns or less). It is thus not possible to
reduce the dynamics to the one of the optical intensity. The experimental setup is shown in Figure 1a.
The microcavity laser is coated with a thin gold layer with a rectangular opening to define the
pumped region. The rectangular mask has an 80 µm length and a 10 µm width, thus forming a quasi
one-dimensional line laser. The microcavity laser is optically pumped through a dichroic mirror at
800 nm and emits around 980 nm. Laser emission is imaged on a screen provided with one or two
holes. These holes allow for selecting the detection area, which correspond to a disk of a 5 µm
diameter on the sample surface. The line VCSEL-SA emission intensity is monitored and recorded
with a fast avalanche photodiode (>5 GHz bandwidth). Likewise, the temporal signal is amplified
in a low noise, high bandwidth amplifier (3 kHz–18 GHz bandwidth) and acquired with a 6 GHz
bandwidth oscilloscope at a sampling rate of 20 GS/s. This allows for easy statistical analysis of the
recorded data since very large time traces can be collected in a short amount of time. Figure 1b shows
the near field of the laser above threshold with a camera placed at the screen position.

Excerpts of time traces of the laser intensity recorded at the center of the laser are shown in
Figure 2 for different pumping intensities. With the full time traces recorded, the histogram of the
heights H can be constructed. The height H is defined by the average of the left and right pulse heights,
as in hydrodynamics. From these analyses one can conclude that the system exhibits a complex
dynamics of extreme events [10,12]. Figure 2 depicts heights histograms for different values of the
pump parameter P. Let us introduce Pth as the laser threshold pump. At normalized pump power
P/Pth = 1.02, the histogram in a semi-log plot is characterized by a quadratic decay in the tails.
Figure 2a shows the probability density function (PDF), which resembles a Rayleigh distribution for a
positive valued Gaussian process. Increasing the pump parameter, the PDF develops long tails with
an initial exponential decay (cf. Figure 2b). Increasing further the pump values, the PDF becomes
an exponential distribution (P/Pth = 1.20). For a still higher pump value (P/Pth = 1.25) the PDF
redisplays a Gaussian tail. To determine the threshold amplitude for extreme events, we consider the
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standard hydrodynamical criterion, that is, an extreme event corresponds to an event having a height H
twice the significant height Hs, where Hs stands for the mean of the highest tertile of the PDF. Namely,
extreme events are characterized by an abnormality index AI ≡ H/Hs > 2 [28]. To ignore a large
number of small peaks due to detector noise to the left of the PDF, one can determine the relevant or
significant height Hs by considering events whose altitude is higher than the observed maximum peak
dark noise amplitude. On Figure 2, extreme events are in orange in the PDF. When the PDF presents a
non-Gaussian tail, we observe that the system exhibits a large number of extreme events (a normalized
pump of 1.17). When increasing the pump parameter, a complicated dynamical behavior characterized
by intermittent pulsations of the recorded intensity is observed. Indeed, the dynamics shows irregular
oscillations of the intensity characterized by sharp peaks that appear irregularly in the temporal
domain; that is, the peaks exhibit an aperiodic behavior, which is a typical signature of chaos [10].
Hence, the dynamics of the microcavity laser is characterized by a supercritical intermittency route to
chaos [29], and has thus been called extended spatiotemporal intermittency [10]. The experimental
results discussed so far are well reproduced by a theoretical model of an extended microcavity laser
with a saturable absorber, which we present in Section 3.
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Figure 1. Experimental set up. (a) Schematic representation of an extended planar vertical cavity
surface emitting laser with an integrated saturable absorber medium (VCSEL-SA). (b) Right panels
account for the top-view camera snapshots of the one-dimensional line VCSEL-SA surface below
(upper image, with the mask visible) and above laser threshold (lower image).
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Figure 2. Typical temporal evolution of the experimentally recorded intensity and semi-log graph of
the associated probability density distribution of the intensity height H for different normalized pump
values (adapted from [12]): (a) P/Pth = 1.02; (b) P/Pth = 1.17; (c) P/Pth = 1.20; and (d) P/Pth = 1.25.
Normal and extreme events are shown in orange and green, respectively (AI > 2).

