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Microencapsulation of hydrophobie (oc-tocopherol) and hydrophilic (ascorbic acid) vitamins by native 
(non-modified) and modified soy protein isolate (SPI) was carried out using a spray-drying technique. 
Proteins' functional properties were modified by acylation and cationization reactions in aqueous 
alkaline media. The results obtained demonstrated that SPI modification resulted in decreased emulsion 
droplet size and viscosity. Ali preparations with ascorbic acid (M) had lower viscosity and microparticle 
size than those with oc-tocopherol (T). Moreover, grafting of fatty acid chains ta SPI by acylation improved 
its amphiphilic character and affinity with hydrophobie substances. Thus, the microencapsulation effi­
ciency of T was increased from 79.7% ta 94.8% and the microencapsulation efficiency of M was reduced 
from 91.8% ta 57.3% compared ta native SPI. Conversely, attachment of quaternary ammonium cationic 
groups ta proteinic chains by cationization, increased SPI solubility and favored the M microencapsu­
lation. This study illustrated that an appropriate modification of SPI can improve the microencapsulation 
efficiency of suitable active cores. 

1. Introduction

Over the past decades, environmental requirements have 
become of great importance. In order to replace synthetic polymers 
and animal derived products, there is an increasing interest in the 
industrial use of renewable resources and development of naturally 
occurring materials for new applications. Natural polymers such as 
vegetable proteins have attracted considerable research activities 
because of their availability, biodegradability, renewable character 
and various interesting functional properties. Among them, pro­
teins extracted from vegetable seeds (soybean, pea, barley, wheat, 
rice, oat, sunflower) have been reported as having good emulsifying 
and foaming capacities, water solubility, amphiphilic and film­
forming properties (Nunes, Batista, Raymundo, Alves, & Sousa, 
2003). 

Due to their good physico-chemical properties, vegetable pro­
teins represent a highly suitable wall-forming material for micro­
encapsulation of active components to use in the food industry, 
pharmaceutics and cosmetics (Nesterenko, Alric, Silvestre, & 
Durrieu, 2013). Microencapsulation allows the isolation of the 
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active core substance from the surrounding environment within a 
wall or matrix material. This technique offers benefits for protec­
tion of sensitive compounds, controlled release of the core agent, 
masking of unpleasant taste and odor of the substances or trans­
formation of liquid core into solid powder. Different processes 
could be used to produce microparticles: spray-drying, spray­
cooling/chilling, supercritical fluid expansion, fluidized bed, gela­
tion, solvent evaporation, coacervation and extrusion (Augustin & 
Hemar, 2009; Dubey, Shami, & Bhasker, 2009; Gouin, 2004). 

Spray-drying consists of the conversion of a liquid preparation 
(containing wall and core material) into a solid powder of micro­
particles using a stream of heated air. This technology, widely used 
in industry, is commonly employed for microencapsulation of 
various active substances with a vegetable protein matrix. Among 
vegetable proteins, soy proteins, pea proteins, wheat proteins and 
barley proteins had already demonstrated their effectiveness as 
carrier materials in microencapsulation by spray-drying 
(Nesterenko, Alric, Silvestre, et al., 2013). 

Soy proteins represent an important component of soy bean 
seeds (35-40%). Iwo fractions are mainly present in extracted soy 
proteins: glycinin (11S globulin) and conglycinin (7S globulin). Soy 
protein isolate (SPI) showed interesting physico-chemical proper­
ties in particular gelling, emulsifying, fat-absorbing and water 
binding (Caillard, Remondetto, & Subirade, 2009; Hua, Cui, Wang, 
Mine, & Poysa, 2005; Nunes et al., 2003). The use of SPI as wall 



material in microencapsulation by spray-drying had been reported 
by various authors. This natural polymer showed a high efficiency 
for coating different active substances: orange oil (Kim, Morr, & 
Schenz, 1996), fish oil (Augustin, Sanguansri, & Bode, 2006), stea­
rin/palm oil (Rusli, Sanguansri, & Augustin, 2006), phospholipid 
(Yu, Wang, Yao, & Liu, 2007), flavors (Charve & Reineccius, 2009), 
casein hydrolysate (Favaro-Trindade, Santana, Monterrey-Quintero, 
Trindade, & Netto, 2010; Ortiz, Mauri, Monterrey-Quintero, & 
Trindade, 2009), paprika oleoresin (Rascon, Beristain, Garcie, & 
Salgado, 2011) and soy oil (Tang & Li, 2013 ). 

