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Introduction

Nowadays, rubber and rubber-like elastomeric materials are in increasing use in different industrial products and engineering applications. In order to improve the design of such materials, it is of paramount importance to examine the deformation and stress fields around cracks, corners, voids of inclusions, and other material or geometrical imperfections and their effects in the fracture process.

Nevertheless, in contrast to metallic materials, the deformation and stress fields with the fracture properties of rubber-like materials are more complicated due to their geometrical and material nonlinearity properties, which make investigating fracture behaviours relatively difficult and multiply the analysis methods : experimental [START_REF] Breidenbach | Application of fracture mechanics to rubber articles, including tyres[END_REF], [START_REF] Quigley | A Computational and Experimental Investigation of Mode 1 Fracture in an Elastomer[END_REF], [START_REF] Thomas | The development of fracture mechanics for elastomers[END_REF], [START_REF] Balankin | Physics of fracture and mechanics of self-affine cracks[END_REF], [START_REF] Borret | Etude de la propagation de fissures dans les caoutchoucs synthétiques[END_REF] and [START_REF] Hamdi | Fracture of elastomers under static mixed mode: the strain-energy-density factor[END_REF], theoretical [START_REF] Knowles | An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack[END_REF]) (Podio-Guidolgie and Caffarelli, 1991) and [START_REF] Bourdin | The variational approach to fracture[END_REF] and numerical [START_REF] Lund | Finite element analysis of hyperelastic large deformation crack tip fields[END_REF], [START_REF] Loppin | Plane crack propagation in a hyperelastic incompressible material[END_REF] and [START_REF] Legrain | Stress analysis around crack tips in finite strain problems using the extended finite element method[END_REF] among others.

Following these analyses, physical experiments as well as numerical analysis by the finite elements method (FEM) computations show that very high stress concentrations can occur in the vicinity of cracks, edges, corners and near interfaces where the material parameters are discontinuous [START_REF] Borret | Etude de la propagation de fissures dans les caoutchoucs synthétiques[END_REF]. In fracture mechanics, the different fracture criteria are based on stress field in the body and therefore a good knowledge of its analytical form is important. Moreover, it is well known that the convergence rates of standard FEM decrease at the presence of stress singularities [START_REF] Strang | An analysis of the finite element method volume 212[END_REF]. Here, the a-priori knowledge of the stress field can be used to develop improved algorithms where e.g. special singular functions are included in the FE-spaces [START_REF] Strang | An analysis of the finite element method volume 212[END_REF], [START_REF] Destuynder | A new method for calculating stress intensity factors[END_REF] and [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF].

Thus, the objective of this paper is to investigate and analyse the elastostatic fields at the notch vertex for plane transformation of an incompressible Mooney-Rivlin hyperelastic material. The choice of the notch geometrical configuration, with a notch angle ω, enable us to reproduce: a wedge for 0 < ω < π 2 , a notch for π 2 < ω < π and a crack for ω = π.

A literature overview provides several methods for the evaluation and the prediction of the elastostatic fields: deformation and stress fields. Namely, three methods shall be drawn: asymptotic development, complex variables and transform methods. Particular attention will be given to the asymptotic development method which is used in this work.

In the linear elastic (elliptic) problems, the elastostatic fields occurring in the vicinity of the vertex of a two-dimensional notch was analysed by these three methods. The asymptotic development method is used to study the local homogeneous and composite notch problem under different boundary conditions. It was shown that the solutions can be made by a separation of variables (also called power type singularities) for a class of geometrical configurations, one or multi-materials configurations and/or homogeneous or inhomogeneous boundary conditions configurations [START_REF] Wieghardt | Über das spalten und zerreißen elastischer körper[END_REF], (Westergaard, 1939), [START_REF] Williams | The stresses around a fault or crack in dissimilar media[END_REF][START_REF] Williams | On the stress distribution at the base of a stationary crack[END_REF][START_REF] Williams | Surface singularities resulting from various boundary conditions in angular corners of plates in extension[END_REF]. This only power type singularities method is not valid for some configurations and the power logarithm type singularities can occur [START_REF] Bogy | The plane solution for anisotropic elastic wedges under normal and shear loading[END_REF], [START_REF] Dempsey | Power-logarithmic stress singularities at bi-material corners and interface cracks[END_REF]. It was shown by [START_REF] Grisvard | Singularities in boundary value problems[END_REF] that the general solution of the linear boundary value problems is an asymptotic development composed by a linear combination of a power and logarithm types singularities and this solution generalises and unifies the proposed solutions of the mechanical community. The complex potential approach was proposed by [START_REF] Williams | The complex-variable approach to stress singularities-ii[END_REF] to give a complete solution.

A third technique, proposed by [START_REF] Bogy | Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading[END_REF], is devoted to the application of the Mellin transform.

The analysis of a homogeneous linear elastic notch problem, done with traction-free surfaces, pointed out that as long as the notch is convex (namely, in the case of a wedge) there is no stress singularity, and that when the notch is concave stress singularities usually exist except for the case in which the original problem is antisymmetric about the symmetric axis of the notch (mode II problem) and the notch angle ω is less than 0.72π [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF]) and (Sweryn and Molski, 1996).

For nonlinear power-type constitutive laws behaviour with small deformation, the pioneer works of [START_REF] Hutchinson | Singular behaviour at the end of a tensile crack in a hardening material[END_REF]) and (Rice and Roengren, 1968) for a crack with traction-free surfaces showed that the asymptotic development is made by a power-type singularities. The same conclusion was deduced for a notch problem [START_REF] Xia | Singular behaviour near the tip of a sharp v-notch in a power law hardening material[END_REF], [START_REF] Yang | Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material[END_REF] and [START_REF] Yuan | Analysis of elastoplastic sharp notches[END_REF]. Nevertheless, to our knowledge a mathematical proof of this conjecture is unknown until nowadays. The Linear Elastic Fracture Mechanics (LEFM) and the Elasto-Plastic Fracture Mechanics (EPFM) approaches described below played a prominent role in the investigation and comprehension of the crack, defect and singular problems. However, these approaches are based on the kinematic assumption of small deformations which is in contradiction with the unbounded strain field deduced.

Within the framework of finite deformation [START_REF] Ogden | Non-linear elastic deformations[END_REF], in the paste five decades, only few work have been focused on the analysis of the strain and stress fields around a crack, notch, defect, .... This is due to the formidable complexity of the mathematical problem [START_REF] Ogden | Non-linear elastic deformations[END_REF] which makes the boundary-value problem equations highly nonlinear and very difficult to solve analytically or even numerically. We note that (Wong and Shield, 1996 ) carried the first analysis of an infinite Neo-Hookean sheet containing a finite crack.

In the early 1970s, [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF]Sternberg , 1974, 1973) analysed the asymptotic deformation field near the tip of a Mode-I plane strain crack for generalized Blatz-Ko compressible hyperelastic solids.

Their analysis of the crack problem within the framework of nonlinear elasticity is considered as a fundamental work. Among others researchers, [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] gave the most clarified presentation of the local structure of the elastostatic fields near the crack tip of a generalised Mooney-Rivlin solid under plane deformation condition and mixed boundary conditions at infinity (Mode I and II).