The emergence of extreme events is related to the onset of spatiotemporal chaos, or at the
beginning of the transition from a complex dynamical behavior to another [10,12]. The total intensity
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Itot(t) ≡
∫
|E(x, t)|2dx and local intensity Iloc ≡ |E(x, t)|2, where E(x, t) is the intracavity electric-field

envelope, are two relevant physical quantities to characterize the dynamics of the extended microcavity
laser. The latter quantity, in particular, is only accessible through numerics because it is not possible
to record the full spatiotemporal evolution in the experiment, due to the very short timescales
at stake. This justifies the numerical approach that we present hereafter. Figure 3a,b show the
proportion of extreme events in all the numerically observed events (pEE), and the deviations from the
Gaussian distribution of the numerical PDF (excess kurtosis γ2) as a function of the pump parameter
µ. The same analysis is done for the two observables, namely the total intensity emitted by the laser
Itot (cf. Figure 3a,b) and the intensity of the spatiotemporal peaks Iloc (cf. Figure 3e,f). Note that pEE

and γ2 are correlated in both cases. However, they follow different trends with µ: in the case of the
observables associated with the intensity, both extreme events indicators tend to grow as a function of
the pumping parameter. However, extreme events indicators linked to spatiotemporal intensity peaks
tend to increase near the bifurcation of the spatiotemporal chaos and subsequently decay strongly.
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Figure 3. Numerical characterization of the emergence of extreme events in an extended,
planar vertical-cavity surface-emitting laser with an integrated saturable absorber medium obtained
from Equation (1). Graph of the proportion of extreme events pEE (×) (a) and excess kurtosis γ2 (∗) (b)
as a function of pump parameter µ = P/Pth considering the height H of the laser intensity. Graph of the
largest Lyapunov exponent max(λi) (squares) (c) and Kaplan–Yorke dimension DKY (d) as a function
of pump parameter µ. Graph of the proportion of extreme events pEE (e) and excess kurtosis γ2 (f)
as a function of pump parameter µ considering the local intensity spatiotemporal maxima (adapted
from [10]).

3. Theoretical Description of a One-Dimensional Spatially Extended Laser

A planar vertical-cavity surface-emitting line laser with a saturable absorber medium can be
described to a good approximation by a one-dimensional spatially extended laser with a saturable
absorber layer [30]. This model has been shown to successfully describe different phenomena in the
system under study, such as pattern and localized structure formation [31] and spatiotemporal chaos.
In this latter case, we have shown that the model captures very well the evolution with the pump
parameter of the intensity statistics and of the intensity cross-correlation computed at two different
locations, as well as the evlution of the power spectrum of the intensity and of the extreme event
indicators [10,12]. The dimensionless model reads

∂E(x, t)
∂t

= [(1− iα)G + (1− iβ)Q− 1] E + i
∂2E
∂x2

∂G(x, t)
∂t

= γg

[
µ− G(1 + |E|2)

]
(1)

∂Q(x, t)
∂t

= γq

[
−γ−Q(1 + s|E|2)

]
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where the fields E(x, t), G(x, t), and Q(x, t), respectively, account for the intracavity electric-field
envelope, the carrier density in the gain, and the saturable absorber medium. x and t stand for
the spatial coordinate and time. The non-radiative carrier recombination rates are γg and γq .
The parameters µ and γ are the pumping and linear absorption processes, respectively. The parameters
α and β account for the Henry enhancement factors in both the gain and absorber regions, respectively.
These parameters are related to phase-amplitude coupling in semiconductor media. The Laplacian
term stands for the diffraction process. Diffusion processes of carriers are smaller than diffraction ones
and are ignored in the first approximation. The time and spatial variables have been rescaled to the
field lifetime and the diffraction length wd in the cavity, respectively. Considering the parameters of
the cavity, the time and spatial scales correspond to 8.0 ps and 7.4 µm. Since the pumped region has
a length wp ∼ 80µm, we obtain wp/wd ∼ 11 as a direct estimate of the Fresnel number of the line
microlaser. Considering parameters compatible with our semiconductor system, we obtain α = 2,
β = 0, s = 10, γg = γq = 0.005, and γ = 0.5. The Henry enhancement factors are chosen with usual
values [32]. Assuming that the carriers recombinations times are of the order of 800 ps, one can
determine the other physical parameters straighforwardly.

