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Abstract

We present a method for computing first order asymptotics of semiclassical spectra for

1-D Bogoliubov-de Gennes (BdG) Hamiltonian in the Theory of Supraconductivity. A more

rigorous approach taking also into account tunneling corrections, will be discussed elsewhere.

Our results have been announced in [IfaRou].

1 Introduction and statement of the result

In many situations, finding the spectrum for a semi-classical Hamiltonian reduces locally to

a 1-D problem. This follows for instance from adiabatic approximation, separating the trans-

verse modes from the longitudinal ones. Thus its spectrum is given in a good approximation

by Bohr-Sommerfeld quantization rule. This approach is relevant for graph-like systems, as

arises in the modelisation of semi-conductors or metallic nanomaterials. In this paper we are

interested in a model of supraconductivity, accounting for Andreev reflection between SNS

junctions (supraconducting contacts). A similar model when replacing the Normal Metal by

a Ferromagnetic material, and the spin of the quasi-particles is taken into account, is called

SFS junction [CaMo]. 1
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1.1 Bogoliubov-de Gennes Hamiltonian

BdG Hamiltonians describe the dynamics of a quasi-particle (pair electron-hole) within Supra-

conductivity. Our framework, that we briefly recall below, is the dynamics of a quasi-particle

without spin (SNS junction). It is described in [ChtLesBla], [DuGy] and based on earlier work

by [An] and [deJoBe]. For a detailed insight into the theoretical and experimental setting in

supraconductivity, see [BCS], [deGe], [KeSo], [Lé].

Consider a narrow metallic lead, with few transverse channels, connecting two supercon-

ducting contacts. For simplicity, the lead is identified with a 1-D structure, the interval

x ∈ [−L,L]. The reference energy in the lead is taken as the Fermi level EF , and the longi-

tudinal problem reduces to describing the dynamics of a quasi-particle (hole/electron) in the

effective chemical potential µ(x) = EF −E⊥(x), where E⊥(x) denotes the transverse energy of

the channel, obtained from adiabatic approximation. We shall ignore channel mixing between

different transverse modes, and consider only one transverse mode.

Interaction with the supraconductor bulk is modeled through the complex order param-

eter, or superconducting gap, ∆0e
±iφ/2, which extends smoothly in the metal to a function

∆(x)eiφ(x)/2, 0 ≤ ∆(x) ≤ ∆0, accounting for the “dirty junction”. Here φ(x) = sgn(x)φ,

∆(x) ≡ 0 in |x| ≤ L − ℓ, and we assume ℓ ≪ L. Note also that the phases φ(x) and the gap

function ∆(x) should satisfy some consistency relations due to coupling between supraconduc-

tors and the lead. This difficult problem related to the so-called BCS gap equation, will not

be discussed here.

As is shown in [ChtLesBla], in case of a “clean junction”, namely when ∆(x) is sharp

(discontinuous at x = ±L), the dynamics (in particular, scattering properties) of the quasi-

particle is fairly well described by the semi-classical BdG Hamiltonian

P(x, ξ) =

(
ξ2 − µ(x) ∆(x)eiφ(x)/2

∆(x)e−iφ(x)/2 −ξ2 + µ(x)

)
(1)

This Hamiltonian was extended in [DuGy] in higher dimensions for a smooth ∆(x), allowing

also for a magnetic field. The chemical potential µ(x) and order parameter ∆(x) are assumed

to be constant outside the lead, namely µ(x) = µ0, and ∆(x) = ∆0 for |x| ≥ L, and ℓ should be

sufficiently large with respect to the typical wave-length h, the “renormalized Planck constant”

h in (1), such that h2 = ~
2/2m.

We use throughout Weyl h-quantization P(x, hDx) on L2(R) ⊗ C2. We assume that

P(x, hDx) enjoys time-reversal and PT symmetries : If I denotes complex conjugation Iu(x) =
u(x), i.e. I quantizes the reflection on the ξ axis, and ∨ the reflection ∨u(x) = u(−x), we have

IP(x, hDx) = P(x, hDx)I, ∨IP(x, hDx) = P(x, hDx)I∨ (2)

Thus, P(x, hDx) shares (formally) some features with Dirac operators, such as PT symmetry,

and negative energies.
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Electrons (e−) and holes (e+) with energy E < infR µ(x), E < ∆0 form so-called Andreev

states sensitive to the variation of phase parameter φ between the superconducting banks.

The energy surface ΣE = {det(P − E) = 0} = {(ξ2 − µ(x))2 + ∆(x)2 = E2} is foliated

by two periodic curves Λ>E ⊂ {ξ > 0} and Λ<E ⊂ {ξ < 0} symmetric with respect to ξ = 0.

Because of the smoothness of ∆, the reflections occur in ]−L,L[, we denote by (±xE , ξE) ∈ Λ>E ,

the one-parameter family of focal points, where ΣE turns vertical, i.e. ∂ξ det(P − E) = 0, or

ξ2 = µ(x), which implies ∆(x) = E. Due to PT symmetry (∆ is an even function), this gives

∆(±xE) = E with xE ∈]x0 − ε1, x0 + ε1[ say. We do not consider the problem of “clustering”

of eigenvalues as E → 0 (Fermi level).

In the “step potential” limit α → ∞, for x near x0, ∆(x) can be safely approximated by

a linear function such that ∆(x0) = E0, and µ(x) by a constant µ, for simplicity we assume

µ = µ0. So near x0 we have

φ(x) = φ, µ(x) = µ > E, ∆(x) = E + α(x− xE) (3)

The condition (xE , ξE) ∈ ΣE gives ξ2E = µ > E, ∆(xE) = E. Since the electron/hole states

become semi-classically undistinguishable at aE = (xE , ξE), we call it sometimes a “branching

point”. Contrary to the standard (scalar) potential well problem, with a turning point at

ξE = 0, here the kinetic energy, common at aE to the hole and the electron, is non zero, which

truly accounts for a “current” between the superconducting banks.

This is what we call the Normal-Supraconductor (NS) junction model. For the dynamics

of the quasi-particle associated with (1), the mechanism goes roughly as follows.

An electron e− moving in the metallic lead, say, to the right, with energy 0 < E < ∆0

below the gap and kinetic energy K+(x) = µ(x) +
√
E2 −∆(x)2 is reflected back as a hole e+

from the right bank of the supraconductor, injecting a Cooper pair into the superconducting

contact. The hole has kinetic energy K−(x) = µ(x)−
√
E2 −∆(x)2, and a momentum of the

same sign as this of the electron.

When inf [−L,L]K−(x) > 0 it bounces along the lead to the left hand side and picks up a

Cooper pair in left bank of the supraconductor, transforming again to the original electron

state, a process known as Andreev reflection. Since P(x, hDx) is (formally) self-adjoint, there

is of course also an electron moving to the left, and a hole moving to the right, for no net

transfer of charge can occur through the lead in absence of thermalisation.

Nevertheless, when φ 6= 0, this process yields so called phase-sensitive Andreev states,

carrying supercurrents proportional to the φ-derivative of the “eigen-energies” of P(x, hDx).

Actually, the hole can propagate throughout the lead only if inf [−L,L] µ(x) ≥ E. Otherwise,

it is reflected from the potential µ(x) in the junction, and Andreev levels are quenched at higher

energies, i.e. transform into localized electronic states. In this work, we shall focus on the case

of the supercurrent (Andreev reflection) i.e. µ(x) > E for all x ∈ [−L,L].
This very simplified model doesn’t take into account some basic parameters in the Theory

of Supraconductivity, such as the coherence length ξ = ~vF /π∆0 (vF being Fermi velocity),
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Figure 1: Phase-space picture: The Lagrangian manifolds Λ>E and Λ<E when inf [−L,L] µ(x) > E
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Figure 2: Energy picture: The potential curves when inf [−L,L] µ(x) > E

or the penetration depth. However when the junction is long enough, i.e. when L is large

compared to ξ, it is shown is [ChtLesBla] there are relatively many quantum levels in the

system, which is precisely the situation we are interested in. This holds if we think of ξ to

be comparable with (or smaller than) ℓ, and assume both are much smaller than L, and h is

much smaller than ξ and ℓ. See [DuGy], Eq.(5.94), and [ChtLesBla] for other conditions in

case ∆ is sharp but µ(x) is smooth. At least from a mathematical point of vue, (1) gives a

fairly good insight into the scattering process, as we shall see below.

We denote by Λ>ρ (E) = Λ>±(E) the branches of Λ>E defined by ξ =
√
µ(x)±

√
E2 −∆(x)2

(plus sign for e−, minus sign for e+), and similarly for Λ<E . Actually it is misleading to

consider Λ>E as a whole, since it belongs to different objects: no Maslov index will occur in the

quantization rules.

We shall consider [−xE, xE ] essentially as the “classically allowed region” at energy E, so

that classical action integrals, computed over this interval, give Bohr-Sommerfeld quantization

rules at leading order, for the semi-classical spectrum. Nevertheless, we keep track of the
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complex germs of the microlocal solutions at ±xE. These microlocal solutions have a complex

phase outside [−xE, xE ], contrary to the scalar case (Schrödinger operator) where the phase

becomes purely imaginary.

Since the pseudo-particle is no longer governed by BdG equations inside the supraconduct-

ing bulk, letting |x| → ∞ makes sense only when the typical wave-length h is much smaller

than ℓ.

1.2 Qualitative aspects of the spectrum

We do not attempt here at deriving rigorous spectral properties for BdG Hamiltonian. Observe

that P(x, hDx) is a symmetric operator with PT symmetry, but maybe not essentially self-

adjoint, the difficulty being similar in Dirac equation, see e.g. [Wo]. Since we are mostly

concerned with the construction of quasi-modes, we shall therefore refer to the pseudo-spectrum

of P(x, hDx) rather than to its spectrum. The (semi-classical) pseudo-spectrum of P = P(φ)

is a priori not invariant under E 7→ −E, but P(φ) is mapped onto

IσyP(φ)σyI = −P(φ), σy =

(
0 −i
i 0

)

The energy surface ΣE = {det(P(x, ξ) − E) = 0} depends only on E2, which we explain

physically by the existence of “negative energies”. For 0 < E < ∆0, ΣE is compact, so we

expect the real part of the pseudo-spectrum to be discrete in this interval. On the other hand

we know [ChtLesBla] that the spectral dynamics is also conveniently described within the

scattering matrix formalism in the “clean junction limit” ℓ = 0. This is reminiscent of the fact

that 0 < E < µ is a scattering level for ξ2 − µ(x): because of the relation −E < E < µ(x) =

−V (x), we have ξ2 + V (x) = E and V (x) < E. So the pseudo-spectrum near ]0,∆0[ consists

actually in “pseudo-resonances”, but we will not intend to make this more precise. Instead

we content ourselves to compute by Bohr-Sommerfeld quantization rules their leading order

asymptotics, which actually turns out to be real. Due to the symmetry IΛ>E = Λ<E inducing

tunneling properties, they should actually come up in pairs, with small (real or complex)

splitting.

1.3 An outlook at monodromy operator and scattering matrix

To understand the monodromy properties of solutions for BdG equation, it is useful to make

the analogy with the scattering process in the scalar case, see [Ar,Sect.5]. We shall however

follow another route, and mention this approach only as a guideline.

1.3.1 Schrödinger operator on the real line

Consider the operator P = −h2∆+ V together with the eigenvalue equation

−h2u′′(x) + V (x)u(x) = Eu(x) (4)

5



with a compactly supported potential V (x), and assume the energy E = k2 of the particle is

strictly positive.

To the left of the support of V , (4) coincides with the equation

−h2u′′(x) = k2u(x) (5)

for the free particle whose solution span a 2-D complex vector space Z ≈ C2, called the state

space of the free particle.

Hence Schrödinger equation has 2 solutions which coincide with f1 = eikx and f2 = e−ikx to

the left of the support, called incoming to the right and outgoing to the left. In the same way,

there exist 2 solutions which coincide with eikx and e−ikx to the right of the support, called

outgoing to the right and incoming to the left, respectively. It is easy to see that the particle

cannot be totally reflected to the left, but can depart totally to the right (this is obviously the

case if V ≡ 0).

Since (5) has real coefficients, its solutions also span a 2-D real vector space ZR ≈ R2. Real

solutions e1 = cos kx, e2 = sin kx are connected with complex solutions f1, f2 by f1 = e1 + ie2

and f2 = e1 − ie2.

The monodromy operator M(k) of (4) with a potential of compact support is a linear

operator mapping the state space of a free particle with energy E = k2 into itself. It is defined

in the following way. To a solution u− of (5) in Z we assign a solution u of (4) coinciding

with u− to the left of the support; in turn we assign to u its value u+ ∈ Z to the right of

the support, and set u+ = M(k)u−. In other terms, the monodromy operator acts according

to the formula f1 + Bf2 7→ Af1, when (4) has a solution equal to f1 + Bf2 to the left of the

support and to Bf1 to the right of the support. We call |A|2 the transmission coefficient and

|B|2 the reflection coefficient.

Considering the real solutions of (4), (5) we can show that the phase flow of (4) preserves

area. It follows that M(k) ∈ SU(1, 1), the group of complex 2× 2 matrices with determinant

1 preserving the Lorenz form |z1|2 − |z2|2.
Since (4) defines a self-adjoint operator with real coefficients, the monodromy operator

takes the form

M(k) =

(
1/A −B/A

−B/A 1/A

)
∈ SU(1, 1) (6)

In particular, |A|2 + |B|2 = 1.