It is widely accepted that the antioxidant properties of r,.­

tocopherol (vitamin E) and ascorbic acid (vitamin C) are responsible 
in part for their biological activity (Packer, Slater, & Willson, 1979). 
Nevertheless, environmental factors, such as oxygen, temperature, 
moisture and UV affect the stability of these compounds and 
involve their deterioration. Microencapsulation could be an effi­
cient method for the protection and stabilization of r,.-tocopherol 
(T) and ascorbic acid (M). However, the nature of the wall matrix
particularly affects the degree of protection of the active core, the
microparticles' stability and the retention efficiency.

Modifiable character is one of the important advantages of 
proteins. Modification of proteinic chains leads to changes in the 
properties and behavior of this natural polymer and diversification 
of protein functionalities. In microencapsulation, functionalization 
of proteinic chains makes it possible to obtain microparticles with 
new properties, different from those obtained with other wall 
materials. 

Grafting of fatty acid chains to proteins by acylation is well 
known in order to enhance their hydrophobicity, surface-active 
functionality and emulsifying capacity (Matemu, Kayahara, 
Murasawa, Katayama, & Nakamura, 2011; Wong, Nakamura, & 
Kitts, 2006). In fact, the incorporation of hydrocarbon chains (hy­
drophobie part) into the protein macromolecules (hydrophilic 
part) allows the creation of amphiphilic structures with improved 
surface activity (Rondel, Alric, Mouloungui, Blanco, & Silvestre, 
2009). On the other hand, the introduction of quaternary ammo­
nium groups to polysaccharides (Channasanon, Graisuwan, 
Kiatkamjornwong, & Hoven, 2007; Wang et al., 2012) or to ani­
mal derived proteins (Kiick-Fischer & Tirrell, 1998; Zohuriaan­
Mehr, Pourjavadi, Salimi, & Kurdtabar, 2009) by cationization is 
used to enhance their solubility, antibacterial properties as well as 
their hydrophilic properties (water absorption and swelling ca­
pacity). Nevertheless, there is no data in the literature dealing with 
cationization of vegetable proteins. Both acylation and cationiza­
tion reactions could be suggested as an effective way to obtain SPI 
with defined characteristics. 

Therefore, the objective of this work was to study the influ­
ence of SPI modification by acylation and cationization, on the 
microencapsulation of hydrophobie (T) and hydrophilic (M) vi­
tamins by the spray-drying technique. In the context of "green" 
chemistry (Galuszkaa, Migaszewskia, & Namiesnik, 2013), modi­
fication reactions were carried out without any use of organic 
solvents and chemical catalysts. The effect of SPI modifications on 
both solution/emulsion and microparticle properties was also 
investigated. 

2. Materials and methods

2.1. Materials 

Soy protein isolate (SPI), 90% pure, was purchased from Lustre! 
Laboratoires SAS (Saint Jean de Vedas, France). The term 'native SPI' 
was used in this study for ail samples prepared with non-modified 
commercial soy protein isolate. Ali other chemicals were of 
analytical grade. r,.-Tocopherol, L-ascorbic acid, sodium hydroxide, 

dodecanoyl chloride, glycidyltrimethylammonium chloride, cyclo­
hexane (HPLC grade), iodine and sodium thiosulfate were pur­
chased from Sigma (Saint-Quentin Fallavier, France). 

2.2. SPI modifications 

The acylation reaction was carried out on SPI using dodecanoyl 
chloride (DDC) following the Schotten-Baumann reaction as 
described previously (Nesterenko, Alric, Silvestre, & Durrieu, 2012). 
The molar ratio DDC/NH2 of protein used for the reaction was 0.5/1 
and the sample obtained was named SPI-A. 