The bifurcation diagram of Equation (1) has been studied in detail (see [30] and references
therein). For small pumping, the system is in the no-lasing state. When increasing the pumping
parameter above µth = 1 + γ, the (plane-wave) lasing threshold is reached. Further increasing
the pumping parameter, Equation (1) exhibits an Andronov–Hopf bifurcation for plane waves
µ(I) < µH(I) ≡ r(2rsIγ− γg(1 + I)(1 + sI)(1 + I + r + rsI))/2I with r = γq/γg [30]. Due to the
complex dynamics presented by the system, analytical studies are inaccessible. To figure out the
dynamics exhibited by the microcavity extended laser with a saturable absorber medium, we have
numerically studied model (1). Our strategy has been to consider only one parameter in the analysis,
for better comparison with the experiment where this parameter is easily accessible, namely the power
pump parameter µ. For pumping power values such that µ > µth, the laser turns on through a
transcritical bifurcation. When increasing the pump power value (µ/µth ∼ 1.047), the total intensity
Itot exhibits a quasi-periodic dynamical behavior. Indeed, the temporal evolution of the total intensity
of the electric field envelope is aperiodic and presents fluctuations around its average value [10].
Note that extreme events are not observed in this parameter regime. Unexpectedly, increasing the value
of the pumping power parameter (µ/µth ∼ 1.333), the system presents a bifurcation. In this parameter
regime, the total intensity exhibits intermittent pulsations in its temporal evolution characterized by
aperiodic fluctuations, in which sharp peaks randomly appear. This dynamical behavior is compatible
with the experimental observations as shown in Figure 2.

To understand the complex dynamics observed, we can determine its sensitivity to perturbations
by means of the Lyapunov spectrum (with Lyapunov exponents λi). One of the main characteristics
of this spectrum is that the system presents a temporal or low dimensional chaotic behavior if and
only if the largest Lyapunov exponent max(λi) is positive. However, to conclude a spatiotemporal or
high dimensional chaos, the latter condition is necessary but not sufficient. Spatiotemporal chaos is
a permanent, aperiodic spatiotemporal dynamical behavior. In addition, this dynamical behavior is
characterized by being of an extensive nature [33]. The Lyapunov spectrum is composed by the set
of the Lyapunov exponents arranged in decreasing order considering their real parts. This spectrum
allows the distinction between chaos and spatiotemporal chaos. Indeed, a Lyapunov spectrum with a
continuous set of positive values characterizes spatiotemporal chaos. In contrast, a Lyapunov spectrum
with a discrete set of positive values characterizes chaos of low dimensions. The Kaplan–Yorke
dimension DKY [34] can be determined from the Lyapunov spectrum. This dimension accounts for
the dimension of the strange attractor under study. The largest Lyapunov exponent max(λi) and
the Kaplan–Yorke dimension are right quantities to characterize complex dynamical behaviors and
transitions between them [35]. For instance, steady-state solutions are characterized by a negative and
zero largest Lyapunov exponent and Kaplan–Yorke dimension, respectively. Periodic or quasi-periodic
solutions have a zero largest Lyapunov exponent and Kaplan–Yorke dimension. When both the
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largest Lyapunov exponent and Kaplan–Yorke dimension are strictly positive, this corresponds to a
chaotic dynamical behavior. In the region of aperiodic intermittent pulsations, Equation (1) shows a
characteristic Lyapunov spectrum of a spatiotemporal nature [10,12]. Figure 3c,d show max(λi) and
DKY as a function of the pumping parameter µ, obtained numerically. We observe that the emergence
of extreme events in the microcavity laser is correlated to the appearance of spatiotemporal chaos.
Indeed, extreme events are observed only when the largest Lyapunov exponent and the Kaplan–Yorke
dimension are both strictly positive.

In addition, when increasing the pump power parameter, the spatiotemporal complexity increases
(see the onset of spatiotemporal chaos in Figure 3). Note that max(λi) and DKY both consistently
increase with the pumping value µ. The microcavity laser with a saturable absorber medium exhibits
extreme events when the system is in a regime of spatiotemporal chaos. However, the kind of
spatiotemporal chaos displayed by Equation (1) is not determined by this analysis and will be the
subject of the next section.

4. Characterization of Spatiotemporal Dynamics of an Extended Laser with a Saturable Absorber:
Alternation of Defects and Phase Turbulence