Along with the passage from the left to the right of the support of V , we can consider the

passage from the right to the left. The corresponding solution v of (4) is e−ikx/h+B2e
ikx/h to

the right of suppV , and A2e
−ikx/h to the left. The scattering matrix is defined as

S(k) =

(
A B

−BA/A A

)
∈ U(2)

Resonances of (4) are then defined as E = k2 ∈ C, where k is a pole of S, and physical
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resonances those with Im k > 0. Thus E is a resonance iff the solution of (4) is purely outgoing

as x→ +∞ and x→ −∞.

The poles coincide with the poles of meromorphic extension of the resolvent (P − k2)−1

from the physical half-plane ImE < 0 to the second sheet ImE > 0.

1.3.2 BdG equation

Consider now BdG equation (P(x, hDx) − E)U = 0 for large |x|, i.e. when ∆(x) = ∆0,

µ(x) = µ0 > E, and look for solutions of the form

U(x;h) =

(
a b

c d

)(
eikx/h

eiℓx/h

)

The secular equation decouples into 2 identical systems for (a, c) and (b, d), which have non

trivial solutions iff ℓ = k with k =
√
µ0 + i

√
∆2

0 − E2. So eigenfrequencies come in opposite

and complex conjugate pairs (±k,±k), and the corresponding solutions are determined as

follows:

Let Z be the 2-D complex line bundle spanned by F±
1 (x) =

(eiφ(x)/2
−i

)
e±ikx/h, φ(x) = sgn(x)φ

(associated with the scattering process e+ → e−), and Z be the 2-D complex line bundle

spanned by F±
2 (x) =

(eiφ(x)/2
i

)
e±ikx/h (associated with the scattering process e− → e+). Then

the space of solutions of exponential type to (P(x, hDx)−E)U = 0 for large |x|, consists in the

4-D complex vector space Z ⊕ Z, and Z,Z are orthogonal for the usual pointwise Hermitian

product in C2.

According to the general scheme (see [ReSi]), we declare that E ∈ C is a Z-resonance iff

the Z-component of the wave function solving BdG equation is outgoing at infinity, i.e.

U(x, h) = A

(
eiφ/2

−i

)
eikx/h, x→ +∞, U(x, h) = B

(
e−iφ/2

−i

)
e−ikx/h, x→ −∞

Similarly we say that E is a Z-resonance iff the Z-component of the wave function is outgoing

at infinity, i.e.

U(x, h) = A

(
eiφ/2

i

)
e−ikx/h, x→ +∞, U(x, h) = B

(
e−iφ/2

i

)
eikx/h, x→ −∞

So for both sets of resonances, the corresponding solution is simultaneously decaying, and

outgoing at ±∞. These sets of resonances need not coincide (although they come up in pairs),

but their real parts are actually given by Bohr-Sommerfeld quantization rules.

We define next the monodromy operator MZ(k) acting on Z according to the formula

(
e−iφ/2

−i

)
eikx/h +B

(
e−iφ/2

−i

)
e−ikx/h 7→ A

(
eiφ/2

−i

)
eikx/h

and similarly for MZ(k).
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It is no longer true however that MZ(k), MZ(k) are in SU(1,1), but we can expect them

instead to be in U(1,1). Scattering matrices SZ(k), SZ(k) can be defined as in the scalar case,

and expected also to have a meromorphic extension to the complex plane, their poles defining

the resonances EZ and EZ .

Similar ideas should apply for the SFS junction, see Sect.8.

In fact we shall proceed differently: assuming already existence of (pseudo-)resonances, we

construct “relative monodromy operators” Ma,a′
ρ (E), ρ = ± labelling the quasi-particle, in

the interval [−xE, xE ] (the “classically allowed region”) which belong to U(1,1) for the “flux

norm”, the Lorenzian metric defined by σx =

(
0 1

1 0

)
.

As in Fig.1, let γ>,ρ(E) ⊂ ΣE (ρ = 1 for e−, ρ = −1 for e+) be the branch of Λ>E =

ΣE ∩ {ξ > 0} starting at (−xE , ξE) and ending at (xE , ξE). Consider similarly γ>,ρ(E).

Bohr-Sommerfeld (BS) quantization rules will be derived from Ma,a′
ρ (E), through the as-

sociated Gram matrices G(a,a′)
ρ (E) (see Definition 1.1) and their determinants (Jost function).

Thus the real part of EZ and EZ , which we expect to be the resonances of the problem deter-

mined by the procedure above, will be determined at leading order in h, as the zeroes of Jost

functions.

Using complex WKB solutions, as we sketch in Sect. 5.2.1, we could also construct relative

monodromy operators M+∞,a
ρ (E) and Ma′,−∞

ρ (E) in the intervals [xE ,+∞[ and ]−∞,−xE ].
We expect that Mρ(E) = M+∞,a

ρ (E)Ma,a′
ρ (E)Ma′,−∞

ρ (E) stands for the “global monodromy

operator”, as (6) in the case of Schrödinger operator. Matrix Mρ(E) would also provide a

Jost function, that should vanish at the resonances, but since it can be computed only mod

O(h), this is not sufficient to account for exponentially small effects. Thus we would need yet

another argument, based on Grushin problem, see [Sj], [HeSj], [Ro], [IfaLouRo].

Thus matrices Mρ(E) appear as “branches” of a “global” monodromy operator M(E) we

know very little about, but since Mρ(E) account for the interaction at the branching points,

we can consider they carry the main relevant information.

There is actually a conserved quantity for BdG equation, defined as follows. Let U(x) =
(u1(x), u2(x), u3(x), u4(x)) with

u2(x) = hDxu1(x), hDxu2(x) = (µ(x) + E)u1(x)−∆(x)eiφ(x)/2u3(x)

u4(x) = hDxu3(x), hDxu4(x) = (µ(x)− E)u3(x) + ∆(x)e−iφ(x)/2u1(x)

By the discussion above, there exists a system of fundamental solutions associated with BdG

equation (P(x, hDx)− E)U(x) = 0, namely
(
U1(x),U2(x),U3(x),U4(x)

)
. So we can form

W (x) = det
(
U1(x),U2(x),U3(x),U4(x)

)

that is simply the Wronskian of the system. It is easy to check that W (x) = Const., but we

will not further elaborate on these general facts, and focus on computing Bohr-Sommerfeld

quantization conditions instead.
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1.4 Main result

Extending the method of positive commutators elaborated in [Sj], [HeSj], [Ro] and [IfaLouRo],

we obtain Bohr-Sommerfeld quantization rules for the quasi-particle, accounting for Andreev

currents.

The full justification of BS, that is beyond the scope of this paper, would consist in solving a

Grushin problem, which leads to construct a matrix E−+(E), singular precisely at the spectral

values: (1) in the case of 1-D Schrödinger operator with periodic orbits [IfaLouRo], E−+(E)

is just a scalar, the determinant of Gram matrix ; (2) in the case of 1-D Schrödinger operator

with homoclinic orbit [Sj], E−+(E) is a 2×2 matrix ; (3) in the case of 1-D Born-Oppenheimer

2× 2 Hamiltonian with crossing of modes [Ro], E−+(E) is a 4× 4 matrix.

Let us now make our statements more precise. Consider Weyl h-quantization P(x, hDx)

on L2(R) ⊗ C2 of BdG Hamiltonian (1), where we recall that µ(x) > 0 and ∆(x) ≥ 0 are

smooth, even functions on the real line, verifying µ(x) = µ0, ∆(x) = ∆0 when |x| > L, and

∆(x) ≡ 0 in |x| ≤ L − ℓ, with L/ℓ large enough. Recall also φ(x) = sgn(x)φ. Let E0 > 0 be

a “scattering energy” namely E0 < infR µ(x), E0 < ∆0, and x0 ∈]L − c1ℓ, L − c2ℓ[ for some

0 < c2 < c1 < 1 such that ∆(x0) = E0. In ]L− c1ℓ, L− c2ℓ[ we assume µ(x) = µ is a constant,

and ∆(x) to vary linearly as in (3), where the slope α of the same order of magnitude as L/ℓ:

this hypothesis will be crucial to reduce our analysis to Weber equation near the focal points.

For E near E0, let (xE , ξE) ∈ ΣE be the focal points in x > 0, ξ > 0 with xE ∈]L−c1ℓ, L−c2ℓ[,
ξ2E = µ > E, and ∆(xE) = E.

Recall γ>,ρ(E), γ<,ρ(E) ⊂ ΣE from Sect. 1.3.2. Ignoring tunneling effects in momentum,

we only consider γ>,ρ(E) and denote it for short γρE or simply by ρ.

So far we have only discussed “pseudo-resonances” at a heuristic level, but it is more

convenient to define them somewhat abstractly.

Definition 1.1. Consider the 2× 2 Gram matrix (see (175) below)

G(a,a′)
ρ (E) =

((
U1|F−ν−1,ρ,a

ε,ω

) (
U2|F−ν−1,ρ,a

ε,ω

)
(
U1|F ν,ρ,a

′

ε,ω

) (
U2|F ν,ρ,a

′

ε,ω

)
)

(7)

Here F j,a,ρε,ω (resp. F j,a
′,ρ

ε,ω ) denote some basis of the co-kernel of P(x, hDx) microlocalized on

γρE near a (resp. a′), and U1, U2 some vectors (WKB solutions) in the kernel of P(x, hDx) we

shall compute in Sect. 5 and 6. Indices ν,−ν − 1, ε, ω parametrize solutions of Weber Eq. as

in Sect.2.1 and 2.2, and G(a,a′)
ρ (E) doesn’t depend on the choice of ε, ω when ε ω = 1. We call

Jost function the determinant detG(a,a′)
ρ (E), and define, mod O(h), the pseudo-resonances E

of P(x, hDx) belonging to ρ, as the zeroes of Jost function.

Here G(a,a′)
ρ (E) is computed from the “relative monodromy matrix” Ma,a′

ρ (E) ∈ U(1, 1)

(see (144) below), that relates the expressions of U1, U2 near a and near a′, when moving along

ρ.
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This definition is extrapolated from the case of Schrödinger operator, where Gram matrix

is associated with the entire loop γE over x ∈ [−xE, xE ], see [IfaLouRo]. Vanishing of Jost

function in that case means that the bundleKh(E) of asymptotic solutions has trivial holonomy

over γE . In the present case, however, since ρ = +1 and ρ = −1 belong to different symmetries,

considering Λ>E = γ>,+(E) ∪ γ>,−(E) as periodic orbits of det(P(x, ξ) − E) is semi-classically

meaningless.

So the condition detG(a,a′)
ρ (E) = 0 only means that the bundles Kρ

h(E) of microlocal

solutions over x ∈ [−xE , xE ] that we shall construct below, are one-dimensional.

The relative monodromy matrix contains some action integrals. Along ρ we define the

semi-classical momentum ξρ(x;h) = ξρ(x) + O(h) in {ξ > 0}, as a “deformation” of the

classical momentum ξρ(x) =
√
µ(x) + ρ

√
E2 −∆(x)2 solution of det(P(x, ξ)−E) = 0. It can

be obtained in two different ways, which agree on ]−xE , xE [: (1) by diagonalizing Pw(x, hDx)

outside the focal points. This adds a sub-principal term hλ
(1)
ρ (x, ξ) to the principal symbol

λρ(x, ξ) and yields a family of deformations of the lagrangian manifold Λ>ρ (E) defined as

the level sets ξ = ξρ(x;h) of λρ(x, ξ) + hλ
(1)
ρ (x, ξ) (see (140) below) ; (2) by computing the

microlocal kernel near the focal point (xE , ξE), represented by oscillating integrals defined by

h-dependent phase and amplitude in Fourier representation (see Proposition 3.1). We retrieve

ξρ(x;h) = ∂xSρ(x;h), in the spatial representation, see (171).

The off-diagonal elements of the “relative monodromy matrices” (see Sect.7.1) have a phase

of the form
∫ xE
−xE ξ

ρ(y;h) dy+b(E′
1;h) where b(E

′
1;h) is a “boundary term” (involving Andreev

reflection) which is expressed in term of the h-dependent phase function parametrizing the

microlocal kernel, evaluated at the focal points ±xE (see (164). Here E′
1 is the rescaled energy

parameter as in (60)-(65).

Theorem 1.1. Under hypotheses above, there is ε0 > 0 such that the real zeroes of Jost

function in ]E0 − ε0, E0 + ε0[ verify the following “Bohr-Sommerfeld quantization rule”

∫ xE

−xE
ξρ(y;h) dy + h

φ

2
+ h

π

4
+ b(E′

1;h) ≡ 0, modπhZ (8)

Note that the integral
∫ xE
−xE ξ

ρ(x;h) dx represents half of the semi-classical action of the

quasi-particle in Andreev reflection. By time reversal symmetry, the other half is obtained

by changing ξ to −ξ. Thus the two connecteds components Λ>,ρE and Λ<,ρE merge together

to a “close orbit”, carrying (classically) Andreev current. Taking into account the tunneling

properties between Λ>E and Λ<E would allow to relate the branches of microlocal solutions over

[−xE, xE ] by complex monodromy, leading to resonances for the scattering process discussed

in Sect.1. We stress that (8) is not the standard BS rule: it contains the additional phase

hφ, and the “boundary term” b(E′
1;h) computed at the junction, and is computed mod πhZ

instead of 2πhZ, so that no Maslov index occurs. Note also that b(E′
1;h) is again an odd

function of E, see (165) below.
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1.5 Outline of the paper

In Sect.2 we investigate integral representations of the parabolic cylinder functions Dν and

D−ν−1 for real positive ν, in the form given in [WhWa] (see also [Ol]). These functions,

conveniently normalized, provide the basic ingredient for microlocal solutions of (P−E)U = 0

near the branching points. Their complex branches in the “shadow zone”, with different growth

properties, will play a crucial role in computing the monodromy matrices.