The SPI cationization reaction was carried out in aqueous solu­
tion (5% w/w) at 40 °C or 70 °C using glycidyltrimethylammonium 
chloride (GTMAC). When the SPI solution reached reaction tem­
perature, pH was adjusted to 10.0 with 4 M NaOH and GTMAC was 
added (molar ratios GTMAC/NH2 were 1, 2 or 4). The pH of the 
solution was maintained at 10.0 during the 1 h reaction period. The 
reaction was ended by adjusting the pH of the solution to 7.0 using 
4 M HCI. The mixture of cationized SPI was cooled, freeze-dried at 
20 Pa (Cryo-Rivoire equipment, Cryonext, Saint Gely du Fesc, 
France) and stored at 4 °C. Samples obtained were named SPI-C. 
The degree of cationization (DC) was evaluated using the o-phtal­
dialdehyde method (OPA) (Church, Swaisgood, Porter, & Catignani, 
1983; Goodno, Swaisgood, & Catignani, 1981) and defined as 
follows: 

OC(%) = (no - nm) x 100
no 

(1) 

where n0 is the molar quantity of amino groups per gram of native 
SPI, and nm the molar quantity of amino groups per gram of cat­
ionized SPI. 

2.3. SPI solubility profiles 

Native SPI solubility was compared to the cationized sample 
(SPI-C) and the blank sample (SPI-Cbtank treated under cationization 
conditions without GTMAC). Solubility profiles of SPI were deter­
mined as described in a previous study (Nesterenko et al., 2012). 
Briefly, protein mixtures in deionized water (5% w/w) were pre­
pared at different pH values and stirred at 70 °C for 1 h. Suspensions 
were centrifuged at 10,000 x g for 15 min (Sigma Laborzentrifugen, 
Osterode, Germany). The soluble protein fraction in the superna­
tant was analyzed using the Kjeldahl method and solubility (S%, w/ 
w) was calculated from the following equation:

S(%) = protein con�ent in the �upern�tant x 100total protem content m solution 

2.4. Microencapsulation by spray-drying 

(2) 

Protein based microparticles were prepared using a two-step 
procedure. An aqueous solution of protein (native or modified) 
was mixed with active core material. Then a liquid preparation 
(solution or emulsion) was spray-dried to obtain a microparticle 
powder. 

2.4.1. Solution/emulsion preparation 
The wall material (SPI) was dissolved in deionized water (8% w/ 

w) at 70 °C for 1 h under constant mechanical stirring (1000 rpm).
In order to allow maximum protein solubilization, the pH of the
solution was fixed at 10.5. Active material (T or M) was then mixed
with SPI solution to obtain the preparation in which the protein/



active core ratio was 2/1 ( 11.5% of total solids ). Liquid preparations 
were homogenized with a high-pressure homogenizer (APV Sys­
tems, Albertslund, Denmark) at 50 MPa. The intense mechanical 
force developed during homogenization, contributed to protein 
structure modifications, such as unfolding of proteinic chains. Polar 
and non-polar regions of the protein were exposed to new envi­
ronments, which made them more surface-active (Rampon, 
Riaublanc, Anton, Genot, & McClements, 2003). Preparations with 
T were named SPI/T, SPI-A/T and SPI-C/T for native, acylated and 
cationized soy protein respectively. Preparations with M were 
named SPI/M, SPI-A/M and SPI-C/M for native, acylated and 
cationized soy protein respectively. 

2.4.2. Solution/emulsion characterization 

Light scattering and optical microscopy were used to check good 
dispersion of T in the proteinic solution and droplet size uniformity. 
Emulsions were analyzed after high-pressure homogenization for 
1 h. The oil droplet size distribution of homogenized emulsions 
(SPI/T, SPI-A/T and SPI-C/T) and zeta-potential of protein solutions 
were measured using Zetasizer Nano-ZS equipment (Malvern In­
struments, Worcestershire, UK). To avoid multiple scattering ef­
fects, liquid preparations were diluted 100 times with deionized 
water before measurements. A relative refractive index 1Jon/ 
1Jwater = 1.12 (1Joil = 1.49, 1Jwater = 1.33) was used to analyze the data, 
assuming that ail droplets were spherical in shape. The volume 
particle diameter (D43 or Dv) was taken and used as an indicator of 
the emulsion size. Additionally, emulsions were visualized using an 
Eclipse E600 optical microscope (Nikon, Sendai, Japan), linked to a 
digital video camera (DXM1200, Nikon, Sendai, Japan) at a magni­
fication of lO00x. 