He showed that the crack-faces tip will open symmetrically, under Mode II conditions, contrary to the predictions of linear theory. In other words, the nonlinear global crack problem cannot admit an antisymmetric solution. Using a similar approach, [START_REF] Le | On the singular elastostatic field induced by a crack in a Hadamard material[END_REF], [START_REF] Le | The singular elastostatic field due to a crack in rubberlike materials[END_REF], [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF] , [START_REF] Geubelle | Finite deformation effects in homogeneous and interfacial fracture[END_REF] and [START_REF] Tarantino | Thin hyperelastic sheets of compressible material: field equations, Airy stress function and an application in fracture mechanics[END_REF] performed a similar study as [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF]Sternberg (1973,1974) with others incompressible or compressible hyperelastic potentials and plane deformation or stress conditions. They arrived to the same conclusion as [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF]) that the crack faces tips are expected to open symmetrically both in Mode I and II. The condition of the crackfaces tip opening or penetrating was analyzed by [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF], [START_REF] Chow | Nonlinear mode II crack-tip fields for some hookean materials[END_REF]) and [START_REF] Ru | On complex-variable formulation for finite plane elastostatics of harmonic materials[END_REF] and they showed its dependence on the material behaviour. To our knowledge, the first finite-strain analysis of the singularities near the vertex of an arbitrary wedge are those of [START_REF] Ru | Finite deformations at the vertex of a bi-material wedge[END_REF] in plane deformation for compressible harmonic material combining the asymptotic development with the complex variables methods and Tarantino (1997[START_REF] Tarantino | On extreme thinning at the notch tip of a neo-Hookean sheet[END_REF] in plane stress with the asymptotic development method. At least, we note also the work of [START_REF] Gao | Notch-tip fields in rubber-like materials under tension and shear mixed load[END_REF] who used an alternative approach by dividing the singular field into shrinking and expanding sectors for which the asymptotic equations are derived separately

The analysis proposed in the present work is closely related to the work developed by [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF]Sternberg (1974, 1973) and [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] for crack problem. The V-notch problem is formulated and solved for an incompressible hyperelastic material under plane deformation condition in a fully nonlinear context. In order to calculate the deformation and stress fields near the notch vertex an asymptotic analysis is carried out. Finally, the structure of the singular deformation field is examined in detail. Emphasis is placed on describing the notch-profile after deformation, proving [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] conjecture in our context and evaluating the asymptotic order of elastostatic fields. The most important differences with respect to the predictions of the linear theory are evidenced and discussed.

Formulation of the global notch problem

Consider an isotropic homogenous incompressible hyperelastic body B which, in its undeformed configuration, occupies an infinite region R 0

R 0 = {x | (x 1 , x 2 ) ∈ Ω 0 , -∞ < x 3 < +∞} , (1) 
where x is the position vector of the particle in the undeformed configuration and Ω 0 denotes a crosssection of R 0 . Then, the plane domain Ω 0 can be described by a polar coordinates system

Ω 0 = {(r, θ) |r ∈ [0, +∞[ , θ ∈ [-ω, ω] , ω ∈]0, π]} . (2) 
Here (r, θ) are the material polar coordinates of the particle and ω is the notch angle, figure 1. Three geometrical configurations may be reproduced

• A wedge for ω ∈ 0, π 2 .

• A notch for ω ∈ π 2 , π .

• A crack for ω = π. We assume that the three-dimensional body B is subjected to an invertible plane transformation so that the position of material point x (x 1 , x 2 , x 3 ) after transformation is mapped to y (y 1 , y 2 , y 3 ) such as

y α = y α (x 1 , x 2 ) ∀ (x 1 , x 2 ) ∈ Ω 0 , x α = x α (r, θ) α ∈ {1, 2} and y 3 = x 3 . (3) 
Then the domain Ω 0 is transmuted to a domain Ω of the same plane. Assume that the transformation y α is continuous and twice continuously differentiable at least on Ω 0 , (y α ∈ C 2 (Ω 0 )). To describe the geometry deformation, a two-dimensional second order tensor, the transformation gradient F (x), is introduced :

F (x) = ∇ x y (x) , F αβ = ∂y α ∂x β {α, β} ∈ {1, 2} on Ω 0 , (4) 
where ∇ x (•) is the gradient operator with respect to material coordinates. Then the incompressibility constraint leads to

J = det F = 1 ⇔ J = 1 r ∂y 1 ∂r ∂y 2 ∂θ - ∂y 2 ∂r ∂y 1 ∂θ = 1 on Ω 0 . (5) 

Remark 1

We refer to [START_REF] Abeyaratne | Discontinuous deformation gradients in plane finite elastostatics of incompressible materials[END_REF] and [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] for a concise introduction to the boundary value problems of plane transformation within the framework of incompressible hyperelasticity For hyperelastic material, the existence of an elastic potential function W per unit undeformed volume is assumed. We introduce a particular class of polyconvex incompressible material governed by the Mooney-Rivlin potential [START_REF] Ogden | Non-linear elastic deformations[END_REF]. In the case of plane transformation, this potential take the following expression [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] :

W (I) = µ 2 (I -2) ,      µ > 0 I = tr F T F on Ω 0 , (6) 
where (•) T and tr (•) denote the transpose and the trace operators, respectively, and µ is the shear modulus. Then, the first Piola-Kirchhoff two-dimensionnal stress tensor τ can be deduced [START_REF] Ogden | Non-linear elastic deformations[END_REF] :

τ = ∂W ∂F -qF -T = µF -qF -T on Ω 0 . (7) 
In the deformed configuration, the Cauchy stress tensor in terms of potential energy can be inferred :

σ = τ F T = ∂W ∂F F T -qI = µF F T -qI on Ω (8) 
In ( 7) and ( 8), q denotes an unknown Lagrange multiplier field resulting from the constraint of incompressibility and I denotes the unit second order tensor. By neglecting body forces, the equilibrium problem in two-dimensional is governed by the following equation :

Div τ = 0 on Ω 0 ⇔        ∂q ∂r = µ ∂y α ∂r ∆y α ∂q ∂θ = µ ∂y α ∂θ ∆y α on Ω 0 , sum on α (9) 
where Div (•) and ∆ (•) are the divergence and the Laplace operators with respect to material coordinates, respectively, and with the convention of implicit sum on repeated indices.

The local notch problem may now be defined as follows: given an elastic potential W (I) (6), we seek a plane transformation y on Ω satisfying the incompressibility constraint [START_REF] Borret | Etude de la propagation de fissures dans les caoutchoucs synthétiques[END_REF], as well as a first Piola-Kirchhoff stress field τ and a Lagrange multiplier field q such that (7) holds, while τ satisfies the equilibrium equations ( 9); in addition the transformation y should verify the boundaries conditions at infinity (far from the notch vertex) and at the notch vertex faces.

At infinity, the boundary conditions prescribed on the transformation y should be compatible with the kinematic loading conditions (general mixed-mode loading) as follows :

y (x) = ∞ F x + O (1) as x -→ ∞, (10) 
where ∞ F designates a known constant tensor which can be characterised by a combination of modes I and II loadings conditions

∞ F αβ =    ∞ λ -1 0 0 ∞ λ -1    on mode I, ( 11 
) ∞ F αβ =   1 ∞ k 0 1   on mode II (12)
and ∞ λ > 0 and ∞ k > 0 are respectively the principal stretches and the amount of shear prescribed at infinity.

To satisfy traction-free boundaries conditions at the notch faces, the following conditions on stress tensors is assumed

τ n 0 = 0 ⇔ σ n = 0 (13) 
Where n and n 0 denote respectively the unit normal vector to notch vertex faces in the deformed and the undeformed configurations. The traction free boundaries conditions [START_REF] Edmunds | Matched asymptotic expansions in nonlinear fracture mechanics-i. longitudinal shear of an elastic perfectly-plastic specimen[END_REF] lead

For θ = ±ω      τ rθ = 0 τ θθ = 0 ⇔      ∂y α ∂r ∂y α ∂θ = 0 µ r 2 ∂y α ∂θ ∂y α ∂θ = q , sum on α ( 14 
)
where τ rθ and τ θθ are the first Piola-Kirchoff stress components in the cylindrical basis. Coupling the two equilibrium equations of ( 9) and using the incompressibility equations ( 5), the local structure of the Lagrange multiplier field can be determined by

µ∇ 2 y 1 = 1 r ∂q ∂r ∂y 2 ∂θ - ∂q ∂θ ∂y 2 ∂r . (15) 
The equilibrium equation ( 9), Lagrange multiplier (15) equation and the boundary conition ( 14) form a boundary value problem which is very hard to solve [START_REF] Ogden | Non-linear elastic deformations[END_REF]. In this case, the elastostatic fields near the notch vertex are sought. It is commonly known in the mechanical community that such points may cause stress singularities, which means that the stresses can be unbounded there.