In Sect.3 we describe the set of h-Fourier transforms Û near the branching points. They

take the form of semi-classical spinors, and are obtained from the solutions of Weber Eq. The

detailed computation of Û is postponed to Appendix B.

In Sect.4 we normalize Û by means of microlocal Wronskians, or positive commutators,

elaborating concepts introduced in [Sj], [HeSj], [Ro] for homoclinic Lagrangian manifolds, and

extended later to periodic orbits [SjZw], [IfaLouRo]. Though BdG does not really enter any of

these frameworks, our approach still allows to endow the vector bundle of microlocal solutions

with a Lorenzian structure, from which will merge the U(1,1) symmetry group.

In Sect.5 we convert these normalized microlocal solutions to the spatial representation,

and analyse their growth in the “shadow zone”.

In Sect.6 we construct WKB solutions in ]− xE , xE [.

In Sect.7 we write connexion formulas relating the microlocal solutions at aE with those at

a′E through the intermediate WKB solutions in ]−x′E , xE [. This give the relative monodromy

operators on each branch ρ = ±1 corresponding to the electron and the hole respectively.

Following the method elaborated in [IfaLouRo], we built up Grammatrices Ga,a′ρ (E) of solutions

microlocalized on each branch ρ = ±1. Their determinant vanishes precisely at Andreev levels

En(h).

In Sect.8 we sketch an approach to the SFS junction as in [CaMo], carrying the discussion

on the classical level.

In Appendix A, we make more precise Helffer-Sjöstrand normal form for a 1-D h-PDO near

a non degenerate potential well.

In Appendix B, we construct from the normal form the microlocal solutions used in the

main text.

Acknowledgements: We thank Timur Tudorovskiy for having drawn our attention to this

problem, and Johannes Sjöstrand for his advice. The second author acknowledges grant PRC

CNRS/RFBR 2017-2019 No.1556 “Multi-dimensional semi-classical problems of Condensed

Matter Physics and Quantum Dynamics” for partial support.

2 Parabolic cylinder functions

Since the semi-classical harmonic oscillator P0(η, hDη) =
1
2

(
(hDη)

2 + η2 − h
)
plays a crucial

rôle in BdG Hamiltonian at the branching points, we proceed first to discuss Weber equation.
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For later purposes, let us recall from [Hö,Thm 7.7.5] the Theorem of asymptotic stationary

phase, that we shall essentially use at leading order.

Theorem 2.1. If f : Rd → C, with Im f ≥ 0 has a non-degenerate critical point at x0, then

∫

Rd

eif(x)/h u(x) dx ∼ eif(x0)/h
(
det(

f ′′(x0)
2iπh

)
)−1/2

∑

j

hj Lju(x0) (9)

where Lj are differential operators, L0u = u, and

L1u(x0) =

2∑

n=0

2−(n+1)

in!(n+ 1)!
〈(f ′′(x0))−1Dx,Dx〉n+1

(
(Φx0)

nu)(x0)

where Φx0(x) = f(x) − f(x0) − 1
2 〈f ′′(x0)(x − x0), x − x0〉 vanishes of order 3 at x0 (here

Dx = 1
i ∂x denotes the derivation operator, and n the algebraic power).

For any real ν, Weber equation P0v = νhv, through the change of variables η = (h/2)1/2ζ,

ṽ(ζ) = v(η) can be written in the form

−ṽ′′ + 1

4
ζ2ṽ =

(
ν +

1

2

)
ṽ (10)

Fundamental solutions of (10) are expressed in term of parabolic cylinder functions Dν , see

[WhWat pp.347-349&p.245], [Ol]. We review below their asymptotics for large ν, giving also

asymptotics for solutions of P0(η, hDη)u = νhu.

For any complex number ν, Dν(ζ) is an entire function in the complex plane, normalized

by specifying its asymptotic expansion for large ζ (Whitakker normalization) :

Dν(ζ) = e−ζ
2/4ζν

(
1− ν(ν − 1)

2ζ2
+ · · ·

)
, | arg ζ| < 3π

4
(11)

This normalization, however, will be modified in Sect.4. When ν is a positive integer, Dν(ζ) =

e−ζ
2/4Hν(ζ/

√
2) with Hν an Hermite function. For ν 6= −2,−3, · · · , we have the following

integral representations :

Dν(ζ) =
Γ(ν + 1)

2iπ
e−ζ

2/4

∫ (0+)

∞
e−ζs−s

2/2(−s)−ν ds
s

(12)

where the integration contour encircles the positive real axis in the direct sense. Note that

the integral in (12) stands for the inverse Laplace transform of e−s
2/2(−s)−ν−1, a multivalued

function of s when ν is not an integer; see [DePh] for a discussion of such transforms. We

restrict to ν + 1 ≥ 0, but allow for integer values of ν, which give poles to Γ(−ν).
Equation (10) being invariant under the change ζ 7→ −ζ, and also changing simultaneously

ζ to ±iζ and ν to −ν − 1, when ν 6= 1, 2, · · · , it follows that Dν(−ζ) and D−ν−1(±iζ) are still

solutions, with

D−ν−1(iζ) =
Γ(−ν)
2iπ

eζ
2/4

∫ (0+)

∞
e−iζs−s

2/2(−s)ν+1 ds

s
(13)
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The systems
(
Dν(±ζ),D−ν−1(±iζ)

)
are fundamental solutions of (10) for any choice of ±.

When ν is not an integer, both systems

(
Dν(ζ),Dν(−ζ)

)
,
(
D−ν−1(iζ),D−ν−1(−iζ)

)

are fundamental solutions of (10). Conversely, ν is an eigenvalue of P̃0 = (Dζ)
2 + 1

4ζ
2 − 1

2 iff

ν ∈ N. Here we construct asymptotic solutions of (P̃0 − νh)u = 0 by evaluating (12) or (13)

as semi-classical distributions (h→ 0) by stationary phase formula (9).

2.1 The semi-classical distribution Dν

For ε = ±1 and ν 6= −2,−3, · · · , (12) writes

Dν

(
ε(h/2)−1/2η

)
=

Γ(ν + 1)

−2iπ
√
h
hE

2/4h

∫ (0+)

∞
exp
[
iΦνε(s; η)/h

]
ds (14)

where we have set

Φνε(s; η) = i
(η2
2

+
√
2 ε ηs+

s2

2
+
E2

2
log(−s)

)
, E =

√
2(ν + 1)h (15)

2.1.1 Asymptotics for |η| < E

To begin with, we consider the classically allowed region. We evaluate (14) by stationary

phase (9). The critical points of s 7→ Φνε(s; η) are the roots sνε,ω of the quadratic equation

s2 +
√
2 ε ηs+ E2

2 = 0, namely

−
√
2 ε sνε,ω = η + iω

√
E2 − η2, any ω = ±1 (16)

Together with ε, this introduces a new index ω ; they will be eventually related by ε ω = 1.

An elementary computation shows that the corresponding critical values are

E2

4i

(
1− log

E2

2

)
+

1

2

[
ωη
√
E2 − η2 − E2Θ̌ε,ω(η)

]

where

Θ̌ε,ω(η) = arg
( ε√

2
(η + iω

√
E2 − η2)

)
∈]− π, π[ (17)

To simplify notations, we remove the constant term from the phase, which gives the additional

factor
(
2e
E2

)E2/4h
in (14), and denote by

Φνε,ω(η) =
1

2

(
ωη
√
E2 − η2 − E2Θ̌ε,ω(η)

)
(18)

the critical value. We restrict mainly to the classically allowed region |η| ≤ E, but need also

know the germ of the analytic continuations of Φνε(s; η) at η = ±E.

The Hessian of Φνε(s; η) at the critical points sνε,ω is

(∂2Φνε
∂s2

)(
sνε,ω(η); η

)
=
ω
√
2
√
E2 − η2

ε sνε,ω(η)
=

−2ω η
√
E2 − η2

E2
+ i

2
(
E2 − η2

)

E2

13



hence sνε,ω is non degenerate when η is not a turning point ±E, and defines the Jacobian

(independent of ε)

Jνω(η) =
1

i

∂2Φνε
∂s2

(sνε,ω; η) (19)

Furthermore, Im ∂2Φν
ε

∂s2
(sνε,ω; η) = 2E−2(E2−η2) > 0. We choose a “good contour” of integration

in the s-plane encircling the positive real axis and intersecting the imaginary axis at the

conjugate points sνε,ω(η), ω = ±1.

Applying (9) to the contributions of sνε,ω, we find :

Dν

(
ε(h/2)−1/2η

)
= C̃νh(E

2 − η2)−1/4
∑

ω=±1

(
i ε ωsνε,ω(η)

)1/2
exp
[
iΦνε,ω(η)/h

]
+O(h) (20)

with

C̃νh =
Γ(ν + 1)

−i
√
2π21/4

(2eh
E2

)E2/4h

Making use of the relation arg(z)− arg(−z) = π sgn(Im z), we find

Θ̌−,+(η)− Θ̌+,+(η) = −π, Θ̌−,−(η) − Θ̌+,−(η) = π (21)

Remark: From this we recover easily the quantization condition for the harmonic oscillator.

Namely, comparing the values of (20) for ε = ±, we observe that the only dependence on ε

consists in phase factors e±iπE
2/2h. Thus, the functions Dν

(
ε(h/2)−1/2η

)
are (semi-classically)

linearly dependent for ε = ±1 only if e−iπE
2/2h = eiπE

2/2h or eiπE
2/h = 1, i.e. ν ∈ N (we

exclude ν = −1 because
√
E2 − η2 needs to be defined for small η, η 6= 0). According to the

parity of ν, Dν

(
±(h/2)−1/2η

)
are equal or opposite. The value ν = 0 gives the ground state.

Let Θ(η) = Θ̌+,+(η). So far, taking (21) in account we have shown that for any ν ∈ N

Dν

(
(h/2)−1/2η

)
= C̃νh(E

2 − η2)−1/4 cos
(π
4
− Θ(η)

2
+
E2Θ(η)− η

√
E2 − η2

2h

)
+O(h)

uniformly on compact sets in |η| < E =
√

2(ν + 1)h.

2.1.2 Asymptotics for |η| > E

Consider now the classically forbidden region |η| > E. Recall that the “complex geometry” of

the problem is given by Stokes lines. We adopt the convention of [DeDiPh] for Stokes lines (the

fastest way exp iΦ/h has to decrease towards the turning point in the complex domain), and

take advantage of the existence of explicit solutions for Weber equation. There are 3 Stokes

lines, tied to each of the turning points η = ±E and bordering Stokes regions.

The (real) critical points of s 7→ Φνε(s; η) are given by

−
√
2 s̃νε,ω′(η) = ε η + ω′√η2 −E2 ; any ω′ = ±1 (22)

The condition −
√
2 s̃νε,ω′(η) > 0 (the contour encircles the positive half-line) requires

ε sgn(η) = 1 (23)
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A straightforward computation shows that the second derivative at the critical points is given

by
(∂2Φνε
∂s2

)(
s̃νε,ω′(η); η

)
=

2 i
√
η2 − E2

ε ω′ η +
√
η2 − E2

(24)

Since s̃νε,+(η)− s̃νε,−(η) = 2
√
η2 − E2 is a small real number, there is no single contour contain-

ing both s̃νε,ω′(η) that would contribute, by stationary phase, to Dν

(
ε(h/2)−1/2η

)
, but instead

two contours giving the exponentially decaying/ growing branch.

Such a contour γνε,ω′(η) can be parametrized near the critical point s̃νε,ω′(η) by

s = s̃νε,ω′ + t exp[i(ε sgn(η)
π

4
+ δ)], t ∈ R

For s near s̃νε,ω′(η), Taylor expansion of second order gives

Φνε(s; η) = Φνε
(
sνε,ω′(η); η

)
+
t2

2
exp[i(ε sgn(η)

π

2
+ 2δ)]

(∂2Φνε
∂s2

)(
s̃νε,ω′(η); η

)
+O(t3)

Let

Ψν
ε,ω′(η) = Φνε(s; η)− Φνε

(
sνε,ω′(η); η

)

We have

Im
(
Ψν
ε,ω′(s; η)

)
= −ǫ sgn(η)

√
η2 − E2

ǫ ω′ η +
√
η2 − E2

sin(2δ) t2 +O(t3)

which is positive for small enough t if −ω′ sin(2δ) > 0. It is also well known by the method of

steepest descent that we can find (globally) γνε,ω′(η) such that Im
(
Ψν
ε,ω′(s; η)

)
≥ 0 everywhere

on γνε,ω′(η), and that the integral (14) defining Dν

(
i ε(h/2)−1/2η

)
depends only on the critical

point sνε,ω′(η), modulo exponentially smaller terms (uniform in |η|).
Now we examine the behavior of Φεν

(
s̃νε,ω′(η); η

)
to see whether Dν

(
i ε(h/2)−1/2η

)
decays

or grows exponentially when leaving the classically allowed region. The critical value is

Φνε
(
s̃νε,ω′(η); η

)
=
i

2

[
− ε ω′ η

√
η2 − E2 − E2

2
+ E2 log

( 1√
2
(ε η + ω′√η2 − E2)

)]

When η > E > 0, we set η = E + ξ, and get by Taylor expansion at ξ = 0+

Φνε
(
s̃
(ν)
ε,ω′(η); η

)
= −i ε ω′ E

2

2
(
2 ξ

E
)3/2 − i

ξ2

2
+ i

E2

2
log(

ε E√
2 e

) + · · · (25)

When η < −E < 0, we set η = −E − ξ, and get by Taylor expansion at ξ = 0+

Φνε
(
s̃νε,ω′(η); η

)
= i ε ω′ E

2

2
(
2 ξ

E
)3/2 − i

ξ2

2
+ i

E2

2
log(− ε E√

2 e
) + · · · (26)

So Im
(
Φνε
(
s̃νε,ω′(η); η

))
decays/grows as (2 ξE )3/2, depending on ε, ω′, sgn(η).