Apparent viscosity of all liquid preparations after high-pressure 
homogenization was determined at 20 °C and shear stress variation 
between 0 and 1 N/m2 for 3 min, using a Rheometer CSLlO0 (Carri­
Med LTD, Dorking, UK) with a 6 cm diameter plate-cone geometry 
and 0.035 rad angle. Liquid preparations were characterized as 
Newtonian fluids. 

2.4.3. Microparticle preparation 

Freshly homogenized liquid preparations were spray-dried 
using a Mini Spray Dryer B-290 (Büchi, Flawil, Switzerland) un­
der stable process conditions as follows: inlet air temperature at 
124 ± 4 °C and outlet at 74 ± 4 °C, drying air flow rate of 35 m3

, 

spray flow rate of 0.47 m3 /h, liquid feed flow rate of 
0.33 x 10-3 m3 /h and aspiration of 100%. Microparticles were 
collected from the cyclone collector, shut hermetically in opaque 
packaging and stored at 4 °C. The spray-drying yield was defined as 
follows: 

Spray - drying yield(%) __ m_p __ X 100
msPI+Core (3) 

where msPI+Core the initial mass of solids added in liquid prepara­
tion including SPI and active core (T or M) and m

p 
is the mass of 

collected powder (dry matter). The moisture of obtained micro­
particles was determined with an infrared moisture balance 
(Sartorius, Goettingen, Germany) by drying the sample at 105 °C to 
constant weight during 5 min. 

2.4.4. Microparticle characterization 

The amount of T retained in microparticles during drying was 
determined using UV/VIS spectroscopy (Faria, Mignone, 
Montenegro, Mercadante, & Borsarelli, 2010). Briefly, about 5 mg 
of microspheres containing the T to be determined were dissolved 
in 10 mL of cyclohexane. The solution was stirred for 10 min and 
filtered through a 0.2 µm PIFE membrane filter. The absorbance of 

the solution was measured using a UV Spectrometer (UV-1800, 
Shimadzu, Kyoto, Japan) at 298 nm. To determine M content of the 
dry microparticles, the AOAC (Association of Official Analytical 
Chemists) standard methodology with an iodometric titration 
procedure was used (AOAC, 2007). Each sample of microparticle 
was analyzed at least three times. 

The microencapsulation process was monitored for both 
retention efficiency (RE) and Joad efficiency (LE). RE was defined as 
the percentage of estimated active core content in particles ob­
tained ( Coreexp

) over theoretical core content ( Coretheo) in initial 
liquid preparation. 

RE(%) = Coreexp x 100
Coretheo (4) 

The difference between experimental and theoretical values 
was caused by active core Joss during spray-drying. LE, corre­
sponding to active core content per 100 g of powder, was calculated 
as: 

LE(%) = mcexp x 100
mm (5) 

where mc,xp is the estimated mass of core in microparticles, and mm 

the mass of the analyzed sample of microparticles ( dry matter). 
Particle size distribution was determined by the scattering 

pattern of a transverse laser light using the Scirocco 2000 equip­
ment (Malvern Instruments, Worcestershire, UK). The volume 
particle diameter (D43 or Dv) was calculated as the mean of three 
measurements per sample. 

The morphology of the microparticles was observed with a 
scanning electron microscope LEO435VP (LEO Electron microscopy 
Ltd., Cambridge, UK) operated at a voltage of 8 kV. In order to 
examine the inner structure of prepared microparticles, the pow­
der was first frozen in liquid nitrogen and broken up in a mortar. 
Samples were deposited on conductive double-sided adhesive tape 
and sputter-coated with silver. 

2.5. Statistical analysis 

The experimental data was statistically analyzed using Minitab 
16 software (State College, USA). A one-way analysis of variance 
(ANOVA) was performed to determine significant differences 
(P < 0.05) between the samples. Tukey's test was adopted as the 
multiple comparison procedure. 