Remark 2

The exact asymptotic solution of the nonlinear boundary value problem established below is not well known. On the contrary, many results was shown and established for linear elliptic boundary value problem for nonsmooth domains [START_REF] Grisvard | Singularities in boundary value problems[END_REF]. Unfortunately, similar theorems and results of nonlinear elastic materials on nonsmooth domains are much less known (Borsuk and Konratiev, 2006). It is also an open problem whether the elastostatic fields can be completely expressed by an asymptotic expansion like in the linear case or not.

In this case, the elastostatic fields near the notch vertex are sought as

y α (r, θ) = K k=1 r m k U (k) α (θ) + r m k Ln(r)V (k) α (θ) + o (r mK ) , (16a) 
q (r, θ) = K k=1 r l k P k (θ) + r l k Ln(r)Q k (θ) + o r lK , (16b) 
where the transformation and the Lagrange multiplier fields do not necessary have the same asymptotic expansion order. In other hand, the unknown angular functions appearing in (16a) and (16b) are at least twice and once continuously differentiable on [-ω, ω] respectively.

Remark 3

The asymptotic expressions of the elastostatic fields proposed by (16a) and (16b) are slightly different from the exact analytical form for the linear elliptic equation [START_REF] Grisvard | Singularities in boundary value problems[END_REF]. In fact, inspired by the work of [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF]Sternberg (1974, 1973) and [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] where it was shown that the transformation fields have a linear logarithm term dependence for a critical hardening parameter, the asymptotic forms (16a) and (16b) are assumed and the advantages of this form will be illustrated in the sequel. One notes that a non-integer power dependence of the transformation fields on logarithm term was shown in [START_REF] Long | Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress[END_REF].

The local notch problem can now be announced as follows: the transformation y and the Lagrange multiplier q must satisfy the field equations and the notch vertex boundary conditions that the surfaces of the notch are free.

In this work, the boundary conditions at infinity are not taken into account in the formulation of the local notch problem which make the problem not completely defined. However, the physical sense of the elastostatic fields deduced from the local formulation is related to the singular elastostatic field behaviour in the vertex region, namely, as r → 0.

Finally, let ℑ be the class of all y, σ, q that satisfy the boundary value problems. Then it is easy to prove that :

y, σ, q ⊂ ℑ ⇔ Q y, Q σ Q T , q ⊂ ℑ, ( 17 
)
where Q is an orthogonal second order tensor. This is assured by the objectivity of the constitutive equation ( 7) and ( 13) and by the form of the boundary conditions. This property will be used to better understand the nature of the local transformation field that would be deduced later by [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF].

First order asymptotic analysis of the elastostatic field near the notch vertex

First, we assume that the global notch problem admits a nontrivial solution. In order to characterize the singularity induced by the vertex presence, we assume that the first order development of the transformation admit the following form :

y α (r, θ) = r m1 (U α (θ) + Ln (r) V α (θ)) + o (r m1 ) U α , V α ∈ C 2 ([-ω, ω]) . (18) 
Here U α (θ) and V α (θ) are a real-valued functions on [-ω, ω] and do not vanish identically for boundary conditions at infinity prescribed by [START_REF] Chow | Nonlinear mode II crack-tip fields for some hookean materials[END_REF]. The exponent m 1 must be a real constant to avoid the appearance of oscillations arising in the linearized local solution and have to satisfy the inequality

0 ≤ m 1 < 1, (19) 
in order to ensure bounded displacement at the notch vertex, only unbounded gradients are allowed.

As suggested and shown by [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] and assumed by [START_REF] Knowles | An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack[END_REF], the exponent m 1 in (18) replaces, without loss of generality, an eventual pair of exponents m (α)

1 . This is justified by the objectivity of the constitutive equations [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF].

Remark 4

The requirement [START_REF] Hamdi | Fracture of elastomers under static mixed mode: the strain-energy-density factor[END_REF], imposed in [START_REF] Knowles | An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack[END_REF] for nonlinear problem, originated by [START_REF] Williams | The stresses around a fault or crack in dissimilar media[END_REF] for linear (Hooke constitutive law) problems. For nonlinear constitutive laws there is not any special requirement on m 1 . As an example, the requirement ( 19) is relaxed by Tarantino (1997) in the case of constrained hyperelastic potentials to achieve a non singular solution, namely, the transformation gradient is no longer unbounded.

Finally, we suppose that the Lagrange multiplier field associated with the elastostatic field solution

satisfies      q (r, θ) = r l1 [P 1 (θ) + Ln(r)Q 1 (θ)] + o r l1 , P 1 (θ) , Q 1 (θ) ∈ C 1 ([-ω, ω]) , (20) 
where l 1 being another real constant exponent.

So the problem here is to determine the smallest exponent m 1 ∈ [0, 1[ and the functions U α and V α appearing in [START_REF] Grisvard | Singularities in boundary value problems[END_REF] being consistent with the incompressibility constraint (5), the governing field equations ( 9) and boundary conditions [START_REF] Edmunds | Matched asymptotic expansions in nonlinear fracture mechanics-i. longitudinal shear of an elastic perfectly-plastic specimen[END_REF].

The expression of the invariant I (6), together with the asymptotic development transformation [START_REF] Grisvard | Singularities in boundary value problems[END_REF], gives

I (r, θ) =r 2(m1-1) U 2 1 + U 2 2 + m 2 1 U 2 1 + U 2 2 + V 2 1 + V 2 2 + V 2 1 + V 2 2 + m 2 1 V 2 1 + V 2 2 Ln 2 (r) + o r 2(m1-1) , (21) 
where the dot is the differentiation operation with respect to θ. Since the invariant I, defined by the relation [START_REF] Borsuk | Elliptic boundary value problems of second order in piecewise smooth domains[END_REF], is strictly positive, we shall henceforth take for granted that U 1 , U 2 , V 1 and V 2 do not have a common multiple zero on [-ω, ω] so that the coefficient of r 2(m1-1) in ( 21) does not vanish on

[-ω, ω].
The incompressibility constraint ( 5), together with the asymptotic development transformation [START_REF] Grisvard | Singularities in boundary value problems[END_REF], gives

J (r, θ) = r 2m1-2 U2 (m 1 U 1 + V 1 ) -U1 (m 1 U 2 + V 2 ) + m 1 V 1 U2 + m 1 U 1 V2 + V 1 V2 -m 1 V 2 U1 -m 1 U 2 V1 -V 2 V1 Ln (r) + m 1 V 1 V2 -V 2 V1 Ln 2 (r) + o r 2m1-2 = 1. ( 22 
)
For m 1 < 1, when dividing the previous identity by r 2(m1-1) and proceeding to the limit as r -→ 0 we obtain the following differential equation system :

m 1 U 1 U2 + V 1 U2 -m 1 U 2 U1 -V 2 U1 = 0, (23a) 
m 1 V 1 U2 + m 1 U 1 V2 + V 1 V2 -m 1 V 2 U1 -m 1 U 2 V1 -V 2 V1 = 0, (23b) V 1 V2 -V 2 V1 = 0. (23c) Equation (23c) leads to V 1 (θ) = b 1 V (θ) and V 2 (θ) = b 2 V (θ) , (24) 
where b 1 and b 2 are real constants. Equations (23a) and (23b) give

U 1 (θ) = b 1 m 1 V (θ) Ln |V (θ)| + d 1 V (θ) , (25) 
U 2 (θ) = b 2 m 1 V (θ) Ln |V (θ)| + d 1 V (θ) + c b 1 V (θ) . ( 26 
)
The constraints

U α (θ) ∈ C 2 ([-ω, ω]) and V α (θ) ∈ C 2 ([-ω, ω]
) impose that b 1 = 0 and b 2 = 0. So in this case, the logarithms terms must not appear in the expressions of y 1 and y 2 . Thus

U α = a α U (α = 1, 2) on [-ω, ω] and a 2 = a 2 1 + a 2 2 = 0 ( 27 
)
in which a α are real constants and U is an unknown real function.