To figure out the complicated dynamical behaviors presented by the microcavity laser model
with a saturable absorber, we simulated numerically the set of Equation (1). We used a split-operator
method to accurately compute the Laplacian term, while the nonlinear temporal evolution is taken
care of in real space. The non-zero pump is restricted to a finite domain ([−5, 5] interval) and is
zero otherwise (not shown), thus giving absorbing boundaries. Figure 4 displays the space–time
evolution of the laser intensity together with spatiotemporal positions of defects and of extreme
events computed for different pumping parameters. Defects correspond to zeros of the envelope of
the electric field E(x, t); that is, in these points, the phase is not defined: they correspond to phase
singularities [13]. From this figure, we observe that the system presents interchange between a region
of phase turbulence and defects turbulence. The region of phase turbulence is characterized by a
complex dynamics of wave interaction. In this region, the phase is always well defined; that is, the
amplitude of the waves is never zero. Note that, in this region, the spatial modes of the system exhibit
complex spatiotemporal dynamics (cf. Figure 4). We monitored and determined the spatiotemporal
positions of the amplitude defects in the temporal progression of the envelope of the electric field
(see blue dots in Figure 4). Note that amplitude defects tend to gather for low pumping and generally
display a complex spatiotemporal distribution. The regions of phase turbulence are separated by areas
with low intensities that exhibit amplitude defects (phase singularities). Likewise, we monitored and
determined the spatiotemporal position of extreme events in the electric field envelope E (see red dots
in Figure 4 and corresponding dash signs). One expects complex behaviors such as phase or defects
turbulence to exhibit extreme events due to the strong temporal correlation of deterministic dynamics.
Unexpectedly, extreme events are mostly observed in the regions of phase turbulence. We can therefore
conclude that the spatiotemporal dynamics of the system is characterized by the chaotic alternation of
phase singularities (amplitude defects) and the observation of large amplitude pulsations (extreme
events). This type of complex spatiotemporal dynamics is not contained in universal models, such as
the Kuramoto–Sivashinsky [15] and the Ginzburg–Landau equations [13], which account for the
dynamics around an Andronov–Hopf instability. Hence, the dynamics observed in Equation (1) goes
beyond the dynamics contained arround the Andronov–Hopf bifurcation, and the alternation between
phase and defects turbulence is a new kind of complex dynamics.
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Figure 4. Alternation of defects and phase turbulence in the laser with saturable absorber model
expressed by Equation (1). Spatiotemporal evolution of the electric field intensity, together with the
spatiotemporal positions of phase singularities of the electric field envelope E(x, t) and of the extreme
events (blue and red dots, respectively; temporal location of respective events are highlighted by dash
signs) in the spatiotemporal complex regime with α = 2, β = 0, γg = 0.005, γq = 0.005, γ = 0.5, s = 10,
and the following µ values: (a) µ = 2.1; (b) µ = 2.3; (c) µ = 2.4; (d) µ = 2.6.

To characterize more accurately the dynamics exhibited by the system, we calculate the phase
associated with the envelope

ϕ(x, t) ≡ =[E(x, t)]
<[E(x, t)]

(2)

and analyze its spatiotemporal evolution. Close to the Andronov–Hopf bifurcation, the equations
governing the phase and envelope amplitude can be decoupled. Notably, around the Benjamin–Feir
instability [2], the phase satisfies the Kuramoto–Sivashinsky equation. This model has been an angular
footing in the study of complex spatiotemporal dynamics, since it corresponds to the simplest scalar
model that describes the dynamics of coupled oscillators and exhibits turbulence dynamics [15].
Likewise, this is one of the first models to be used to rigorously unveil spatiotemporal chaos and
display a continuous Lyapunov spectrum [36]. However, the dynamics displayed in the spatiotemporal
diagrams of the amplitude (cf. Figure 4) shows a regular appearance of phase singularities, which
is a prohibitive condition for the separation of dynamics from the phase and the magnitude of the
envelope. This rules out a mechanism similar to the one found in the Kuramoto–Sivashinsky equation.
We investigated the spatiotemporal evolution of the phase as defined by Equation (2) for different



Entropy 2018, 20, 789 9 of 13

values of the pumping parameter and plotted the result in Figure 5. These diagrams illustrate a
complex wave dynamics since no visible structure emerge. To characterize this dynamic from a
statistical point of view, we calculate the average spectrum of phase fluctuations defined by [15]

〈ϕ̄(k)〉 ≡ lim
T→∞

1
T

∫ T

0

[
1
L

∫ L/2

−L/2
ϕ(x, t)eikxdx

]2

dt (3)

L accounts for the system size, T is a long enough time, to perform an average on the statistics,
and k is a wavenumber. This quantity allows one to characterize the transport of energy between
the different scales of the coupled oscillators [15]. Figure 5 shows the average spectrum of phase
fluctuations 〈ϕ̄(k)〉 for different pumping values in semi-log and log-log plot. It is clearly visible there
that the averaged phase spectrum exhibits a power-law behavior in a specific range of wave numbers.
From this observation, one can conclude that the dynamics presented by the microcavity laser with a
saturable absorber medium is of a turbulent nature. Hence, the dynamical behavior characterized by
alternation of defects and phase spatiotemporal complexity is of a turbulent nature.
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Figure 5. Turbulence dynamics of the one-dimensional microcavity laser with a saturable absorber
medium. Spatiotemporal diagram and the average spectrum ϕ̄k of the phase of the electric field
envelope of Equation (1) by α = 2, β = 0, γg = 0.005, γq = 0.005, γ = 0.5, s = 10, and the following µ

values: (a) µ = 2.2; (b) µ = 3.4; (c) µ = 4.0. (d) The average spectrum ϕ̄k of the phase of the electric
field envelope for different pumping parameters.