3. Results and discussions

3.1. SPI modifications 

3.1.1. SPI cationization 

During cationization in alkaline aqueous media, the GTMAC 
reacted with nucleophilic sites of the protein i.e. primary amino 
groups (N-terminal and lysine residues), which were the most 
reactive ones. The reagent used (GTMAC) is toxic because of the 
presence of an epoxy group. However, during cationization at pH 
10.0 in water, the GTMAC unreacted with protein was hydrolyzed to 
(2,3-dihydroxypropyl)trimethylammonium chloride, and this sec­
ondary product did not have any toxicity. Indeed, it was used as an 
additive for care products to promote the retention of moisture 
(Baldaro, Pelizzari, Tenconi, & Li Bassi, 2008). The total hydrolysis of 
GTMAC under the experimental conditions employed for cationi­
zation of SPI, was verified by nuclear magnetic resonance (NMR) of 
hydrogen. Thus, cationized SPI was used for microencapsulation 
experiments without previous purification. 
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Fig. 1. The effect of SPI cationization conditions (temperature and molar ratio GTMAC/NH2) on (A) DC and (B) zeta potential at pH 10.0. 

From the results presented on Fig. 1A, the degree of cationiza­

tion (DC) of SPI increased with the quantity of GTMAC in the re­

action media, and the temperature. Similar phenomena had been 

reported in a study dealing with cationization of starch using 

GTMAC (Kavaliauskaite, Klimaviciute, & Zemaitaitis, 2008). 

The highest modification rate (DC = 91.6%) was obtained at a 

molar ratio GTMAC/NH2 of 4/1, after 1 h reaction time at 70 °c. To 

confirm the presence of positively charged groups on SPI, zeta­

potential measurements were made. The zeta potential of native 

SPI at pH 10.0 was -44.4 mV, and as shown on Fig. 18, the zeta­

potential of SPI after cationization had increased. However, values 

obtained were negative because of the high amount of negative net 

charges (Cao-) on the proteinic chains in alkaline media (pH 10.0). 

After cationization, the majority of primary amino groups (NH2) 
were replaced by positively charged functions. Thus, the augmen­

tation in zeta-potential with increase of DC confirmed qualitatively 

the presence of positively charged trimethylammonium groups on 

proteinic chains. 

The effect of SPI cationization on its functional properties, 

especially the solubility profiles, was studied (Fig. 2). The solubility 

of SPI and SPI-C was compared to a blank sample (SPI-CbJank treated 

for 1 h at 70 °C and pH 10.0 without GTMAC). The blank sample was 

more soluble than native SPI for ail pH values. This observation 

could be related to the partial unfolding of proteinic chains during 

treatment at alkaline pH and high temperature. On the other hand, 

for native SPI and SPI-CbJank samples, the isoelectric point was in a 

pH range between 4.5 and 5.0. However, the attachment of posi­

tively charged groups to SPI by cationization resulted in an obvious 
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Fig. 2. Effect of cationization on the solubility profile of SPI. 

shift of the protein isoelectric point into the alkaline range (pH of 

6.0-6.5). After cationization, the number of net positive charges of 

the protein was increased and the number of basic NH2 functions 

reduced. This affected the overall balance of acid to basic groups in 

the protein and resulted in the shift phenomenon. 

The solubility of SPI-C was higher than the solubility of SPI at pH 

1-10, which confirmed a significant contribution of polar cationic

groups on protein affinity with water. At acidic pH, positive charges

fixed to SPI by cationization increased the repulsion between pro­

teinic chains. This favored protein-solvent interactions and

explained the increase in protein solubility. Conversely, in alkaline

solution (pH> 10), the attraction between cationic ((CH3)3N+) and

carboxylic (Cao-) groups resulted in the decrease of protein-sol­

vent interactions. Thus the lowest protein solubility could be

explained by the formation of more compact structures.

The cationized sample SPI-C (DC of 91.6%) obtained at 70 °C and 

molar ratio GTMAC/NH2 of 4/1, was used as wall material for 

microencapsulation experiments. 

3.1.2. SPI acylation 

In agreement with our previous report (Nesterenko et al., 2012), 

soy protein ( degree of acylation of 33.2%) modified with dodeca­

noyl chloride (DDC) was the more efficient wall material for T 

microencapsulation compared to other modified proteins (hydro­

lyzed, hydrolyzed and acylated, acylated with octanoyl chloride and 

hexadecanoyl chloride). Therefore, SPI acylated with DDC (molar 

ratio DDC/NH2 of 0.5/1) was selected for the present study. 