The next step is to choose ω′ consistently with the former choice of ω in the classically

allowed region to define Dν

(
ε(h/2)−1/2(η)

)
. Recall from (16) the expression of the critical

point when |η| < E.
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We know that Dν(z) is a one-valued function of z throughout the z-plane, but semi-

classically the situation is different because of so-called Stokes phenomena (see [DePh]).

The function
√
E2 − η2 has an analytic continuation on the complex plane where the half

lines η > E and η < −E have been removed, which we denote by f(η) = (
√
E2 − η2)ext. Thus,

for η > E or η < −E we have

f(η ± i0) = ∓i sgn(η)
√
η2 − E2 (27)

with the positive square root, and (16) gives

−
√
2sνε,ω(η ± i0) = η ± εω sgn(η)

√
η2 − E2

Comparing with (22) (sνε,ω = s̃νε,ω′) we get ω′ = ± ε ω sgn(η), or ω′ = ±ω for the boundary

value η ± i0 by (23). Let

Φνε,ω(η) =
(
Φνε
(
s̃νε,ω′(η); η

))

and Φνε,ω(η ± i0) its extensions in the upper/lower half-plane. We proved:

Lemma 2.1. For η > E, let η = E+ξ, and for η < −E, let η = −E−ξ. Assume ε sgn(η) = 1,

then

Φνε,ω(η ± i0) = ∓iωE
2

2

(2ξ
E

)3/2
+O(ξ2) + Const., ξ > 0 (28)

so there is always an analytic branch of Dν decaying exponentially (evanescent mode), the

other one being exponentially increasing.

2.2 The semi-classical distribution D−ν−1

We shall compute similarly the semi-classical distributions D−ν−1. For ε = ±1 and ν 6=
1, 2, · · · , (13) gives

D−ν−1

(
i ε(h/2)−1/2η

)
=

Γ(−ν)
2iπ

h−E
2/4h

∫ (0+)

∞
exp
[
iΦ−ν−1

ε (s; η)/h
] ds
s

(29)

where we have set

Φ−ν−1
ε (s; η) = −i

(η2
2

− i
√
2 ε ηs− s2

2
+
E2

2
log(−s)

)
, E =

√
2(ν + 1)h (30)

2.2.1 Asymptotics for |η| < E

The critical points of s 7→ Φ−ν−1
ε (s; η) are the roots s−ν−1

ε,ω of the quadratic equation s2 +

i
√
2 ε ηs− E2

2 = 0, namely

−
√
2 ε s−ν−1

ε,ω = iη + ω
√
E2 − η2, any ω = ±1 (31)

so that the points s−ν−1
ε,ω are rotated from sνε,ω as in (16) by π/2. As above we examine the

classically allowed region |η| < E; the corresponding critical values are given by

Φ−ν−1
ε (s−ν−1

ε,ω ; η) = i
E2

4

(
1− log

E2

2

)
+

1

2

[
ωη
√
E2 − η2 + E2Θ̂ε,ω(η)

]
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Here

Θ̂ε,ω(η) = arg
( ε√

2
(iη + ω

√
E2 − η2)

)
∈]− π, π[ (32)

is defined similarly with Θ̌ε,ω(η). As in (21) we have

Θ̂−,+(η) − Θ̂+,+(η) = −π sgn(η), Θ̂ε,ω(η) = −Θ̂− ε,−ω(η) (33)

As in (18) we remove the constant term from Φ−ν−1
ε (s−ν−1

ε,ω ; η), and denote by

Φ−ν−1
ε,ω (η) =

1

2

(
ωη
√
E2 − η2 + E2Θ̂ε,ω(η)

)
(34)

the resulting phase. The Jacobian is independent of ε and given by

J−ν−1
ω (η) =

1

i

∂2Φ−ν−1
ε

∂s2
(s−ν−1
ε,ω ; η) =

−iω
√
2
√
E2 − η2

ε s−ν−1
ε,ω

=
2(E2 − η2)

E2
− 2ωi

η
√
E2 − η2

E2
(35)

which shows that s−ν−1
ε,ω are non degenerate when η is not a turning point. Applying again

Theorem 2.1, letting

C̃−ν−1
h =

Γ(−ν)
√
h

i
√
2π21/4

(2eh
E2

)−E2/4h
(36)

we find

D−ν−1

(
i ε(h/2)−1/2η

)
= C̃−ν−1

h

∑

ω

(J−ν−1
ω (η))−1/2 exp

[
iΦ−ν−1

ε,ω /h
]
(s−ν−1
ε,ω )−1(1 +O(h)) =

C̃−ν−1
h (E2 − η2)−1/4

∑

ω

(
− ε ωs−ν−1

ε,ω

)−1/2
exp[i

(
ωη
√
E2 − η2 + E2Θ̂ε,ω(η)/2h](1 +O(h))

(37)

Except for the fact that the normalization factor C̃−ν−1
h has a pole at ν ∈ N∗, the same

argument as above gives that D−ν−1

(
i ε(h/2)−1/2η

)
, ε = ±1, are colinear on |η| < E iff ν ∈ N

(in fact equal or opposite, according to ν is even or odd). In this case, D−ν−1

(
i(h/2)−1/2η

)
is

colinear to Dν

(
(h/2)−1/2η

)
, up to O(h∞), uniformly on any compact set inside ]− E,E[.

2.2.2 Asymptotics for |η| > E

The critical points of Φ−ν−1
ε are given by

i
√
2s̃−ν−1
ε,ω′ (η) = ε η + ω′√η2 − E2), ω′ = ±1 (38)

So both critical points lie on the negative (resp. positive) imaginary axis, ε sgn(η) = ±1, and

as before each of those gives a branch of D−ν−1

(
i ε(h/2)−1/2η

)
with exponential growth or

decay when leaving the classically allowed region. Second derivatives

∂2Φ−ν−1
ε

∂s2
(s̃−ν−1
ε,ω′ ) =

2i
√
η2 − E2

εω′η +
√
η2 − E2

(39)

have the same expression as in (24) so we choose the contours γ−ν−1
ε,ω′ (η) near s̃−ν−1

ε,ω′ (η) like

γνε,ω′(η) near s̃νε,ω′(η), ω′ = ±1.
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The expression for Φ−ν−1
ε (s̃−ν−1

ε,ω′ (η)) simplifies to

Φ−ν−1
ε (s̃−ν−1

ε,ω′ (η)) =
i

2

[
ε ω′η

√
η2 − E2 −E2 log(ε ω′η+

√
η2 − E2)+

E2

2
−E2 log

( iω′
√
2

)]
(40)

so it is odd (modulo Const.) in ε ω′ sgn η. Assume η = E + ξ > E, we have

Φ−ν−1
ε (s̃−ν−1

ε,ω′ (η)) =
i

2
εω′E2

(2ξ
E

)3/2
+O(ξ2) + Const., η > E (41)

Similarly, (40) shows that for these ε, ω′, and η = −E − ξ < E

Φ−ν−1
ε (s̃−ν−1

ε,ω′ (η)) = − i

2
εω′E2

(2ξ
E

)3/2
+O(ξ2) + Const., η < −E (42)

so ImΦ−ν−1
ε (s̃−ν−1

ε,ω′ (η)) decays or grows as
(2ξ
E

)3/2
, depending on ε, ω′, sgn(η) (this time we do

not impose any condition on ε sgn η).

The next step is to choose ω′ consistently with the choices of ω in the classically allowed

region as above, so to define D−ν−1

(
i ε(h/2)−1/2(η)

)
.

First we relate (38) with the analytic continuation of the critical points given by

−
√
2 ε s−ν−1

ε,ω = iη + ω
√
E2 − η2 (43)

By (27) and (43)

i
√
2s−ν−1
ε,ω (η ± i0) = ε η ∓ εω sgn(η)

√
η2 − E2 (44)

Comparing with (38) (s̃−ν−1
ε,ω′ = s−ν−1

ε,ω ), we get ω′ = ∓ εω sgn(η), so that (41) and (42) give:

Lemma 2.2. Define Φ−ν−1
ε,ω (η ± i0) similarly with Φνε,ω(η ± i0) as in Lemma 2.1. Then (even

without the condition ε sgn(η) = 1), we have, as in (28):

Φ−ν−1
ε,ω (η ± i0) = ∓i ω E

2

2
(
2 ξ

E
)3/2 +O(ξ2) + Const., ξ > 0 (45)

2.3 Relating Dν and D−ν−1

We present some relations between the critical points and critical values of the phase functions

defining Dν and D−ν−1 in the classically allowed region, which will be useful in the sequel.

First we have
s−ν−1
ε,ω (η) = i sνε,ω(η)

J−ν−1
ω (η) = Jνω(η)

(46)

The difference between critical values (18) and (34) is given by

Θ̂ε,ω(η) + Θ̌ε,ω(η) = πζε,ω(η) (47)

where index ζε,ω(η) is a half-integer defined by

ζε,ω(η) =
1

2
when ε ω = 1, ζε,ω(η) = −(ω sgn(η) +

1

2
) otherwise (48)
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In |η| < E, the phases are related (at the critical point) by

Φ−ν−1
ε,ω =

πE2

4
+ Φνε,ω (49)

The normalization constants are related by (when ν /∈ Z)

C̃νhC̃
−ν−1
h = −

√
2h

4 sinπν
(50)

3 Microlocal solutions in Fourier representation

3.1 The normal form of BdG near the branching points

Here we recall some notations from Sect.1 and collect the relevant information from Appendix.

Eigenvalues of classical BdG Hamiltonian P(x, ξ) are of the from

λρ(x, ξ) = ρ
√

∆(x)2 + (ξ2 − µ(x))2 (51)

The energy surface ΣE = {det(P − E) = −(ξ2 − µ(x))2 − ∆(x)2 + E2 = 0}, foliated by two

smooth Lagrangian connected manifolds Λ>E ⊂ {ξ > 0} and Λ<E ⊂ {ξ < 0}, is invariant under
the PT symmetries I : (x, ξ) 7→ (x,−ξ) and ∨ : (x, ξ) 7→ (−x, ξ).

Denote by aE = (xE , ξE) and a
′
E = (−xE, ξE) the focal (or branching) points in Λ>E , defined

by ∆(xE) = E, which fixes xE close to x0 > 0, and ξ2E = µ(xE). Since we assumed x 7→ µ(x)

to be a constant near x0, we set µ(xE) = µ.

To start with, we consider the family of quasi-modes supported on Λ>E . Those supported

on Λ<E are implied by I. Thus we denote Λ>,ρE by ΛρE , or also simply by ρ, when no confusion

could occur.

We shall work (locally) in h-Fourier representation and introduce an “effective Hamilto-

nian” (scalar differential operator), whose normal form is given in Appendix A. Recall the

h-Fourier transform

Fhu(ξ) = (2πh)−1/2

∫
e−ixξ/hu(x) dx

Near a = aE , the local Hamiltonian Pa = FhPF−1
h takes the form :

Pa(−hDξ, ξ) =

(
ξ2 − µ eiφ/2(E − αhDξ − αxE)

e−iφ/2(E − αhDξ − αxE) −ξ2 + µ

)
(52)

and by PT symmetry (2), the corresponding local Hamiltonian near a′ reads :

Pa′ = IPaI =

(
ξ2 − µ e−iφ/2(E + αhDξ − αxE)

eiφ/2(E + αhDξ − αxE) −ξ2 + µ

)
(53)

19



so that we only have to consider Pa(−hDξ , ξ). By definition of a = (xE , ξE), we have

det(Pa(xE , ξE)− E) = 0 (54)

Consider the system
(
Pa(−hDξ, ξ) − E

)
Ûa = 0, Ûa =

(
ϕ̂1
ϕ̂2

)
will be refered henceforth as the

microlocal solution near a.

By the first equation we can express ϕ̂1 as

ϕ̂1(ξ) = −eiφ/2(ξ2 − µ− E)−1(E − αxE − αhDξ)ϕ̂2(ξ) (55)

then take the hDξ derivatives of ϕ̂1, and replace into the second equation, we find :

(hDξ)
2ϕ̂2 − 2

[
α−1(E − αxE)− i(ξ2 − µ− E)−1hξ

]
hDξϕ̂2

+ α−2
[
(E − αxE)

2 + (ξ2 − µ)2 − E2 − 2ihα(E − αxE)(ξ
2 − µ− E)−1ξ

]
ϕ̂2 = 0

(56)

We make the substitution ϕ̂2(ξ) = exp[i
∫ ξ
g(s)ds/h]u(ξ), where we choose g(ξ) so that the

hDξ term drops out, i.e. g(ξ) = α−1(E−αxE)− ih(ξ2 −µ−E)−1ξ. This gives the integrating

factor exp[i
∫ ξ
g(s)ds/h] = Const.(ξ2−µ−E)1/2ei(E−αxE)ξ/αh, and a little computation shows

that u verifies

P a(−hDξ , ξ, h)u(ξ) =
E2

α2
u(ξ) (57)

where

P a(−hDξ , ξ, h) = (hDξ)
2 + α−2(ξ2 − µ)2 + h2(ξ2 − µ− E)−2(2ξ2 + µ+E)

We then recover the second component of the system as

ϕ̂2(ξ) = (ξ2 − µ− E)1/2ei(E−αxE)ξ/αhu(ξ) (58)

and the first one using (55). We make a number of E-dependent scalings. Let ω ∈ S1 (“moduli

space”) and parametrize

ξ = 2ξEωβξ
′ + ξE, β =

√
α(2ξE)

−3/2 (59)

defining a “local (complex) momentum” ξ′ and a corresponding “local (complex) time” vari-

able. We define also scaled “Planck constant” h′ and energy parameter

h′ = β2h, E1 = (2ξE)
−2E (60)

and restrict to E1 <
1
4 to allow the harmonic approximation as is explained in Appendix A.