Remark 5

It can be verified that a more general transformation development than [START_REF] Grisvard | Singularities in boundary value problems[END_REF] with nonlinear dependence on logarithm terms, like the linear elliptic boundary value problem proposed in [START_REF] Grisvard | Singularities in boundary value problems[END_REF], will give the same results, i.e. the absence of the logarithmic terms.

Combining the equilibrium equation ( 9) with the asymptotic development transformation (18) leads to

       ∂q ∂r = µm 1 r 2m1-3 a 2 U m 2 1 U + Ü + o r 2m1-3 , ∂q ∂θ = µr 2m1-2 a 2 U m 2 1 U + Ü + o r 2m1-2 . (28) 
In (28) only dominating terms have been taken into account. On the other hand, the traction free local boundary conditions [START_REF] Edmunds | Matched asymptotic expansions in nonlinear fracture mechanics-i. longitudinal shear of an elastic perfectly-plastic specimen[END_REF] with the asymptotic development transformation [START_REF] Grisvard | Singularities in boundary value problems[END_REF] yield

U U = 0, q = µa 2 r 2(m1-1) U 2 + o r 2(m1-1) at θ = ±ω. (29) 
Since U does not have a common multiple zero on [-ω, ω] to ensure the strict positivity of the invariant I given by equation ( 21), we obtain from equations ( 28) and ( 29) that U satisfies

m 2 1 U + Ü = 0 on [-ω, ω] and U (θ) = 0 at ± ω. ( 30 
)
The solution of the eigenvalue problem ( 30) is given by

U (θ) = sin (m 1 θ) with m 1 = π 2ω . (31) 
In the other part, the inequality

m 1 < 1 implies ω > π 2 . ( 32 
)
Namely, the result ( 31) is singular for concave notch problems only. Consequently, the problem in the case of re-entrant notches (wedge, for ω ≤ π 2 ) does not admit a singular solutions. Therefore, the first order asymptotic solution for transformation is

y α (r, θ) = a α r π 2ω sin π 2ω θ + o r π 2ω as r → 0 and ω > π 2 (33) 
Nevertheless, such a solution provides the following weak estimate for the Jacobian of the transformation and the Lagrange multiplier

J (r, θ) ∼ o r ( π ω -2) q (r, θ) ∼ o r ( π ω -2) . (34) 
therefore inadequate. In fact, the Jacobian (34) is unbounded which reflects the degenerate character.

The solution does not preserve the volume of the asymptotic approximation of the transformation (33) locally as (r -→ 0). The Lagrange multiplier in [START_REF] Ogden | Non-linear elastic deformations[END_REF] has also a degenerate character. One concludes that the first asymptotic approximation [START_REF] Grisvard | Singularities in boundary value problems[END_REF] leads to a solution that presents a number of mathematical and physical inconsistencies and is therefore inadequate. Then a developement to a higher order should be acheived.

Second order asymptotic analysis of the elastostatic field near the notch vertex

The first order approximation of the local transformation at the vicinity of the notch vertex does not constitute an invertible mapping. Consequently, we should refine (18) by developing the following two terms approximation

y α (r, θ) = a α r m1 U (θ) + r m2 (V α (θ) + Ln (r) W α (θ)) + o (r m2 ) V α , W α ∈ C 2 , ( 35 
)
where m 2 > m 1 , V α (θ) and W α (θ) are as yet undetermined, whereas m 1 and U are now given by [START_REF] Loppin | Plane crack propagation in a hyperelastic incompressible material[END_REF].

From the incompressibility constraint (5) and the asymptotic development transformation [START_REF] Podio-Guidugli | Extreme elastic deformations[END_REF], one can write

J = r m1+m2-2 m 1 U Ψ2 -m 2 U Ψ 2 -U Φ 2 + m 1 U Φ2 -m 2 U Φ 2 Ln (r) + o r m1+m2-2 , (36) 
where

Ψ 2 = a 1 V 2 -a 2 V 1 and Φ = a 1 W 2 -a 2 W 1 . (37) 
Consequently

m 1 + m 2 -2 ≤ 0. ( 38 
)
Analysis of the equation ( 36) leads to

m 1 U Φ2 -m 2 U Φ 2 = 0 on [-ω, ω] if m 1 < m 2 ≤ 2 -m 1 , (39a) 
m 1 U Ψ2 -m 2 U Ψ 2 -U Φ 2 = 0 on [-ω, ω] if m 1 < m 2 < 2 -m 1 , (39b) 
m 1 U Ψ2 -m 2 U Ψ 2 -U Φ 2 = 1 on [-ω, ω] if m 1 < m 2 = 2 -m 1 . (39c) 
The boundary conditions can be obtained from (39b) and (39c)

Φ2 (±ω) = 0 if m 1 < m 2 ≤ 2 -m 1 , (40a) 
Ψ2 (±ω) = 0 if m 1 < m 2 < 2 -m 1 , (40b) 
Ψ2 (±ω) = 1 m 1 U (±ω) if m 2 = 2 -m 1 . (40c) 
These boundary conditions are not physical and come from the first order differential equations [START_REF] Ru | On complex-variable formulation for finite plane elastostatics of harmonic materials[END_REF].

In order to obtain others conditions for the functions Ψ 2 (θ) and Φ 2 (θ), we recall that the function

U (θ) is C ∞ ([-ω, ω]
) and then Ψ 2 (θ) and Φ 2 (θ) are C ∞ ([-ω, ω]), du to the ellipticity of the boundary value problem [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF]Sternberg, 1974, 1973;[START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF][START_REF] Le | On the singular elastostatic field induced by a crack in a Hadamard material[END_REF][START_REF] Le | On the singular elastostatic field induced by a crack in a Hadamard material[END_REF][START_REF] Le | The singular elastostatic field due to a crack in rubberlike materials[END_REF].

By inserting [START_REF] Podio-Guidugli | Extreme elastic deformations[END_REF] into the equilibrium field equations ( 9), and recalling that U satisfies relations in [START_REF] Long | Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress[END_REF], one confirms that

∂q ∂r = µm 1 U r m1+m2-3 m 2 2 χ 2 + χ2 + 2m 2 γ 2 + Ln (r) m 2 2 γ 2 + γ2 , (41) 
∂q ∂θ = µ U r m1+m2-2 m 2 2 χ 2 + χ2 + 2m 2 γ 2 + Ln (r) m 2 2 γ 2 + γ2 , (42) 
in which

χ 2 = a 1 V 1 + a 2 V 2 , γ 2 = a 1 W 1 + a 2 W 2 on [-ω, ω] (43) 
In the other hand, the traction free boundary conditions (13) leads to : χ2 (±ω) = 0 and γ2 (±ω) = 0 (44)

As a consequence, we can prove from equilibrium equations ( 41) and ( 42) that γ 2 and χ 2 must be solution to the following differential equations

     γ2 + m 2 2 γ 2 = 0 χ2 + m 2 2 χ 2 + 2m 2 γ 2 = 0 on [-ω, ω] if m 1 < m 2 ≤ 2 -m 1 . (45) 
Equation ( 45) together with (44) constitute an eigenvalue problems for χ 2 and γ 2 with m 2 as eigenvalue parameter. The determination of the local structure of the Lagrange multiplier field, which has been assumed to admit the representation [START_REF] Hutchinson | Singular behaviour at the end of a tensile crack in a hardening material[END_REF], is based on equations ( 15), ( 20) and ( 35) :

-µ r m2-2 a m 2 2 Ψ 2 + Ψ2 + 2m 2 Φ 2 + Ln (r) m 2 2 Φ 2 + Φ2 + o r m2-2 = ar l1+m1-2 l 1 P 1 U -m 1 Ṗ1 U + Q 1 U + Ln (r) l 1 Q 1 U -m 1 Q1 U + o r l1+m1-2 (46) 
By virtue of the boundary conditions ( 13), along with (35) :

r l1 P 1 (±ω) + r l1 Ln (r) Q 1 (±ω) + o r l1 = µr 2(m2-1) a 2 Ψ2 2 (±ω) -2Ln (r) Ψ2 (±ω) Φ2 (±ω) +Ln 2 (r) Φ2 2 (±ω) +o r 2(m2-1) . (47) 

Remark 6

It can be checked that the boundary value problem for the second order asymptotic development has no solution in the absence of the logarithmic terms included in [START_REF] Podio-Guidugli | Extreme elastic deformations[END_REF] for particular notch angle.