3.2. Microencapsulation with native and modified SPI 

3.2.1. Effect of SPI modifications on solution/emulsion properties 

The preparation of a feed liquid containing wall material and an 

active core, was the first step involved in the process of microen­

capsulation by spray-drying. In the case of T encapsulation, the 

liquid preparation was an oil-in-water emulsion, whereas it was a 

solution in the case of M coating. The proteinic matrix material 

used for T and M microencapsulation was native (SPI), acylated 

(SPI-A) and cationized (SPI-C) soy protein. 

The different characterizations of solutions/emulsions and mi­

croparticles are summarized in Table 1. Structural modifications of 

proteinic chains affected the viscosity of liquid preparations and the 

mean droplet size in emulsions. 

Fatty acid hydrophobie chains attached to water-soluble pro­

tein by acylation favored the improvement of the amphiphilic 

character of SPI. Moreover, the DDC unreacted with SPI was hy­

drolyzed to sodium dodecanoate having surfactant properties. This 

enhancement in surface-active properties of SPI resulted in lower 

emulsion viscosity for sample SPI-A/T compared to sample SPI/T. A 

similar result was reported earlier (Derkatch et al., 2007), and the 



Table 1 

Properties of liquid preparations and spray-dried microparticles based on native and modified SPI. 

Measured property Wall/core materialsg 

SPI/T SPI/M SPI-A/T SPI-A/M SPI-C/T SPI-C/M 

Emulsion droplet size, Dv (µm) 1.1 ± 0.02" ND 0.7 ± 0.04c 
ND 0.9 ± 0.03b 

ND 

Liquid preparation viscosity (mPa s) 15.0 ± 0.02" 8.9 ± 0.03c 8.o ± o.02ct 9.8 ± 0.04b 4.1 ± 0.03f 5.8 ± 0.04• 
Spray-drying yield (%) 68 81 66 77 61 87 
REh (%) 79.7 ± 1.0b 91.8 ± 0.7" 94.8 ± 2.2" 57.3±4.l c 38.3 ± 1.0d 92.3 ± 2.8" 
LEi (%) 26.3 ± 0.6b 30.3 ± 0.2" 31.3 ± 0.7" 18.9 ± 1.4c 12.6 ± 0.3d 30.5 ± 0.9" 
Mean particle size (µm) 9.3 ± 0.2" 5.2 ± 0.2c 7.7 ± 0.2b 4.8 ±0.SC 7.6 ± 0.3b 4.9 ± o.zc 

a-f Different Ietters in the same line indicate a statistical difference between the mean values (P < 0.05 ).
g SPI, SPI-A and SPI-C: native, acylated ( degree of acylation - 33.2%) and cationized ( degree of cationization - 91.6%) soy protein isola te respectively; T: a-tocopherol; M: 

ascorbic acid. 
h RE: retention efficiency of a-tocopherol determined by UV spectroscopy and retention efficiency of ascorbic acid determined by iodometric titration. 
i LE: load efficiency or active core content per 100 g of powder. 

phenomenon of viscosity fall was attributed to the changes in the 

composition of interface layers in the emulsion. The SPI-A/T 

emulsion (with acylated protein) had a reduced oil droplet size 

compared to SPI/T emulsion (0.7 µm and 1.1 µm respectively). The 

uniformity of droplet size in emulsions obtained was observed by 

optical microscopy (Fig. 3A). The intense mechanical forces 

applied to the pre-emulsion during high-pressure homogenization 

resulted in partial unfolding of proteinic chains and oil droplet 

dispersion. The emulsion was stabilized by an adsorbed layer of 

surface-active proteins, forming a protective barrier around the 

dispersed oil droplets. This protein layer provided immediate and 

effective protection of the fine droplets against coalescence and 

gave a good stability to the emulsion. The decrease in droplet 

diameter observed for SPI-A/T emulsion compared to SPI/T emul­

sion, could be due to the increased surface activity of SPI after 

acylation, and thus better oil droplet dispersion. The same 

behavior was observed for sunflower protein/a.-tocopherol emul­

sion in our previous study (Nesterenko, Alric, Violleau, Silvestre, & 

Durrieu, 2013). 