This takes (57) to

P aω (−hDξ′ , ξ
′, h)uω(ξ

′) =
(E1ω

β

)2
uω(ξ

′) (61)

where P aω(−hDξ′ , ξ
′;h) = (−hDξ′)

2 + ω4(ξ′ + ωβξ′2)2 + h2(ωβ)2f(ωβξ′) is the double well

Schrödinger operator (with lower order term O(h2)) of the form (183) with

f(z) = (2z2 + 2z +
3

4
+ E1)(z

2 + z − E1)
−2 (62)
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Note that f has a pole in Λ>E at ξ′ = ξ′f = −1+
√
1+4E1

2ωβ , (0, ξ′f ) being one of the turning points

at energy
(
E1ω
β

)2
of the classical Hamiltonian paω(x

′, ξ′) = (−x′)2 + ω4(ξ′ + ωβξ′2)2. In the

spatial representation, this pole corresponds to the point xf on the characteristic variety of

Pa − E such that ∆0(xf ) = 0, where the linear approximation of the gap function breaks

down. There we need to use standard WKB solutions for original P(x, hDx). So we restrict

ξ′ to a neighborhood of 0 not containing ξ′f . We rescale the phase-space variables as

ξ1 = βξ′, x1 = (2ξE)
−2α(x− xE) (63)

and set

x0E = (2ξE)
−3(E − αxE) = (2ξE)

−1(E1 − 2xEξEβ
2) (64)

Passage from P aω (−hDξ′ , ξ
′, h) to its harmonic approximation changes as in (205) parameter

ωE1
β to E′

1, a non linear function of E1 (since the period of oscillations depends on E), which

are related by (see App.A)

E′
1
2
= E1

2 +
3

2
E1

4 +
35

4
E1

6 + · · · ⇐⇒ E1 = E′
1 −

3

4
E′

1
3 − 77

32
E′

1
5 − · · · (65)

This defines the frequency ν as in (15) by

E′
1 = β

√
2(ν + 1)h (66)

Parameter ω “explores” the domain of complex momenta as in the “radar method” [DePh].

Complex values of ω are quite artificial when ignoring tunneling effects, so we shall assume

henceforth ω = ±1, which plays the rôle of parameter ω in Sect.2. Note that operators P a±1

are unitarily equivalent. Due to (55) and (58), there are natural isomorphisms

ιaω : Kerh(P
a
ω −

(E1ω

β

)2
) → Kerh(Pa − E) (67)

where Kerh denotes the microlocal kernel. The same holds near a′, and actually P aω = P a
′

ω

are denoted simply by Pω. We shall endow the RHS of (67) with a Lorenzian structure, and

“diagonalize” ιaω in some orthogonal subspaces.

As long as we focus on a single branching point, we drop the superscript a.

3.2 The microlocal kernel near a branching point

Following [DuGy], [Ro,Sect.4] we first introduce a class of semi-classical spinors:

Definition 3.1. We call spinor an oscillatory integral (Lagrangian distribution)

I(~a, ϕ)(x, h) = (2πh)−d/2
∫

Rd

eiϕ(x,θ,h)/h~a(x, θ;h) dθ

with the following properties (all functions being defined locally) :
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(1) ϕ(x, θ, h) denotes a non degenerate phase-function and

~a(x, θ;h) = ~a0(x, θ;h) + h~a1(x, θ;h) + · · ·

a C2-valued amplitude (i.e. a classical symbol in h), ~ak =
(
eiφ(x)/2Xk

Yk

)
possibly depending on h

(with the property that φ(x) = sgn(x)φ).

(2) For k = 0,
(X0

Y0

)
= λ(x, θ;h)

(X′

0
Y ′

0

)
, λ ∈ C, is proportional to a real vector

(X′

0
Y ′

0

)
, depending

also on (x, θ;h).

Actually we allow I(~a, ϕ)(x, h) to be a 2-microlocal object, in the sense that ϕ(x, θ, h) =

ϕ0(x, θ, h)+β
−2ϕ1(x, θ, h) where β as in (60) is a large parameter, but this point is not crucial

and will be omitted.

If u(x, h) = I(~a, ϕ)(x, h) is a spinor, so is its h-Fourier transform.

It turns out that the microlocal solutions of
(
Pa(−hDξ, ξ) − E

)
Ûa = 0 are spinors in the

sense of Definition 3.1. They are constructed from the parabolic cylinder function of Sect.2

via the normal form of P aω given in [HeSj] (the same holds of course with a′. )

We collect here a number of notations and results from Appendix, in a form that will be

directly used in the sequel.

A basis of solutions {uνε,ω, u−ν−1
ε,ω } of (61) is constructed in Appendix B from the solutions

of Weber equation (10) in the following way: (1) apply to Dν , and Dν−1 a h-FIO Aω of

the form (190), microlocally unitary near a, with leading amplitude c0ω(ξ
′, η, θ); (2) compute

AωDν , AωD−ν−1 using a contour integral parametrized by variables (θ, η, s); (3) specify (cor-

rection) the extension of c0ω(ξ
′, η, θ) from Γ′

κ (valid for both Dν ,D−ν−1), in such a way that

{uνε,ω, u−ν−1
ε,ω } solves (61).

Index ε = ±1 is the same as in Dν(ε ζ) or D−ν−1(i ε ζ), see Sect.2, and (θjω, η
j
ω, s

j
ε,ω) denote

the critical points, with

−
√
2 ε sνε,ω(θω) = iθω + ω(E′2

1 − θ2ω)
1/2

−
√
2 ε s−ν−1

ε,ω (θω) = θω + iω(E′2
1 − θ2ω)

1/2 = −i
√
2 ε sνε,ω(θω)

(68)

Here ε sjε,ω(θω) depends on ω, j, but not on ε, θω = ±θ̂ω(ξ1), θ̂ω(ξ1) > 0 depends analytically

on ξ1 near 0 and on E′2
1, but not on ε, j. We have the relation

θω(ξ1) = θ−ω(−ξ1) (69)

Recall from (17) and (32) the angles Θ̌ε,ω(θ) and Θ̂ε,ω(θ), from (219) and (231) the phases

T νε,ω
(
ξ1, θω(ξ1)

)
=
[
ξ1θ1 + hω(ξ1, θ1)−

1

2
ωθ1(E

′2
1 − θ21)

1/2 − 1

2
E′2

1Θ̂ε,ω(θ1)
]
|θ1=θω(ξ1)

T−ν−1
ε,ω

(
ξ1, θω(ξ1)

)
=
[
ξ1θ1 + hω(ξ1, θ1)−

1

2
ωθ1(E

′2
1 − θ21)

1/2 +
1

2
E′2

1Θ̌ε,ω(θ1)
]
|θ1=θω(ξ1)

(70)

with hω(ξ1, θ1) an analytic function.

Note the analogy of (68) with (16) and (38), as well as (70) with (18) and (34), but with

the rôles of Dν and D−ν−1 interchanged.
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Eventually ω and ε will be related by ε ω = 1. Recall from (238) that T νε,ω
(
ξ1, θω(ξ1)

)
and

T−ν−1
ε,ω

(
ξ1, θω(ξ1)

)
differ only by a piecewise constant term, so the ξ1-derivative of T jε,ω doesn’t

depend on ε and j. The phase functions associated with our spinors are

Φjε,ω
(
ξ1, θω(ξ1)

)
= x0EξE + 2ωx0EξEξ1 + T jε,ω

(
ξ1, θω(ξ1)

)
= x0Eξ + T jε,ω

(
ξ1, θω(ξ1)

)
(71)

and Φνε,ω and Φ−ν−1
ε,ω differ only by a constant. Next we examine the leading part of the

amplitudes.

From (223) and (234) we recall the amplitudes ajε,ω, with principal part (independent of ε)

aνω
(
ξ1, θω(ξ1)

)
= a−ν−1

ω

(
ξ1, θω(ξ1)

)
(72)

and the phases Rjω with

Rνω
(
θω(ξ1)

)
= R−ν−1

ω

(
θω(ξ1)

)
= −1

2
Θ̌sgn θω ,ω(θω) (73)

It is convenient to rewrite the amplitudes in the polar representation

aνω
(
ξ1, θω(ξ1), h

′) = |aνω| exp
[
iRνω

(
θω(ξ1)

)]
(74)

We apply Theorem 2.1 to the Lagrangian distributions defining ujε,ω as in App.A, extending

computations in Sect.2 with the previous normalization of Dν and D−ν−1. This gives the

second component ϕ̂2(ξ) of the spinor Û jε,ω. Next we use (55) to compute the first component

ϕ̂1(ξ). Let

Xj
ε,ω

(
ξ1, θω(ξ1);h

′) = (2ξE)
3
[ 1

2ωξE
∂ξ1T

j
ε,ω+

h′

2iωξE

∂ξ1a
j
ε,ω

ajε,ω
+
h′

i
ξ(ξ2−µ−E)−1

]
θ1=θω(ξ1)

(75)

with 0-th order term Xj
ω

(
ξ1, θω(ξ1)

)
independent of ε. Using (67) we can state the main result

of this Section:

Proposition 3.1. For any ε, ω = ±1, Ka
h(E) = Kerh(Pa(−hDξ, ξ) − E) (in Fourier repre-

sentation) is spanned by the spinors Û j,aε,ω = Û jε,ω =
(
ϕ̂1

ϕ̂2

)j
ε,ω

, j ∈ {ν,−ν − 1}, of the form:

Ûνε,ω = Cνh′
∑

θω=±θ̂ω(ξ1)

(
eiφ/2(ξ2 − µ− E)−1/2Xν

ε,ω(ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)
×

|aνω(ξ1, θω(ξ1);h′)| exp[i
(
Φνε,ω(ξ1, θω(ξ1)) + h′Rνω)(θω(ξ1))

)
/h′]

(76)

Û−ν−1
ε,ω =

√
2

E′
1

C−ν−1
h′

∑

θω=±θ̂ω(ξ1)

ε sgn(θω)

(
eiφ/2(ξ2 − µ− E)−1/2X−ν−1

ε,ω (ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)
×

|a−ν−1
ω (ξ1, θω(ξ1);h

′)| exp[i
(
Φ−ν−1
ε,ω (ξ1, θω(ξ1)) + h′R−ν−1

ω (θω(ξ1))
)
/h′]

(77)

where we recall (72)-(73), and the constants Cjh′ (computed from Whittaker normalization in

Sect.2) are related by

Cνh′C
−ν−1
h′ =

(
(2
√
h′)3π2 sinπν

)−1
(78)

provided ν /∈ Z.
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Remarks:

1) Writing
1

h′
Φjε,ω

(
ξ1, θω(ξ1)

)
= −xEξ

h
+
Eξ

αh
+

1

h′
T jε,ω

(
ξ1, θω(ξ1)

)

we recognize that Û jε,ω are indeed 2-microlocal spinors.

2) Since Dν(ζ) and D−ν−1(iζ) are linearly independent, the vectors Ûνε,ω, ε = ±1 are

linearly independent from the vectors Û−ν−1
ε,ω , ε = ±1.

3) In the next Section, we will remove the spurious factors Cνh′ and C
−ν−1
h′ by changing the

normalization of the parabolic cylinder functions (11). The new spinors then make sense for

integer ν by a continuity argument.

3.3 Some symmetries

Using symmetries in App.B, Sect.1.3 we find that

X−ν−1
ω

(
ξ1, θω(ξ1);h

′) = Xν
ω

(
ξ1, θω(ξ1);h

′)

Xj
ω

(
ξ1,−θω(ξ1);h′

)
= −Xj

ω

(
ξ1, θω(ξ1);h′

)

Xj
−ω
(
− ξ1, θ−ω(−ξ1);h′

)
= −Xj

ω

(
ξ1, θω(ξ1);h′

)
modO(h′)

(79)

The following Proposition will also be crucial to select the indices ε, ω.

Proposition 3.2. Spinors U jε,ω verify (at least at leading order) the symmetry

†Û j− ε,−ω = Û jε,ω (80)

for the “local time” reversal operator †u(ξ1) = u(−ξ1).