In the same way, the remark 5 is still available for this second order asymptotic development.

Results in the case

m 1 < m 2 < 2 -m 1
Now U is a known function [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. The resolution of (39a) and (39b) with the condition that the functions Ψ 2 and Φ 2 are C ∞ ([-ω, ω]) yields to

Φ 2 = 0 and Ψ 2 = b 2 (|U |) m 2 m 1 on [-ω, ω] , (48) 
where b 2 is a real constant. The assumption that Ψ 2 possesses continuous derivatives of all orders implies that m2 m1 must be a positive integer. Since m 2 > m 1 the first positive integer that satisfies this assumption is 2. Then one can draw

m 2 = 2m 1 = π ω . (49) 
Finally

Φ 2 = 0 and Ψ 2 = b 2 sin π 2ω θ 2 on [-ω, ω] . (50) 
The eigenvalue problems for χ 2 and γ 2 defined by the equations ( 45) and ( 44) with m 2 as parameter done by relation [START_REF] Thomas | The development of fracture mechanics for elastomers[END_REF] furnishes:

γ 2 (θ) = 0, χ 2 (θ) = b 1 cos π ω θ on [-ω, ω] . (51) 
The equations determining the Lagrange multiplier q can be deduced from ( 46) and ( 47) with the use of the expressions of Ψ 2 and Φ 2 (50)

     l 1 Q 1 U -m 1 Q1 U = 0 l 1 P 1 U -m 1 Ṗ1 U + Q 1 U = - µ a 2 m 2 2 Ψ 2 + Ψ2 on [-ω, ω] , (52) 
P 1 (±ω) = 0 and Q 1 (±ω) = 0. ( 53 
)
Hence, the Lagrange multiplier expression take the form,

q (r, θ) = r l1 P 1 (θ) + o r l1 ,      P 1 (θ) = - 2µb 2 a 2 cos(l 1 θ) Q 1 (θ) = 0 l 1 = m 1 = π 2ω . ( 54 
)
We note that the asymptotic development of the transformation and the Lagrange multiplier fields q obtained in this section are valuables in the case of

m 1 < m 2 < 2 -m 1 corresponding to ω ∈ 3π 4 , π and m 1 ∈ 1 2 , 2 3
. Nevertheless, such a solution provides the following Jacobian weak estimate :

J ∼ o r 3π 2ω -2 . ( 55 
)
Approximation ( 55) presents a number of mathematical and physical inconsistencies and is therefore inadequate. In fact, the Jacobian is unbounded which reflects the degenerate character of the asymptotic approximation of the transformation given by the equations ( 35), ( 50) and ( 51), which is not locally volume-preserving.

Case m

2 = 2 -m 1 > m 1 and π 2 < ω ≤ 3π 4
In the case of notch angle ω ∈ π 2 , 3π 4 and m 2 = 2m 1 . The differential equations (39a) and (39c), with the condition that the functions Ψ 2 and Φ 2 are C ∞ ([-ω, ω]), yields to

       Ψ 2 (θ) = U m 2 m 1 A - 1 m 1 ω |θ| dϕ U (ϕ) m 2 m 1 +1 Φ 2 (θ) = 0 on [-ω, ω] . ( 56 
)
The integral in [START_REF] Wong | Large plane deformations of thin elastic sheets of neo-Hookean material[END_REF], with the condition that the functions Ψ 2 is C ∞ ([-ω, ω]) , is evaluated in terms of hypergeometric functions in the same way as done by [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF], taking account that

π 2 < ω < 3π 4 m 1 = 2 3 .
In the case of ω = 3π 4 , equation (39c) necessitates a special consideration which require separate attention until next section.Then Φ 2 and Ψ 2 take the following form :

Ψ 2 (θ) = - 1 m 1 m 2 F 1 2 - 1 m 1 , 1 2 ; 3 2 - 1 m 1 ; sin 2 (m 1 θ) = - 1 m 1 m 2 + 1 m 2 1 ∞ n=1 n k=1 (2k -1) n k=1 2k sin 2n (m 1 θ) 2n + 1 -2 m1 Φ 2 (θ) = 0 on [-ω, ω] , (57) 
in which F is a hypergeometric function [START_REF] Seaborn | Hypergeometric functions and their applications[END_REF]. One deduces from (57) that

Ψ 2 (0) = - 1 m 1 m 2 , ( 58 
)
Ψ 2 (±ω) = - 1 m 1 m 2 F 1 2 - 1 m 1 , 1 2 ; 3 2 - 1 m 1 ; 1 . ( 59 
)
We note that the hypergeometric function defined by ( 57) is not defined for m 1 = 2 3 (For this value ω = 3π 4 ) which confirms that equation (39c) requires a special treatment for this case.

In the case of m 2 = 2m 1 , the eigenvalue problems for χ 2 and γ 2 defined by the equations ( 45) and ( 44) with m 2 as a known parameter fail to admit a nonzero solution :

χ 2 (θ) = 0 and γ 2 (θ) = 0 on [-ω, ω] . (60) 
The equations determining the Lagrange multiplier can be deduced from ( 46) and ( 47) with the use of the expressions of Ψ 2 and Φ 2 (57) :

     l 1 Q 1 U -m 1 Q1 U = 0 l 1 P 1 U -m 1 Ṗ1 U + Q 1 U = - µ a 2 m 2 2 Ψ 2 + Ψ2 on [-ω, ω] , (61) 
Q 1 (±ω) = 0 and P 1 (±ω) = µ a 2 Ψ2 2 (±ω) , (62) 
The boundary-value problem consisting of ( 61) and (62) fails to admit a solution that verify the boundary conditions (62). A non-degenerate Lagrange multiplier field would presumably necessitate a higher-order asymptotic analysis of the deformation field. Fortunately, there is no need of the Lagrange multiplier field to investigate the singular stress components as would be shown in section 4.

Results in the case

m 2 = 2 -m 1 > m 1 and ω = 3π 4
This case corresponds to m 1 = 2 3 and ω = 3π 4 . The differential equations (39a) and (39c) with the condition that the functions Ψ 2 and Φ 2 are

C ∞ [-ω, ω] yields to Φ 2 (θ) = - 1 2m 1 U 2 (θ) on [-ω, ω] , (63) 
and

Ψ 2 (θ) = b 2 sin 2 (m 1 θ) - 1 m 1 m 2 + 1 m 2 1 ∞ n=2 n k=1 (2k -1) n k=1 2k sin 2n (m 1 θ) 2n + 1 -2 m1 on [-ω, ω] . ( 64 
)
The equilibrium equations ( 45) and the boundary conditions ( 44) furnish

m 2 2 γ 2 + γ2 = 0 and m 2 2 χ 2 + χ2 + 2m 2 γ 2 = 0, (65) 
γ2 (±ω) = 0 and χ2 (±ω

) = 0. ( 66 
)
In case

m 2 = 2 -m 1 = 4 3
and m 1 = 2 3 equations ( 65) and (66) give

γ 2 (θ) = 0 and χ 2 (θ) = b 1 cos (m 2 θ) on [-ω, ω] . ( 67 
)
From the Lagrange multiplier field equation ( 46)

l 1 = m 2 -m 1 = m 1 = 2 3 , ( 68 
)
l 1 Q 1 U -m 1 Q1 U = - µ a 2 m 2 2 Φ 2 + Φ2 l 1 P 1 U -m 1 Ṗ1 U + Q 1 U = - µ a 2 m 2 2 Ψ 2 + Ψ2 + 2m 2 Φ 2 , (69) 
Q 1 (±ω) = 0, P 1 (±ω) = µ Ψ2 2 (±ω) a 2 = µ (am 1 ) 2 . ( 70 
)
The problem (69) and (70) does not admit a solution that verify the boundary condition (70). In section 4 it will be shown that there is no need for the Lagrange multiplier field to investigate the singular stress components. A non-degenerate Lagrange multiplier field would presumably necessitate a higher-order asymptotic analysis of the deformation field.