On the other hand, grafting of cationic quaternary ammonium 

groups to native SPI also involved a decrease in viscosity for both T 

and AA Iiquid preparations. After cationization, proteinic matrix 

chains became more hydrophilic (Kiick-Fischer & Tirrell, 1998; 

Zohuriaan-Mehr et al., 2009). This increase in hydrophilic 
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properties of SPI favored the mobility of proteinic chains in aqueous 

media and, presumably, could explain the decreased viscosity for 

samples SPI-C/T and SPI-C/AA. A decrease in the mean droplet size 

in the case of T based emulsions was observed. However, the optical 

micrograph of the SPI-C/T emulsion (Fig. 3A) showed the formation 

of coalesced T droplets with diameters from 5 to 10 µm. The 

improved hydrophilic character of SPI chains could reduce their 

affinity with hydrophobie T resulting in Jess efficient protein 

adsorption on the oil droplet surface and thus reduced protection 

against coalescence and emulsion stability. 

Volume droplet size distributions of oil-in-water emulsions are 

shown in Fig. 3B. Ali the emulsions had droplet size distributions 

with explicit bimodal behavior. A second minor population with a 

size of about 5 ± 2 µm could be attributed to some coalesced 

droplets. The droplet size dispersion of SPI/T was narrower than 

that of SPI-A/T, which confirmed that the droplet size distribution 

was more uniform in the case of native protein based emulsion. It is 

important to note that this population of coalesced droplets was 

larger in the SPI-C/T emulsion, which confirmed the decrease in 

emulsion stability. 

3.2.2. Effect of SPI modification on the microencapsulation process 

A significant difference in spray-drying yield for emulsions with 

T (61-68%) compared to preparations with AA (77-87%) was 
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Fig. 3. (A) Optical micrographs (scale bar - 10 µm) and (B) droplet size distributions of T based emulsions with native (SPI/Tl, acylated (SPI-A/Tl and cationized (SPI-C/Tl soy 
protein. 



observed. This could be attributed to the hydrophobie and viscous 

character of a.-tocopherol that involved a higher microparticle 

accumulation inside the drying chamber. In addition, an increase in 

microparticle size for spray-dried T based emulsions (7.6-9.3 µm) 

compared to AA based solutions (4.8-5.2 µm), was also due to a 

microparticle agglomeration effect induced by the presence of 

surface oil. Nevertheless, these results demonstrated that native 

soy proteins could efficiently encapsulate hydrophobie (T) and 

hydrophilic (AA) core material with retention efficiencies of 79.7% 

and 91.8% respectively. Higher retention efficiency of AA compared 

to T could be attributed to the hydrophilic character of SPI and its 

better affinity to the hydrophilic core. 

A wide range ofbiopolymers has been reported in the literature 

as efficient wall materials for ascorbic acid encapsulation by spray­

drying (retention efficiency varying from 85% to 101%). These 

include: maltodextrin and cashew tree gum (Moreira, Azeredo, 

Medeiros, Brito, & Souza, 2010), gum Arabie and rice starch 

(Trindade & Grosso, 2000), pea protein and carboxymethylcellulose 

(Pierucci, Andrade, Baptista, Volpato, & Rocha-Leao, 2006). The 

microencapsulation of a.-tocopherol by spray-drying has been 

studied with different natural wall materials such as maltodextrin 

and gum Arabie (Faria et al., 2010), pea protein and carboxymeth­

ylcellulose (Pierucci, Andrade, Farina, Pedrosa, & Rocha-Leao, 

2007), and showed retention efficiency ranging from 73% to 87%. 

Compared to literature values, the retention efficiencies obtained in 

this study are highly satisfactory. 