Proof. We use symmetry hω(ξ1, θ1) = h−ω(−ξ1,−θ1) proved in Proposition A.1, relations

(17),(32), and symmetry θω(ξ1) = θ−ω(−ξ1) to show that

T j− ε,−ω
(
−ξ1,−θ−ω(−ξ1)

)
= T jε,ω

(
ξ1, θω(ξ1)

)

and thus

Φj− ε,−ω
(
−ξ1,−θ−ω(−ξ1)

)
= Φjε,ω

(
ξ1, θω(ξ1)

)

which gives (80) at the level of phase function. We have

s−ν−1
− ε,−ω

(
−θ−ω(−ξ1)

)
= s−ν−1

ε,ω

(
θω(ξ1)

)

and since the amplitudes cjε,ω(ξ1;h) constructed in Theorem A.2 are again invariant changing ξ1

to −ξ1 and simultaneously θω to −θω, it follows that aν−ω
(
−ξ1,−θ−ω(−ξ1)

)
= aνω

(
ξ1, θω(ξ1)

)
,

and so Xj
−ω
(
−ξ1,−θ−ω(−ξ1)

)
= −Xj

ω

(
ξ1, θω(ξ1)

)
. Then changing ξ1 to −ξ1 together with

(ε, ω) to (− ε,−ω) simply permutes the terms of the sum in (76)-(77); thus (80) holds.
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4 Normalization

4.1 The microlocal Wronskian

We extend here to BdG Hamiltonian the algebraic and microlocal framework for computing

1-D quantization rules: It is based on the classical “positive commutator method” using nor-

malization of the microlocal solutions and conservation of some quantity called a “quantum

flux”. This normalization will replace Whittaker normalization for parabolic-cylinder func-

tions, that diverges when ν takes integer values.

We have seen in (76)-(77) that γ>,ρ(E) is parametrized near a = aE by the phase functions

Φjε,ω, that differ asymptotically in x < xE from each other when j = ν,−ν − 1 only by a

constant.

We choose the orientation on γ>,ρ(E) according to this of Hamilton vector field. Let χa ∈
C∞
0 (R2) be a smooth cut-off equal to 1 near a, and ωaρ be a small neighborhood of supp{P, χa}∩

ΛE near ρ; we shall write P(x, hDx) (spatial representation) as well as P(−hDξ , ξ) (Fourier

representation).

Definition 4.1. Let P be (formally) self-adjoint, and Ua, V a ∈ Kh(E) be supported on Λ>E.

We call the sesquilinear form

Wa
ρ (U

a, V a) =
( i
h
[P, χa]ρUa|V a

)
=
( i
h
[P, χa]ρÛa|V̂ a

)
(81)

the microlocal Wronskian of (Ua, V a) in ωaρ . Here
i
h [P, χa]ρ denotes the part of the commutator

supported microlocally on ωaρ .

To understand this terminology, let us consider instead the scalar Schrödinger operator

P = −h2∆ + V , xE = 0 and change χ to Heaviside unit step-function χ(x), depending on x

alone. Then in distributional sense, we have i
h [P, χ] = −ihδ′ + 2δhDx, where δ denotes the

Dirac measure at 0, and δ′ its derivative, so that
(
i
h [P, χ]u|u

)
= −ih

(
u′(0)u(0)− u(0)u′(0)

)
is

the usual Wronskian of (u, u).

For regular BS quantization rules in the scalar case, the key formula

( i
h
[P, χa]ua|va

)
=
( i
h
[P, χa]ûa|v̂a

)
= 0 (82)

and its corollary, namely that ρ = ± give opposite contributions to the scalar products,

result easily from the fact that ûa, ûa are of WKB type near the focal point a. Because of

Proposition 3.1, the latter property fails near the branching point a of our system, so we will

have to compute separately
(
i
h [P, χa]ρÛa|V̂ a

)
for ρ = ±. Nevertheless (82) turns out to be

true, see Lemma 4.1 below.

We note that Wa
ρ (U

a, V a) still doesn’t depend, at least modulo O(h), of the choice of

χa. Namely, Proposition 3.1 shows that Ũa, Ṽ a are smooth away from a, so if χa, χ̃a ∈ C∞
0

equals 1 near a, we can expand the commutator i
h [P, χa − χ̃a]ρ as above and find that the

two quantities Wa
ρ , defined by any of these cut-off, are equal mod O(h′) (at least, since the

microlocal solutions in Proposition 3.1 have been computed only up to this accuracy).
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4.2 Normalization of spinors in Fourier representation

We compute, at leading order, the matrix elements Wa
ρ (U

j
ε,ω, U

k
ε,ω), j, k ∈ {ν,−ν − 1}. Since

they are independent of the choices of χa as above, we are free to choose χa(x, ξ) = χ1(x)χ2(ξ),

with supp (χ2) so small that χ1(x) ≡ 1 on ωaρ . In Sect.7 however, without changing the

normalization, we shall deform χa to χ̃a so that i
h [Pa, χ̃a) is supported very close to a′.

By the functional calculus of h-PDO’s we have microlocally in ωaρ

i

h
[Pa, χa](−hDξ , ξ) =

(
0 −αeiφ/2χ′

2(ξ)

−αe−iφ/2χ′
2(ξ) 0

)
(83)

To simplify the notations, we omit superscript a, as well as ξ1 from the argument
(
ξ1, θω(ξ1)

)
.

Let χωρ be equal to 1 near ωρ. We have

Wρ(U
ν
ε,ω, U

ν
ε,ω) = −αeiφ/2

(
χωρχ

′
2(ξ)(ϕ̂2)

ν
ε,ω|(ϕ̂1)

ν
ε,ω

)
− αe−iφ/2

(
χωρχ

′
2(ξ)(ϕ̂1)

ν
ε,ω|(ϕ̂2)

ν
ε,ω

)

= −2αRe
[
eiφ/2

(
χωρχ

′
2(ξ)(ϕ̂2)

ν
ε,ω|(ϕ̂1)

ν
ε,ω

)]

(84)

Recall we have denoted by θ̂ω the critical point with θω > 0. By (242) we have

Φνε,ω
(
ξ1, θ̂ω(ξ1)

)
− Φνε,ω

(
ξ1,−θ̂ω(ξ1)

)
= 2T νε,ω

(
ξ1, θω(ξ1)

)
(85)

and using also (79)

− 1

α
|Cνβ,h′ |−2eiφ/2

(
χωρχ

′
2(ξ)(ϕ̂2)

ν
ε,ω|(ϕ̂1)

ν
ε,ω

)
=

(
χωρχ

′
2(ξ)a

ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′ |Xν
ω(θ̂ω)a

ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′)
+

(
χωρχ

′
2(ξ)a

ν
ω(−θ̂ω)eiΦ

ν
ε,ω(−θ̂ω)/h′ |Xν

ω(−θ̂ω)aνω(−θ̂ω)eiΦ
ν
ε,ω(−θ̂ω)/h′

)
+

(
χωρχ

′
2(ξ)a

ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′ |Xν
ω(−θ̂ω)aνω(−θ̂ω)eiΦ

ν
ε,ω(−θ̂ω)/h′

)
+

(
χωρχ

′
2(ξ)a

ν
ω(−θ̂ω)eiΦ

ν
ε,ω(−θ̂ω)/h′ |Xν

ω(θ̂ω)a
ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′)

(86)

we rewrite the sum of the first 2 terms of the RHS of (86) as :

−2i

∫

ωρ

χ′
2(ξ)|aνω(θ̂ω)|2 Im

(
Xν
ω(θ̂ω)

)
dξ (87)

which is purely imaginary (still mod O(h′) ). The other terms are oscillating integrals with

phases

Φνε,ω(θω)− Φνε,ω(−θω) = 2T νε,ω(ξ1, θω(ξ1))

due to (85), whose derivative are given by

∂ξ1T
ν
ε,ω(ξ1, θω(ξ1)) = θω + ∂ξ1hω(ξ1, θω(ξ1)) (88)

In Appendix B, we show that for ω = ±1

xνω(ξ1) = −(2ξE)
2

α
∂ξ1T

ν
ε,ω(ξ1, θω(ξ1)) = −(2ξE)

2

α
(E′

1 − (E′
1)

2 + · · · )
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So ∂ξ1Tε,ω(ξ1, θω(ξ1)) 6= 0 and the last 2 terms of (86) are O(h′) because the phase is non-

stationary. So by (84)

Wρ(U
ν
ε,ω, U

ν
ε,ω) = |Cνh′ |2O(h′) (89)

at least. We proceed to compute

Wρ(U
−ν−1
ε,ω , U−ν−1

ε,ω ) = −αeiφ/2
(
χωρχ

′
2(ξ)(ϕ̂2)

−ν−1
ε,ω |(ϕ̂1)

−ν−1
ε,ω

)

− αe−iφ/2
(
χωρχ

′
2(ξ)(ϕ̂1)

−ν−1
ε,ω |(ϕ̂2)

−ν−1
ε,ω

)

The computation carried over in (86) repeats identically, and yields

Wρ(U
−ν−1
ε,ω , U−ν−1

ε,ω ) = |C−ν−1
h′ |2O(h′) (90)

We are left to the mixed terms

Wρ(U
ν
ε,ω, U

−ν−1
ε,ω ) = −αeiφ/2

(
χωρχ

′
2(ξ)(ϕ̂2)

ν
ε,ω|(ϕ̂1)

−ν−1
ε,ω

)
− αe−iφ/2

(
χωρχ

′
2(ξ)(ϕ̂1)

ν
ε,ω|(ϕ̂2)

−ν−1
ε,ω

)

(91)

The first term on the RHS of (91) times − 1
α

(
Cνh′C

−ν−1
h′

)−1
equals

(
χωρχ

′
2(ξ)a

ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′ |X−ν−1
ω (θ̂ω)a

−ν−1
ω (θ̂ω)e

iΦ−ν−1
ε,ω (θ̂ω)/h′

)
+

(
χωρχ

′
2(ξ)a

ν
ω(−θ̂ω)eiΦ

ν
ε,ω(−θ̂ω)/h′ |X−ν−1

ω (−θ̂ω)a−ν−1
ω (−θ̂ω)eiΦ

−ν−1
ε,ω (−θ̂ω)/h′)+

(
χωρχ

′
2(ξ)a

ν
ω(−θ̂ω)eiΦ

ν
ε,ω(−θ̂ω)/h′ |X−ν−1

ω (θ̂ω)a
−ν−1
ω (θ̂ω)e

iΦ−ν−1
ε,ω (θ̂ω)/h′

)
+

(
χωρχ

′
2(ξ)a

ν
ω(θ̂ω)e

iΦν
ε,ω(θ̂ω)/h

′ |X−ν−1
ω (−θ̂ω)a−ν−1

ω (−θ̂ω)eiΦ
−ν−1
ε,ω (−θ̂ω)/h′)

(92)

Using again symmetries (79), (255) from Appendix B, together with relation (47) we rewrite

the sum of the first 2 terms of (92) as :

exp[−iπE′
1
2
ζε,ω(θ̂ω)/2h

′]
∫

ωρ

χ′
2(ξ)a

ν
ε,β(θ̂ω)a

−ν−1
ωβ (θ̂ω)X

−ν−1
ω (θ̂ω) dξ+

exp[−iπE′
1
2
ζε,ω(−θ̂ω)/2h′]

∫

ωρ

χ′
2(ξ)a

ν
ε,β(θ̂ω)a

−ν−1
ωβ (θ̂ω)X

−ν−1
ω (θ̂ω) dξ

(93)

Recall E′
1 from (64) and ζε,ω(θ̂ω) from (48). We observe that exp[−iπE′

1
2ζ(±θ̂ω, ε, ω)/2h′] =

exp[−iπE′
1
2/4h′] when ε ω = 1; otherwise, exp[−iπE′

1
2ζ(±θ̂ω, ε, ω)/2h′] = exp[iπE′

1
2(±ω +

1
2)/2h

′] takes the values exp[−iπE′
1
2/4h′] or exp[3iπE′

1
2/4h′]. In the latter case (93), as a

function of E′
1
2/h′, will have many cancellations due to the oscillating phases.

Thus we restrict henceforth to the choice ε ω = 1. The term exp[−iπE′
1
2/4h′] factors out

in (93), which takes now the form

2 exp[−iπE′
1
2
/4h′] Re

∫

ωρ

χ′
2(ξ)a

ν
ε,β(θ̂ω)a

−ν−1
ωβ (θ̂ω)X

−ν−1
ω (θ̂ω) dξ (94)

The last 2 terms in (92) are O(h′) because they are given by oscillatory integrals with non-

stationary phase as before. For the second term on the RHS of (91) times − 1
α

(
Cνh′C

−ν−1
h′

)−1
,

we find similarly, under the same condition ε ω = 1

2 exp[−iπE′
1
2
/4h′] Re

∫

ωρ

χ′
2(ξ)a

ν
ε,ω(θ̂ω)a

−ν−1
ε,ω (θ̂ω)Xν

ω(θ̂ω) dξ

27



which adds to (94), giving

Wρ(U
ν
ε,ω, U

−ν−1
ε,ω ) = −α exp[−iπE′

1
2
/4h′]Cνh′C

−ν−1
h′

× 2Re

∫

ωρ

χ′
2(ξ)a

ν
ε,ω(θ̂ω)a

−ν−1
ε,ω (θ̂ω)

[
Xν
ω(θ̂ω) +X−ν−1

ω (θ̂ω)
]
dξ

Since ε ω = 1, this expression simplifies to

Wρ(Û
ν
ε,ω, Û

−ν−1
ε,ω ) = −2

√
2α(2ξE)

2Cνh′C
−ν−1
h′ exp[−iπE′

1
2
/4h′]

∫

ωρ

χ′
2(ξ)Fω(ξ1, θ̂ω(ξ1)) dξ (95)

where

Fω(ξ1, θ̂ω(ξ1)) =
[
c20,ω(ξ1, η1, θ1)

(
θ1 + ∂ξ1hω(ξ1, θ1)

)

θ1 + ω(E′
1
2 − θ21)

1/2∂2θ1hω(ξ1, θ1)

]

η1=ηω(θ̂1),θ1=θ̂ω(ξ1),

(96)

and c0,ω(ξ1, η1, θ1) is the amplitude associated with FIO Aω defined in App.A. The next step is

to check that Fω(ξ1, θ̂ω(ξ1)) is a constant, which would be automatically satisfied in the scalar

case, see the discussion after (82). A careful inspection of the normal form of [HeSj] for Pω

carried in Appendix A allows to compute precisely c20,ω(ξ1, η1, θ1), from which we obtain the

following Lemma (at least at the level of Taylor expansions).