4. Third order asymptotic analysis of the elastostatic field near the notch vertex for

ω ∈ 3π 4 , π
Recalling that the second order asymptotic analysis of this case leads to a weak estimate of the Jacobian [START_REF] Ogden | Non-linear elastic deformations[END_REF]. With a view to refining these estimates, when m 2 < 2m 1 , we first replace [START_REF] Podio-Guidugli | Extreme elastic deformations[END_REF] by

y α (r, θ) = a α r m1 U (θ) + r m2 V α (θ) + r m3 R α (θ) + r m3 Ln (r) T α (θ) + o (r m3 ) , R α , T α ∈ C ∞ [-ω, ω] , (71) 
where m 3 > m 2 > m 1 , R α (θ) and T α (θ) denote undetermined functions, where U (θ) and V α (θ) are already known functions. Combining (71) with ( 9) and invoking the boundary conditions (13) one finds the solution for ω ∈ 3π 4 , π :

m 3 = 2 -m 1 = 2 - π 2ω , (72) 
R 1 = 1 a 2 [a 1 χ 3 -a 2 Ψ 3 ] and R 2 = 1 a 2 [a 2 χ 3 + a 1 Ψ 3 ] on [-ω, ω] , (73) 
T 1 = 1 a 2 [a 1 γ 3 -a 2 Φ 3 ] and T 2 = 1 a 2 [a 2 γ 3 + a 1 Φ 3 ] on [-ω, ω] , (74) 
with Ψ 3 and Φ 3 defined

Ψ 3 (θ) = - 1 m 1 m 3 F 1 2 - 1 m 1 , 1 2 ; 3 2 
- 1 m 1 ; sin 2 (m 1 θ) , (75) 
T 1 = 0 T 2 = 0 on [-ω, ω] (76) 
and

χ 3 = 0 on [-ω, ω] . (77) 
We now suppose that the Lagrange multiplier field conforms to

q (r, θ) = r l1 P 1 (θ) + r l2 P 2 (θ) + r l2 Ln (r) Q 2 (θ) + o r l2 , l 2 > l 1 , (78) 
where l 2 , P 2 and Q 2 are unknown. Their determination needs a higher order development in transformation field.

The solution for ω = π was given by [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] and will be analyzed later.

Discussion of the deformation and stresses near the notch vertex

This section contains first, a discussion of the asymptotic transformation field described by [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF], then a study of the structure of the associated notch vertex stress fields. The structure of the twoterm or three-term asymptotic transformation approximation deduced in sections (2), ( 3) and ( 4) is too much complex to be analyzed. For this purpose, we use the proprety of invariance of the local field under rigid-body rotation [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF] to render the intrinsic structure of the two-term or three-term asymptotic transformation approximation deduced in sections (2), ( 3) and ( 4) more transparent. To this end, we apply the objectivity principle (17) by using a particular form of Q [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF] [

Q αβ ] =    a 2 a -a 1 a a 1 a a 2 a    (79) 
to (71). One arrives at

                     y 1 (r, θ) = - r m2 a Ψ 2 (θ) - r m2 Ln (r) a Φ 2 (θ) - r m3 a Ψ 3 (θ) - r m3 a Ln (r) Φ 3 (θ) + o (r m3 ) , y 2 (r, θ) = ar m1 U (θ) + r m2 a χ 2 (θ) + r m2 Ln (r) a γ 2 (θ) + r m3 a χ 3 (θ) + r m3 a Ln (r) γ 3 (θ) + o (r m3 ) , (80) 
2a sin θ 2 + o r 3 2 , (81) 
while for 3π 4 < ω < π

y 1 (r, θ) = - b 2 r π ω a sin 2 π 2ω θ + r 2-π 2ω a π 2ω 2 -π 2ω F 1 2 - 2ω π , 1 2 ; 3 2 
- 2ω π ; sin 2 π 2ω θ + o r (2-π 2ω ) , y 2 (r, θ) =ar π 2ω sin π 2ω θ + b 1 a r π ω cos π ω θ + o r π ω . (82) 
In the case of π 2 < ω < 3π 4

y 1 (r, θ) = r (2-π 2ω ) a π 2ω 2 -π 2ω F 1 2 - 2ω π , 1 2 ; 3 2 
- 2ω π ; sin 2 π 2ω θ + o r 2-π 2ω , y 2 (r, θ) =ar π 2ω sin π 2ω θ + o r π 2ω . (83) 
while for ω = 3π 4

y 1 (r, θ) = r 4 3 a        9 8 -b 2 sin 2 2 3 θ - 9 4 ∞ n=2 n k=1 (2k -1) n k=1 2k sin 2n 2 3 θ 2n -2        + 3r 4 3 Ln (r) 4a sin 2 2 3 θ + o r 4 3 
,

y 2 (r, θ) =ar 2 3 sin 2 3 θ + o r 2 3 
.

(

) 84 
The asymptotic transformation approximation given by equations ( 81)-(84), involves different real constants, which determination eludes the local analysis carried out here, and depends on the boundary conditions at infinity, the geometry and the material properties. We note that the transformation field y α involves a logarithm term in the case of the transition notch angle ω = 3π 4 .

Remark 7

Following the linear elastic [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF] and (Seweryn and Molski, 1993) and elastoplastic [START_REF] Kuang | Stress and strain fields at the tip of a sharp v-notch in a power-hardening material[END_REF][START_REF] Chao | Singularities at the apex of a sharp V-notch in a linear strain hardening material[END_REF]; Yang and Yuan, 1992; Xia and Wang, 1993 ;

Yuan and Lin, 1994) theories in small transformation, the order of the singularity depend on the boundary conditions at infinity, i.e. symmetric or antisymmetric loading. This is in contrast with the results obtained here where the singularity is the same in botn cases. In other hand, the asymptotic development obtained with these theories exhibit only a power singularity and there is no logarithm singularity with Neumann boundary conditions.