The results reported in Table 1 demonstrated that SPI acylation 

enhanced the RE of the hydrophobie active substance (T) from 79. 7% 

to 94.8% but reduced the RE of the hydrophilic active substance (AA) 

from 91.8% to 57.3%. During drying, the surface composition of 
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microparticles was significantly influenced by the nature of feed 

liquid ingredients. In our case, the proteins were the most surface­

active components in the liquid preparation and they would 

adsorb to the air-liquid interface of the drying droplets. This pref­

erential adsorption combined with protein film forming properties, 

was responsible for the formation of a smooth protein skin on the 

microparticle surface Uayasundera, Adhikari, Aldred, & Ghandi, 

2009). SPI acylation increased hydrophobie and surface-active 

character of proteinic chains. This modification was successful 

with regard toT encapsulation, because of hydrophobie interactions 

occurring between wall material and active core (Nesterenko et al., 

2012; Nesterenko, Alric, Violleau, et al., 2013). After SPI acylation, 

the hydrophobie microdomaines were formed in water because of 

hydrophobie association between fatty acid moities (Lee, Jo, Kwon, 

Kim Y.H., &Jeong, 1998). Thus, the formation ofprotein film on the 

air-liquid interface was more effective, the exposure of oil to the 

microparticle surface was minimized, and T was better protected. 

Conversely, acylated SPI showed much Jess effectiveness in micro­

encapsulation of a hydrophilic compound (AA), because of the 

reduced affinity between core and wall material. 

In contrast to the positive effect of SPI acylation on T retention 

efficiency, the attachment of polar trimethylammonium functions 

to SPI by cationization resulted in the decrease of RE values for this 

hydrophobie substance. This was due to the enhanced hydrophilic 

character of cationized SPI, which led to lower emulsion stability. 

More oil could be expected at the microparticle surface and the Joss 

of active core during spray-drying was increased. On the other 

hand, the enhanced spray-drying yield for SPI-C/AA preparation 

was observed because of better affinity between active core and 

modified wall material. 
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Fig. 4. (A) Scanning electron micrographs ( external and internai structures. scale bar - 2 µm) and (B) particle size distributions of SPI-A/T and SPI/M microparticles. 



3.2.3. Effect of SPI modification on microparticle size and 

morphology 

As can be clearly seen in Fig. 4A, the morphology of spray-dried 

microparticles was characterized by spherical shape with di­

ameters ranging from 1 to 10 µm. The surface of SPI microparticles 

was smooth and compact without presence of fissures. For the SPI­

A/T sample, the inner structure of partiel es showed the presence of 

small pores indicating that oil droplets were well distributed in the 

protein matrix. In the case of AA based microparticles, the disper­

sion of active core crystal powder in the protein matrix, involved 

the formation of a dense non-porous wall. 

The microparticle size distributions displayed in Fig. 4B and 

results presented in Table 1, show that AA based microparticles 

(5.2 µm for SPI/AA) had lower average size compared to T based 

microparticles (9.3 µm for SPI/T). This variation in the particle size 

was most likely due to the agglomeration ofT based microparticles 

because of the presence of surface oil. Moreover, the difference in 

morphology of spray-dried droplets (homogeneous solution SPI/AA 

or heterogeneous emulsion SPI/T) and in density of active core 

materials affected the size of microparticles produced. As reported 

in the literature, the expected size of microparticles with vegetable 

protein produced by spray-drying, ranged from 2-3 µm (Pierucci 

et al., 2006; Pierucci et al., 2007) to 9-18 µm (Favaro-Trindade 

et al., 2010; Ortiz et al., 2009), which was comparable and within 

the particle size range obtained in this work. 

4. Conclusions

This paper has demonstrated that some suitable modifications 

of proteinic matrix material can increase the microencapsulation 

efficiency of different active compounds. For this, soy protein 

isolate (SPI) was modified by acylation and cationization and used 

as wall material for a-tocopherol (T) and ascorbic acid (AA) 

microencapsulation using the spray-drying technique. 

The attachment of a polar trimethylammonium function to SPI 

by cationization affected its hydrophilic properties, solubility and 

isoelectric point. Protein cationization resulted in reduced T 

retention and in enhanced spray-drying yield for AA based prep­

arations. SPI acylation led to lower emulsion droplet size and 

viscosity because of enhanced surface-active properties. Due to 

the better affinity between hydrophobie core material and acyl­

ated SPI, the retention efficiency was enhanced from 79.7% to 

94.8%. Microparticles obtained had spherical shape and an internai 

morphology depending on the nature of the active core (porous 

for liquid core and dense for crystal core). Thus, native and 

modified SPI appear to be promising carriers for different delivery 

systems, such as nutraceutical, cosmetic or pharmaceutical 

products. 
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