Lemma 4.1. With the notations above, and the proper choice of the extension of c0ω(ξ
′, η, θ)

from Γ′
κ giving the microlocal solutions, we have :

Fω(ξ1, θ̂ω(ξ1)) =
θω(ξ1) + 4ω ξ1 θω(ξ1) + · · ·
θω(ξ1) + 4ω ξ1 θω(ξ1) + · · · = 1

Remark: Without the correction on the amplitude c0,ω carried in Theorem A.2, i.e. replacing

c0,ω(ξ1, η1, θ1) by c0,ω|Γ′

κ
(evaluated on the critical set), the RHS of (96) takes the form

θω(ξ1) + 4ω ξ1 θω(ξ1) +
13
2 ξ

2
1 θω(ξ1) + · · ·

θω(ξ1) + 4ω ξ1 θω(ξ1) +
23
2 ξ

2
1 θω(ξ1) · · ·

= 1 +O(ξ21)

and we cannot perform the integration in (96). The same subtelty occurs in Proposition 7.2

below.

Now because
∫
ωρ
χ′
2(ξ) = −ρ, we get from (95)

Wρ(Û
ν
ε,ω, Û

−ν−1
ε,ω ) = 2

√
2ρα(2ξE)

2Cνh′C
−ν−1
h′ exp[−iπE′

1
2
/4h′] (97)

which is independent of ω (still with εω = 1). Taking complex conjugate, this gives also

Wρ(Û
−ν−1
ε,ω , Ûνε,ω).

Collecting (89), (90) and (97), and identifying the microlocal Wronskian in Fourier rep-

resentation with its matrix Wρ in the basis Û jε,ω, j = ν,−ν − 1, we have shown that, for

εω = 1

ρWρ = 2
√
2α(2ξE)

2×
(

|Cνh′ |2O(h′) Cνh′C
−ν−1
h′ exp[−iπE′

1
2/4h′]

(
1 +O(h′)

)

Cνh′C
−ν−1
h′ exp[iπE′

1
2/4h′]

(
1 +O(h′)

)
|C−ν−1
h′ |2O(h′)

)
(98)
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does not depend on ρ, and makes of Wρ a non degenerate (1,1)-Hermitian (or Lorenzian) form

on Ka
h(E) = Kerh(Pa − E).

We want to find a new basis of microlocal solution so that (98) has a canonical form, at

least with the current accuracy O(h′). The prefactor in (98) can be safely ignored. So the first

step in normalizing, modulo O(h′) terms, amounts in dividing Û jε,ω by Cjh′ , j ∈ {ν,−ν − 1}.
Because of (50), this is harmless so long as ν /∈ Z, in which case (at least) one of the “new”

Ûνε,ω, Û
−ν−1
ε,ω would vanish identically, and the pair fail to be linearly independent. Dividing

also Ûνε,ω (resp. Û−ν−1
ε,ω ) by the phase factor exp[iπE′

1
2/4h′], (resp. exp[iπE′

1
2/2h′]) we can

remove exp[−iπE′
1
2/4h′] from (98). Let N j

ε,ωÛ
j
ε,ω denote the spinors normalized this way. In

this new basis ρWρ eventually takes the canonical form

ρWρ =

(
0 1

1 0

)
+O(h′) (99)

By Plancherel theorem (81) ρWρ assumes the same value in the spatial representation,

We keep in mind that we have been working near a = aE by writing Na,j
ε,ωU

a,j
ε,ω instead of

N j
ε,ωU

j
ε,ω and ρWa

ρ instead of ρWa
ρ . We proved:

Proposition 4.1. The microlocal Wronskians ρWa
ρ supplies Ka

h(E) with a (1,1)-Hermitean

form. All vectors Na,j
ε,ωU

a,j
ε,ω ∈ Ka

h(E), (j, ε, ω) ∈ {ν,−ν − 1} × {−1, 1}2 are isotropic (modulo

O(h′)). Those subject to the condition ε ω = 1 form a normalized basis (modulo O(h′)) in

which ρWa
ρ takes the form (99).

Since Ka
h(E) is 2-D, there follows simple colinearity relations (modulo O(h′)) between the

U jε,ω’s and their complex conjugates. For simplicity we keep denoting the normalized spinors

Na,j
ε,ωÛ

a,j
ε,ω by Ûa,jε,ω.

4.3 Lorenzian structure on the microlocal kernel

We want to extend ρWa
ρ to a globally defined Hermitean form on Kh(E), and start to study

some symmetries. Let Ûa
′,j

ε,ω = IÛa,jε,ω, j ∈ {ν,−ν − 1} solve

(
Pa′ −E

)
Ûa

′,j
ε,ω = 0 (100)

with Pa′ as in (53). The normalized functions Na′,j
ε,ω Û

a′,j
ε,ω are defined in the same way. Let also

χa
′

= IχaI, and define the spinors

F̂ a,jε,ω =
i

h
[Pa, χa]Ûa,jε,ω (101)

Then

F̂ a
′,j

ε,ω =
i

h
[Pa′ , χa

′

]Ûa
′,j

ε,ω = −IF̂ a,jε,ω (102)

Equations (101) and (102) hold also in spatial representation, removing the “hats”. Consider-

ing the microlocal Wronskians, we have

Wa
ρ (U

a,j
ε,ω, U

a,k
ε,ω ) =

(
F̂ a,jε,ω |Ûa,kε,ω

)
, j, k ∈ {ν,−ν − 1} (103)
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and similarly with a′ instead of a. By (102):

Wa′

ρ

(
Ua

′,j
ε,ω , U

a′,k
ε,ω

)
= −Wa

ρ

(
Ua,j− ε,−ω, U

a,k
− ε,−ω

)
, j, k ∈ {ν,−ν − 1} (104)

Let Kh(E) be the microlocal kernel Kerh(P(x, hDx) − E), which splits into Ka′

h (E) and

Ka
h(E).

The forms Wa
ρ ,Wa′

ρ provide a natural duality between Kh(E) and the span of {F a,jε,ω , F
a′,j
ε,ω }

which identifies with the microlocal co-kernel K∗
h(E) = Ka∗

h (E) + Ka′∗
h (E) of P − E on ] −

xE, xE [×R+. Actually, varying j ∈ {ν,−ν − 1} (depending on a or a′), a priori dimKa
h(E) =

dimKa∗
h (E) = 2 for general E, so dimKh(E) = dimK∗

h(E) = 4, but we shall see how to

break Kh(E) into two orthogonal subspaces (see Sect.1) so that this dimension drops to 2, and

eventually to 1 when E is an eigenvalue of either sub-system. Let Wa = 1
2(Wa

+ −Wa
−), and

Wa′ = 1
2 (−Wa′

+ +Wa′
− ). These indices which account for the jump of Maslov index at a or a′,

are both equal to 1. Thus we have proved :

Proposition 4.2. Under PT symmetry ∨IP(x, hDx) = P(x, hDx)I∨ which we recall from (2),

the microlocal Wronskians Wa
ρ provide Ka

h(E) with an (1,1)-Hermitian form Wa
ρ = −Wa

−ρ.

The same holds true at a′, and by (104) the corresponding structures on Ka
h ×Ka∗

h and Ka′

h ×
Ka′∗
h are anti-isomorphic.

The group of automorphisms preserving Wa
ρ and Wa′

ρ (still modulo O(h′)) is therefore

U(1,1). In Sect.5 & 6, we shall extend the 2 families of spinors Ua,jε,ω and Ua
′,j

ε,ω along γ>,ρ(E)

and show in Sect.7 how they are related by the relative monodromy operator.

5 Spinors in the spatial representation near a branch-

ing point

We apply to our microlocal solutions in Fourier representation, the inverse h-Fourier transform

F∗
hu(ξ, h) = (2πh)−1/2

∫
eixξ/hu(x) dx. Like Airy functions, they have complex branches at

a, a′, so it is necessary to distinguish carefully between the germs of complex phase functions

in |x| > xE, even if one contents with the region |x| < xE .

5.1 Formulas in the spatial representation

For the moment, we work near xE, and omit henceforth the label a. By inverse Fourier

transform F∗
h to (76)-(77) we get (before normalization of Sect.4), at leading order in h

Uνε,ω(x) = 2ωξEC
ν
h′e

ixξE/h
∑

θω(ξ1)=±θ̂ω(ξ1)

(2πh)−1/2

∫ (
eiφ/2(ξ2 − µ− E)−1/2Xν

ω(ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)

× |aνω
(
ξ1, θω(ξ1)

)
| exp[iRνω(θω(ξ1))] exp[iΨ̃ν

ε,ω(x1, ξ1)/h
′] dξ1

(105)
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and

U−ν−1
ε,ω (x) =

2
√
2

E′
1

ωξEC
−ν−1
h′ eixξE/h

∑

θω(ξ1)=±θ̂ω(ξ1)

ε sgn θω(2πh)
−1/2

∫ (
eiφ/2(ξ2 − µ− E)−1/2X−ν−1

ω (ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)

× |a−ν−1
ω

(
(ξ1, θω(ξ1)

)
| exp[iR−ν−1

ω (θω(ξ1))] exp[iΨ̃
−ν−1
ε,ω (x1, ξ1)/h

′] dξ1

(106)

with

Ψ̃j
ε,ω(x1, ξ1) = x0EξE + ω(E1 + x1)ξ1 + T jε,ω(ξ1, θω(ξ1)) (107)

Because θω is the common θ-projection of the critical point of the phase defining AωDν

(resp. AωD−ν−1) as in (206) (resp. (226)), the critical points of ξ1 7→ Ψ̃j
ε,ω(x1, ξ1) satisfy

Gω(x1, ξ1;E
′
1) = 0, with

Gω(x1, ξ1;E
′
1) = ω(E1 + x1) + θω(ξ1) +

∂hω
∂ξ1

(ξ1, θω(ξ1)) (108)

In other words, the critical points of ξ1 7→ Ψ̃j
ε,ω(x1, ξ1) belong to the ξ1-component of the set

of critical points of H̃ω : (ξ1, θ1) 7→ ω(E1 + x1)ξ1 +Hω(ξ1, θ1;E
′
1), with

Hω(ξ1, θ1;E
′
1) = ξ1θ1 + hω(ξ1, θ1)− ω

∫
(E′

1
2 − θ21)

1/2 dθ1 (109)

as in (214). We notice that Gω(ξ1, θ1;E
′
1) andHω(ξ1, θ1;E

′
1) are independent of j and ε. Let us

look at the critical points Gω(x1, ξ1;E
′
1) = 0, and the critical values Ψ̃j

ε,ω(x1, ξ1), as functions

of x1.

The critical point of H̃ω is given by

ω(x1 +E1) + θ1 + ∂ξ1hω(ξ1, θ1) = 0

ξ1 + ∂θ1hω(ξ1, θ1)− ω(E′
1
2 − θ21)

1/2 = 0
(110)

Second equation (110) gives the critical point θ1 = θω(ξ1). Recall from Lemma A.3 that this is

actually an equation for θ21 and the positive root is denoted by θ̂ω(ξ1). To show that (x1, ξ1) = 0

is a critical point for H̃ω, and hence Gω(0, 0) = 0, we must prove that the first Eq.(110) holds

for (x1, ξ1) = 0. The following Lemma will be checked by formal calculus in Sect.5.1.

Lemma 5.1. : For ω = ±1 we have ωE1 + θω(0) + ∂ξ1hω(0, θω(0)) = 0 provided θω(ξ1) =

−ωθ̂ω(ξ1).

Now we have

∂ξ1Gω(x1, ξ1;E
′
1) = (∂ξ1θω(ξ1)

[
1 + (

∂2hω
∂θ1∂ξ1

)
(
ξ1, θω(ξ1)

)]
+ (

∂2hω

∂ξ1
2 )
(
ξ1, θω(ξ1)

)
(111)

In Sect. 5.1 we prove by formal calculus
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Lemma 5.2. : We have

∂ξ1Gω(0, 0;E
′
1) = 0

∂2ξ1Gω(0, 0;E
′
1) = ω

( 1

E′
1
+

3

4
E′

1 + · · ·
)
6= 0

(112)

There follows the following factorization near (x1, ξ1) = 0

Gω(x1, ξ1, E
′
1) = Aω(x1, ξ1, E

′
1)(ξ

2
1 + aω(x1, E

′
1)ξ1 + bω(x1, E

′
1))

= Aω(x1, ξ1, E
′
1)(ξ1 − ξ+ω (x1, E

′
1))(ξ1 − ξ−ω (x1, E

′
1))

(113)

whereAω(x1, ξ1, E
′
1), aω(x1, E

′
1), bω(x1, E

′
1) are analytic near (0,0), Aω is elliptic, and aω(0, E

′
1) =

bω(0, E
′
1) = 0. Thus Gω(x1, ξ1;E

′
1) = 0 has locally 2 solutions ξ1 = ξρω(x) (the critical points

of ξ1 7→ Ψ̃j
ε,ω(x1, ξ1)) normalized by ρξρω(x) ≥ 0 for small x1 < 0.