The asymptotic approximation of the displacement field deduced by orthogonal transformation, given by equations ( 81 Thus for ω = π

y 1 (r, ±π) = - b 2 r a ∓ r 3 2 a c 2 + 2b 1 b 2 a + o r 3 2 
, y 2 (r, ±π) = ± ar

1 2 - b 1 r a + r 3 2 a ∓c 1 ∓ b 2 2 2a + o r 3 2 , ( 85 
) while 3π 4 < ω < π y 1 (r, ±ω) = - b 2 r π ω a + r 2-π 2ω a π 2ω 2 -π 2ω F 1 2 - 2ω π , 1 2 ; 3 2 - 2ω π ; 1 + o r 2-π 2ω , y 2 (r, ±ω) = ± ar π 2ω - b 1 a r π ω + o r π ω . (86) 
In the case of π 2 < ω < 3π 4

y 1 (r, ±ω) = r 2-π 2ω a π 2ω 2 -π 2ω F 1 2 - 2ω π , 1 2 ; 3 2 - 2ω π ; 1 + o r 2-π 2ω , y 2 (r, ±ω) = ± ar π 2ω + o r π 2ω . ( 87 
)
while for ω = 3π 4 

y 1 r, ± 3π 4 = - r 4 3 a        b 2 - 9 8 + 9 

Crack case

For crack case (ω = π) and in the case b 2 = 0, one deduces from (85)

y 1 (r, ±π) = - b 2 a 3 y 2 2 (r, ±π) with      y 2 ≥ 0 for θ = π, y 2 ≤ 0 for θ = -π. (89) 
This description shows that each crack face is locally transformed by a first order approximation into two arcs of the same parabola whose tangent at the crack is perpendicular to the crack-axis. The concavity or convexity of the parabola (89) is governed by the undetermined constant b 2 sign : concave for b 2 > 0 and convex for b 2 < 0 as shown in table 1. In the degenerate case b 2 = 0, one deduce from (85)

y 1 (r, ±π) = ∓ c 2 a 4 (±y 2 (r, ±π)) 3 with      y 2 ≥ 0 for θ = π y 2 ≤ 0 for θ = -π (90) 
The second order approximation of the crack faces transformation shows that they have a common tangent at the tip of the crack. [START_REF] Knowles | Large deformations near a tip of an interfacecrack between two neo-hookean sheets[END_REF] for interface crack in bimaterial case. [START_REF] Borret | Etude de la propagation de fissures dans les caoutchoucs synthétiques[END_REF] showed that the S-shaped curve for crack face deformation is plausible.

Vertex case 3π 4 < ω < π While for 3π 4 < ω < π, one deduces from ( 86)

1 (r, ±ω) = - b 2 a 3 y 2 2 (r, ±ω) with      y 2 ≥ 0 for θ = ω y 2 ≤ 0 for θ = -ω (91) 
In the degenerate case b 2 = 0, one deduce from (86) :

y 1 (r, ±ω) = F 1 2 -2ω π , 1 2 ; 3 2 -2ω π ; 1 a 4ω π π 2ω 2 -π 2ω (±y 2 (r, ±ω)) 4ω π -1 with      y 2 ≥ 0 for θ = ω y 2 ≤ 0 for θ = -ω and F 1 2 - 2ω π , 1 2 ; 3 2 
- 2ω π ; 1 > 0. (92) 
For notch vertex same scenarios of deformation as crack case are identified, except that the degenerate case b 2 = 0 presents the same behaviour as b 2 < 0 table 2 and marks a brutal transition from conditions in which the deformed notch vertex-faces is concave near the notch vertex corresponding to b 2 > 0 to conditions in which the deformed notch vertex-faces is convex. Note that from a behaviorist viewpoint this confirm the singular character of ω = 3π 4 geometry. This description shows that each notch vertex faces is locally transformed, by a first order approximation, into two arcs of the same concave parabola whose tangent at the notch vertex is perpendicular to the notch-axis ( Table 3 )

Remark 8

Following the linear [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF] and (Seweryn and Zwoliński, 1996) and nonlinear elastoplastic [START_REF] Kuang | Stress and strain fields at the tip of a sharp v-notch in a power-hardening material[END_REF], [START_REF] Chao | Singularities at the apex of a sharp V-notch in a linear strain hardening material[END_REF], [START_REF] Yang | Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material[END_REF], (Xia and Yang, 1993) and [START_REF] Yuan | Analysis of elastoplastic sharp notches[END_REF] fracture mechanics in small transformation, the deformed notch faces fails to separate and no interaction between the upper and lower notch faces occurs under the mode II loading. This problem was analysed with different hyperelastic potentials. It was shown that the deformed crack [START_REF] Stephenson | The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials[END_REF], [START_REF] Le | On the singular elastostatic field induced by a crack in a Hadamard material[END_REF], [START_REF] Le | The singular elastostatic field due to a crack in rubberlike materials[END_REF] [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF] and [START_REF] Tarantino | Thin hyperelastic sheets of compressible material: field equations, Airy stress function and an application in fracture mechanics[END_REF] and notch (Tarantino, 1994), (Tarantino, 1997) and [START_REF] Ru | Finite deformations at the vertex of a bi-material wedge[END_REF] faces open even under mode II loading for a class of hyperelastic potential. This question was more investigated by [START_REF] Knowles | A nonlinear effect in mode II crack problems[END_REF], [START_REF] Chow | Nonlinear mode II crack-tip fields for some hookean materials[END_REF]) and [START_REF] Ru | On complex-variable formulation for finite plane elastostatics of harmonic materials[END_REF] and was shown that the opening or not of the crack faces under mode II loading depend essentially on the nature of the hyperelastic potential.

In view of the principle of objectivity, we shall therefore be entitled to base the computation of the local stress distribution on (81), (82), (83), (84). At this moment, we determine the associated local true-stress field. On account of (8) one has :

σ αβ = µF αγ F βγ -qδ αβ . (95) 
We retain here only the singular terms or the dominant term. For the notch problem with ω ∈ 3π 4 , π the asymptotic Cauchy stress components are :

σ 11 = µ b 2 π aω 2 r 2π ω -2 sin 2 π 2ω θ + o r 2π ω -2 ∀θ ∈ [-ω, ω] {0} σ 11 = µb 2 a 2 r π 2ω + o r π 2ω
for θ = 0

σ 22 = µ π 2ω 2 a 2 r π ω -2 -µ π ω 2 b 1 r 3π 2ω -2 sin π 2ω θ + o r 3π 2ω -2 ∀θ ∈ [-ω, ω] σ 12 = σ 21 = -2µ π 2ω 2 b 2 r 3π 2ω -2 sin π 2ω θ + o r 3π 2ω -2 ∀θ ∈ [-ω, ω] {0} σ 12 = σ 21 = µm 2 b 1 m 1 a 2 r π 2ω + o r π 2ω for θ = 0. (96) 
For ω = 3π 4 , the asymptotic Cauchy stress components are :

σ 11 = o r 2 3 ∀θ ∈ [-ω, ω] {0} σ 11 = 9µb 2 4a r 2 3 Ln (r) + o r 2 3
for θ = 0

σ 22 = 4 9 µa 2 r -2 3 - 16 9 µsin 2 3 θ + o (1) ∀θ ∈ [-ω, ω] {0} σ 12 = σ 21 = 2 3 µLn (r) sin 2 3 θ + o (Ln (r)) ∀θ ∈ [-ω, ω] {0} σ 12 = σ 21 = 2µb 1 3a 2 r 2 3 + o r 2 3
for θ = 0.

(97)

For ω ∈ π 2 , 3π 4 , the asymptotic Cauchy stress components are

σ 11 = o r 2-π ω ∀θ ∈ [-ω, ω] σ 22 = µ π 2ω a 2 r π ω -2 + o r π ω -2 ∀θ ∈ [-ω, ω] σ 12 = σ 21 = -µ -sin π 2ω θ F 1 2 - 2ω π , 1 2 ; 3 2 
- 2ω π ; sin 2 π 2ω + π 3π -4ω sin π 2ω θ cos 2 π 2ω θ F 3 2 - 2ω π , 3 2 ; 5 2 
- 2ω π ; sin 2 π 2ω θ + o (1) ∀θ ∈ [-ω, ω] {0}. (98) 
The analysis of the Cauchy stress tensor components σ αβ (96)-(98) shows that, unlike the linear elastic notch field [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF], their radial and angular dependences are different for each components σ αβ . The order of stress singularities of the Cauchy stress components, equations ( 96)-( 98), depends monotonically only on the local geometry of the notch, i.e. the notch angle ω. This means that the order of stress singularities does not depend on the type of the boundary conditions at infinity. In fact, the Cauchy stress components have the same order of singularities for a mode I and mode II loading. This is still in contrast to the predictions of the linear theory [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF]. The Cauchy stress component σ 22 dominates the stress field and has the most singular term r π ω -2 , but it is not a function of the angular material coordinate, depending only on radial coordinate. Equations (98) show that σ 22 is strictly positive, this make the notch vertex region r → 0 under tensile loading. In the other part, σ 22 is asymptotically dominant as one approaches the notch vertex, that is, σ 11 σ 22 → 0 , σ 12 σ 22 → 0 as r → 0.