5. Alternation of Defects and Phase Turbulence Induces Extreme Events

In order to emphasize the relationship between the alternation dynamics from phase turbulence
to defects turbulence and the appearance of extreme events, we analyzed the spatiotemporal diagrams
in a larger simulation time window in Figure 6, and for different pumping parameters. Near the
lasing bifurcation, there are globally many defects and those have a tendency to bunch in the low
laser intensity zones to give clear alternations with the zones of phase turbulence where, by contrast,
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extremes events can be found. The chaotic pulsation (and the alternation dynamics between the
turbulent regimes) consists of large areas of defect turbulence (low intensity zones) and small areas
of phase turbulence (higher intensities), which in turn is consistent with the observation of a large
number of extreme events (i.e., rare and high intensity peaks). However, as one moves away from
the bifurcation point, the number of defects is much smaller and amplitude defects tend to spread all
over the spatiotemporal diagram. This is consistent with a faster alternation of the turbulent regimes
(defects and phase mediated) and with the fact that the proportion of extreme events globally decreases
(see Figure 3).
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Figure 6. Complex dynamics exhibited by the laser with saturable absorber model computed with
Equation (1) in a large time window. Spatiotemporal progression of the electric field magnitude and
spatiotemporal positions of the defects of the electric field envelope E(x, t) and of the extreme events
(blue and red dots, respectively; temporal location of respective events are highlighted by dash signs).
Parameters are identical to those in Figure 4, with pumping: (a) µ = 2.1; (b) µ = 2.4; (c) µ = 3.2; and
(d) µ = 3.6.

As illustrated in Figure 3, extreme events appear almost simultaneously with the emergence of
spatiotemporal chaos. One can understand this phenomenon because the observed spatiotemporal
chaotic dynamics is of an intermittent nature, namely, the system moves between different dynamical
behaviors. However, the occurrence of spatiotemporal chaos does not necessarily mean in general
that the system will display extreme events. Nonetheless, the aperiodic alternation between different
(complex) dynamical behaviors can generate extreme events. That is, chaotic behaviors that are
characterized by the variation between different dynamical behaviors is a natural context where one
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can observe extreme events. The above argument explains why in the laser with a saturable absorber,
one verifies the simultaneous emergence of extreme events and spatiotemporal chaos. It can also
allow one to establish a parallel with the context of (temporal) chaos, where it has been shown that
deterministic extreme events are linked to multistability and to the occurrence of crises [37,38].

6. Conclusions

Out-of-equilibrium extended systems exhibit complex dynamical spatiotemporal behaviors.
One strategy for understanding this type of dynamical behavior is to investigate its bifurcations
and routes to complexity. Nevertheless, the greatest successes have been achieved in understanding
primary instabilities, thanks to the use of amplitude equations, perturbation singular, and normal
forms theory. The characterization and classification of complex behaviors in extended systems are
one of the fundamental problems of nonlinear science. We investigated the complex dynamics shown
by oscillatory patterns in a spatially extended semiconductor microcavity laser with an intracavity
saturable absorber. Based on a theoretical model of the microcavity laser, which has proven to be
qualitatively accurate in the experimental system’s description, a numerical analysis has revealed a
complex spatiotemporal dynamical behavior characterized by the alternation of phase and amplitude
turbulence. To our knowledge, this is the first time that this intriguing dynamical behavior has
been reported since the two turbulent regimes are usually not observed in current models within
the same parameter regions. It is also remarkable to note that this kind of dynamics is beyond the
Ginzburg–Landau world [13]. Likewise, the alternation between turbulent behaviors is characterized
by the occurrence of the highest amplitude optical pulses, which are observed in the phase turbulence
zones. Indeed, it was already known that the appearance of spatiotemporal chaos generates extreme
events, but we give here a much finer account of the kind of dynamical mechanism that is responsible
for the observation of extremes. At last, the complex spatiotemporal dynamics observed here is
believed to be observable in other systems that exhibit an Andronov–Hopf bifurcation. Work in this
direction is in progress.
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