in which Q αβ are the components (79) of the rotation tensor Q. In order to compare the magnitude of the order of the singularities of the cauchy stress tensor components in linear and non-linear cases, we determine the dominant order of the Cauchy stresses when the latter are function of the spatial coordinates y α . Since such a representation of the stresses depends on the availability of an invertible estimate for the local transformation, we introduce the special coordinate y = y 2 1 + y 2 2 , evaluated along the line θ = 0 and one draws from (82)-( 84), ( 96)-(98) that :

σ 22 ∼ y 1-2ω π if ω ∈ 3π 4 , π , (100) 
σ 22 ∼ y 2π-4ω 4ω-π if ω ∈ π 2 , 3π 4 , (101) 
σ 22 ∼ y -1 2 if ω = 3π 4 . (102) 
For the crack problem, ω = π , the Cauchy stress components versus special coordinate y, given by (100), show that the most singular term has the asymptotic behaviour y -1 . This is a more pronounced singularity than the y -1 2 singularity predicted by linear fracture mechanics [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF]. For the notch problem, the order of the stress singularities, given by (100)-(102), is governed by the local geometry of the notch and increase with notch angle ω. In particular, for ω = 3π 4 , the asymptotic behaviour of the component σ 22 reduces to y -1 2 . On the other hand, the order of stress singularities does not depend on the type of the boundary conditions at infinity. In fact, the Cauchy stress components have the same order of singularities for a mode I and mode II loading. This is still in contrast to the predictions of the linear theory [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF].

Conclusion

Except works of [START_REF] Gao | Notch-tip fields in rubber-like materials under tension and shear mixed load[END_REF] (Tarantino, 1997 ), [START_REF] Ru | Finite deformations at the vertex of a bi-material wedge[END_REF] and [START_REF] Tarantino | On extreme thinning at the notch tip of a neo-Hookean sheet[END_REF], the notch vertex problem within the nonlinear elasticity framework has not received much attention. An asymptotic analysis of the notch vertex finite deformation fields in an incompressible Mooney-Rivlin material with a plane deformation context has been presented for the first time. A deep analysis of the symmetric (mode I) and non-symmetric (mixed-mode) situations have been investigated. It was shown that the general case is asymptotically obtained by a mere rotation of the canonical fields, as it had been observed previously in the finite plane strain analysis of the crack problem (Stephenson,1982). By varying the value of the notch angle parameter appearing in the boundary value problem, the phenomenon of singularity and its effect on the stress fields are established. The nonlinear asymptotic analysis also reveals that there exists more than one singular term and that the leading singularity is stronger than that predicted by the linearized theory. Singular functions obtained by the way of this analysis can be used as enrichment function for the partition of unity finite element method (PUFEM).

The obtained results involve many arbitrary constants governing the amplitude of the ensuing local elastostatic field. A precise estimate of these unknowns can be established on the basis of conservation law. The ability of this analytical solution to predict the true physical behaviour requires the determination of unknowns using a matching method (Edmunds and Willis, 1976a;1976b;1977).
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 1 Figure 1: The notch problem

  )-(84), can satisfy the symmetry property by an appropriate choice of the different real constants.Nevertheless this approximation fails to have an antisymmetric solution about the plane of the notch under the nonlinear theory of elasticity of finite plane strain with Mooney-Rivlin hyperelastic potential. To deeply investigate this property; let us find the image of the notch faces θ = ±ω in the vicinity of the undeformed configuration (material) end of the notch vertex faces.

  coordinate r between y 1 (r, ±ω) and y 2 (r, ±ω) in the image of the notch faces equations (85)-(88) leads to approximate description of the curves into which the notch-faces at θ = ±ω are deformed.

Figure 1

 1 illustrates the shape of the deformed crack-faces based in formula (90) and shown the crack-faces deformed into S-shaped curve. Accordingly, the special case b 2 = 0 marks the transition from conditions in which the deformed crack-faces is concave near the crack tip corresponding to b 2 > 0 to conditions in which the deformed crack faces is convex b 2 < 0. A literature survey shows that it is not clear, whether or not there is a global loading and a special crack geometries that induce these different cases b 2 > 0 , b 2 = 0 or b 2 < 0. The three scenarios of the crack faces deformation was spotted analytically by (Knowles
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Vertex case π 2 < ω < 3π 4

In the case of π 2 < ω < 3π 4 , one deduces from (87) :

Vertex case ω = 3π 4

Whereas for ω = 3π 4 , one deduces from (88)

This description shows that each notch vertex face is locally transformed, by a first order approximation into two arcs of the same concave parabola whose tangent at the notch vertex is perpendicular to the notch-axis (see Table 4)

From ( 81), (82), ( 83) and (84), it follows that particles near the notch vertex faces in the undeformed body lie to the right of this curve after transformation. We conclude on the basis of (89)-(94) that the notch vertex is bound to open but not in a symmetrically manner, independently of the magnitude and the mode of the boundary conditions at infinity. This conclusion is in contradiction with the predictions of linear elastic [START_REF] Xiaolin | On stress singularity at tips of plane notches[END_REF], (Seweryn and Zwoliński, 1996) and elastoplastic [START_REF] Kuang | Stress and strain fields at the tip of a sharp v-notch in a power-hardening material[END_REF], [START_REF] Chao | Singularities at the apex of a sharp V-notch in a linear strain hardening material[END_REF], [START_REF] Yang | Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material[END_REF], [START_REF] Xia | Singular behaviour near the tip of a sharp v-notch in a power law hardening material[END_REF], [START_REF] Yuan | Analysis of elastoplastic sharp notches[END_REF], [START_REF] Yang | Higher order asymptotic elastic-plastic cracktip fields under antiplane shear[END_REF] constitutive theory with small deformation hypothesis for a Mode II loading.

In conclusion, the results of analysis done below state that the local transformation

Undeformed crack Deformed crack

Undeformed crack faces

Undeformed vertex Deformed vertex

Undeformed vertex given by the mixed-mode loading of the first asymptotic term. We shall call the particular field (80) deduced from the principle of objectivity [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF], with the use of the transformation third order asymptotic development (71) and the particular form of the orthogonal tensor Q (79), a canonical field, because it is the standard representative element of the set ℑ of local singular fields. To specify all the other elements of ℑ, we simply apply the reverse formula of [START_REF] Geubelle | Finite strains at the tip of a crack in a sheet of hyperelastic material: I. homogeneous case[END_REF].

In other words, every material element near the notch vertex is under uniaxial tension parallel to y 2 axis. This result is in agreement with the propriety that the notch vertex is bound to open regardless of the magnitude and nature of the particular loading at infinity. In the case of ω ∈ 3π 4 , π , σ 22 possesses two singular terms r and no singular behaviour in the case of ω ∈ π 2 , 3π 4 . This result confirms that the particular notch angle value ω = 3π 4 characterizes a transition between two regimes. In contrast, σ 11 is not singular.

Remark 9

The analyse done for the Cauchy stress tensor components provides important insights into the physics of fracture mechanics and it also gives tools for the extended finite element method (XFEM) enriched functions [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. In fact, this analysis indicates that it is necessary to add two singular functions coming from the exponents m 1 and m 2 contributions to the FEM classical polynomial basis. This is also shown by a numerical method identifying the singularity exponents [START_REF] Karoui | The extended finite element method for cracked hyperelastic materials: A convergence study[END_REF].

The Cauchy stress components, (96)-(98), are deduced from the canonical transformation fields (81)-(84). If σ αβ are the Cauchy stress components associated with the original field [START_REF] Geubelle | Finite deformation effects in homogeneous and interfacial fracture[END_REF], one has :