Having computed the critical points of Ψ̃j
ε,ω(x1, ξ1), we perform the integration with respect

to ξ1 in (105), and apply Theorem 2.1. Denote by

Ψj,ρ
ε,ω(x) = Ψ̃j

ε,ω(x1, ξ
ρ
ω) (114)

the critical values. Since

Ψ−ν−1,ρ
ε,ω (x) = Ψν,ρ

ε,ω(x) +
πE′

1
2

2
ζε,ω
(
θω
(
ξρω(x)

))
(115)

(where index ζε,ω defined in (48) is 1/2 when ε ω = 1) they differ only by a constant, and the

densities Kj,ρ
ω (x) (Hessian at the critical point) take the same value

Kρ
ω(x) =

1

i

∂2Ψν
ε,ω

∂ξ21
(ξ1, θ1)|ξ1=ξρω(x) =

1

i
∂ξ1Gω(x1, ξ1;E

′
1)|ξ1=ξρω(x) (116)

where we recall ∂ξ1Gω from (111). By (112) we have Kρ
ω(xE) = 0.

The ωθ̂ω(ξ1) term in (105) has non stationary phase, and contributes to an error term

O(h′), while the θω(ξ1) = −ωθ̂ω(ξ1) term contributes by two critical points, labelled by ρ, and

located on the corresponding segments ρ = Λ>ρ . Applying the asymptotic stationary phase

we find (before normalization of Sect.4), and up to the phase factor eix
0
EξE/h

′

which doesn’t

change normalization:

Uνε,ω(x, h) = 2ωβξEC
ν
h′e

ixξE/h
∑

ρ

(
Kρ
ω(x)

)−1/2

(
eiφ/2(ξ2 − µ−E)−1/2Xν

ω(ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)
|ξ1=ξρω(x)|a

ν
ω(ξ1, θω(ξ1))| exp[iRνω(θω(ξ1))]|ξ1=ξρω(x)

exp[iΨν,ρ
ε,ω(x)/h

′](1 +O(h′))
(117)

and

U−ν−1
ε,ω (x, h) = 2ωβξEC

−ν−1
h′ eixξE/h

∑

ρ

ε sgn(θω(ξ
ρ
ω(x))

(
Kρ
ω(x)

)−1/2

(
eiφ/2(ξ2 − µ− E)−1/2X−ν−1

ω (ξ1, θω(ξ1))

(ξ2 − µ− E)1/2

)
|ξ1=ξρω(x)

|a−ν−1
ω (ξ1, θω(ξ1))| exp[iR−ν−1

ω (θω(ξ1))]|ξ1=ξρω(x) exp[iΨ
−ν−1,ρ
ε,ω (x)/h′](1 +O(h′))

(118)
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We summarize (117) and (118) as

U jε,ω(x, h) =
∑

ρ

U j,ρε,ω(x, h) = Cjω,h′
∑

ρ

Ũ j,ρε,ω(x, h) exp[i
(
xξE +

(2ξE)
3

α
Ψj,ρ
ε,ω(x)/h] (119)

where Uν,ρε,ω(x, h) and U−ν−1,ρ
ε,ω (x, h) are colinear (outside the branching points the space of

microlocal solutions is 1-D). In particular the common phase factor for U j,ρε,ω(x, h), up to a

multiplicative constant, and including the lower order term in h′ (sub-principal 1-form) is

given by exp[ixξE/h] exp
[
i(Ψν,ρ

ε,ω(x) + h′Rν,ρε,ω(θω)/h′
]
. To stress that Jacobians Kν,ρ

ω (x) are

purely imaginary we set

Kν,ρ
ω (x) = K−ν−1,ρ

ω (x) =
1

i
Lρω(x) (120)

with Lρω(x) real and vanishing at xE . Notice that ε sgn θω = − εω = −1 since θω(ξ1) has sign

opposite to ω.

5.2 Asymptotics of the phase functions near the branching

point

Here we study the microlocal solutions near aE , in particular in the region x > xE where the

phase (107) is complex ; our aim is to sort out among j, ε, ω, ρ’s, the exponentially decreasing

(recessive) and exponentially increasing (dominant) branches of solutions. We chosed already

εω = 1. To this end, we shall relate the picture of Stokes lines and Stokes regions of phase

(107) to the corresponding one for the harmonic oscillator P0(θ, hDθ) =
1
2

(
(hDθ)

2 + θ2 − h
)
,

close to the turning points, as explained in Sect.2.

Note that “local time” reversal invariance property (80) shows that U jε,ω continued across

Stokes line x > xE in the forbidden region has the same asymptotics as U j− ε,−ω; this still

would allow for exponentially small corrections, called Stokes phenomenon (see [DeDiPh], [Sil]

for the Schrödinger case).

5.2.1 Extension of U j
ε,ω across Stokes lines

In this Sect. we sketch the construction of the complex germs of microlocal solutions outside

[−xE, xE ]. Since we do not really consider the problem of resonances, we only use these con-

struction to sort out between exponentially growing and exponentially decaying branches. This

will determine the monodromy matrices Ma,a′
ρ (E) in Sect.7. By (114) for x1 in a neighborhood

of 0 we have

Ψν,ρ
ε,ω(x1) = x0EξE + ω(E1 + x1)ξ1 + T νε,ω(ξ1, θω(ξ1))|ξ1=ωξρ1 (x1) =

T νε,ω(ξ1, θ1) = ξ1θ1 + hω(ξ1, θ1)−
1

2
ωθω(ξ1)(E

′
1
2 − θ1)

1/2 − E′
1
2

2
Θ̂ε,ω(θ1)

with hω(ξ1, θ1) holomorphic in a neighborhood of (0,0), and where we recall from Lemma A.3

θ2ω(ξ1) = (E′
1
2 − 4E′

1
4
+ · · · )− ξ1(4E

′
1
2
+ · · · ) + · · ·
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is very close to E′
1
2. Define ν1 by E′

1 =
√

2(ν1 + 1)h. We can rewrite this phase as

Ψν,ρ
ε,ω(x1) =

[
Hol(ξ1) + Φ−ν1−1

ε,ω (−θω(ξ1))
]
|ξ1=ωξρ1 (x1) (121)

where Φ−ν1−1
ε,ω is as (34), and ξ1 7→ Hol(ξ1) is holomorphic near 0. Let

ηρω(x1) = −θω(ξ1)|ξ1=ωξρ1(x1)

this is an analytic function of
√
E1x1 near 0, and ηρ+(x1) > 0, and for x1 = 0 lies on the real

axis and is very close, to the left, of the turning point E = E′
1 of the harmonic oscillator of

Sect.2. We have the expansion

ηρω(x1) = E′
1(1− 2E′2

1 − · · · )− 2iE′
1ρ
√

2E1x1 + · · · (122)

so that ηρω(x1) moves to the axis [E′
1,+∞[.

When x1 > 0, and ρ = +1, ηρ+(x1) moves upwards towards the Stokes line making an angle

2π/3 with the positive real axis at E.

In computing the integral (105) for positive x1 we take a good contour γ+ ⊂ {Im ξ1 > 0}
passing through ξρω(x1), ρ = +1, and parametrized locally by ξ1 = ξρ+(x1)+ t, t ∈ R. It clearly

suffices to show that ImΨν
ε,ω(x, ξ1) ≥ 0 along γ+; since the “regular part” Hol(ξ1) varies slowly

it suffices in turn to check that t 7→ Φ−ν−1
ε,ω (ηρ+(x1) + t) has positive imaginary part. Similar

considerations hold for U−ν−1
ε,ω .

5.2.2 Taylor expansion of the phase functions

We write (114) as

Ψj,ρ
ε,ω(x) = Ψj,ρ

ε,ω(xE) +

∫ x

xE

∂

∂ y
(Ψj,ρ

ε,ω(y)) dy

= Ψj,ρ
ε,ω(xE) + ω(2ξE)

−2α

∫ x1

0
ξρω(y1) dy1

(123)

where we recall from Lemma 5.1 that ξρω(0) = 0. The expansion of ξρω(x1) near 0 is given in

the following Lemma, that we prove by formal calculus in Sect.5.3.

Lemma 5.3. The critical points ξρω(x1), ρ = ±, are given by the branches of an analytic

function

ωξρω(x1) = f1(x1, E1) + ρ
√

2E1

√
−x1f2(x1, E1) (124)

(independent of ω) with

f1(x1, E1) = 2E1 x1 + x21 + · · ·

f2(x1, E1) = 1− x1
(
4E1 −

1

4E1
+ · · ·

)
+ · · ·

(125)

where we recall E1 and E′
1 are related by (65). In particular we have the following symmetry

between critical points

ξρ−ω(x1;E1) = −ξρω(x1;E1) (126)
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Returning to the original variables (x, ξ) by x1 = (2ξE)
−2 α (x−xE), ωξ1 = (2ξE)

−1(ξ−ξE),
for these values of ξ1 = ξρω(x1), we have of course det(P(x, ξ) − E) = 0.

Now we compute the asymptotics of Ψν,ρ
ε,ω(xE). Recall from (71) and (70) that

Ψν,ρ
ε,ω(xE) = x0EξE + T νε,ω

(
0, θω(0)

)

x0EξE + hω(0, θω(0)) −
1

2
ωθω(0)(E

′2
1 − θω(0)

2)1/2 − 1

2
E′2

1Θ̂ε,ω(θω(0))
(127)

and from (110)

∂θ1hω(ξ1, θω(0)) = ω(E′
1
2 − θ21)

1/2

We also have

Θ̂ǫ,ω(θ1) = arg
( ε√

2

(
iθ1 + ω(E′

1
2 − θ21)

1/2
))

We discuss according to the cases ε = ω = 1 and ε = ω = −1. In the first case,

Θ̂+,+(θ+(0)) = −π
2
+ arcsin

(E′
1
2 − θ+(0)

2)1/2

E′
1

and by a Taylor expansion using Appendix A

(
E′

1
2 − θ2+(0)

)1/2
= (∂θ1h+)(0, θ+(0)) = 2θ2+(0) +

25

2
θ4+(0) + · · · ∼ 2E′

1
2
+

9

2
E′

1
4
+ · · ·

we get

Θ̂+,+(θ+(0)) ∼ −π
2
+ arcsin

(
2E′

1 +
9

2
E′

1
3)

= −π
2
+ 2E′

1 +
35

6
E′

1
3
+ · · ·

and using also (65)

Ψν,ρ
+,+(xE) ∼

π

4
E′

1
2 − 2

3
E′

1
3 − · · · = π

4
(E2

1 +
3

2
E4

1 + · · · )− 2

3
E1

3 − · · ·

The same expression holds when ε = ω = −1. In fact, for all ε, ω

Ψν,ρ
ε,ω(xE) ∼

π ε ω

4
E′

1
2 − 2

3
E′

1
3 − · · · = π εω

4
(E2

1 +
3

2
E4

1 + · · · )− 2

3
E1

3 − · · · (128)

To compute Ψ−ν−1,ρ
ε,ω (xE), we use (115), which gives, when εω = 1

Ψ−ν−1,ρ
ε,ω (xE) ∼

π

2
E′

1
2 − 2

3
E′

1
3 − · · · = π

2
(E2

1 +
3

2
E4

1 + · · · )− 2

3
E1

3 − · · · (129)

since ζε,ω(θω(0)) = 1
2 . Note that the leading term π

4 E
′
1
2 (resp. π

2 E
′
1
2) in Ψν,ρ

ε,ω(xE) (resp.

Ψ−ν−1,ρ
ε,ω (xE)) drops out after normalization in Sect.4. Integrating ξρω given by Lemma 5.3, we

substitute in (123) and get :

Lemma 5.4. We have

Ψν,ρ
ε,ω(x) = Ψν,ρ

ε,ω(xE) + E1x
2
1g1(x1, E1)−

2

3
ρ
√

2E1(−x1)−3/2g2(x1, E1) (130)

(independent of ω) with

g1(x1, E1) = 1 +
x1
3E1

+ · · ·

g2(x1, E1) = 1 +
3

5
x1
( 1

E1
− 4E1 + · · ·

)
+ · · ·

(131)

and similarly fo Ψ−ν−1,ρ
ε,ω (x).

Of course, Ψj,ρ
ε,ω(x) looks much the same as the phase of an Airy function.
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5.3 Appendix: Formal proof of Lemmas 5.1-5.3

We content ourselves with proving the Lemma at the level of Taylor expansions.

5.3.1 Proof of Lemma 5.1

Recall (65) and the expansion of θω(ξ1). In particular −ωθω(0) = E′
1 − 2E′

1
3 − 11E′

1
5 − · · · ,

and

(∂ξ1 hω)
(
0, θω(0)

)
=

5

4

(
θω(0)

)3
+

515

32

(
θω(0)

)5 ∼ −5

4
E′

1
3 − 275

32
E′

1
5

There follows, with θω(0) = −ωθ̂ω(0), E1 + θ+(0) + ∂ξ1 h+)
(
0, θ+(0)

)
∼ 0 and −E1 + θ−(0) +

∂ξ1 h−)
(
0, θ−(0)

)
∼ 0 up to this accuracy. This gives Lemma 5.1 ♣

5.3.2 Proof of Lemma 5.2

We prove the Lemma analogously: check first 112) using (111). Again we work at the level of

Taylor expansions in E′
1, specifically up to order 5. We have

(
∂2hω
∂θ1∂ξ1

)
(
0, θω(0)

)
=

15

4

(
θω(0)

)2
+

2575

32

(
θω(0)

)4
+ · · ·

and

(
∂2hω
∂ξ21

)
(
0, θω(0)

)
= ω

(
2 θω(0) +

23

2

(
θω(0)

)3
+

3439

16

(
θω(0)

)5
+ · · ·

)

For ω = 1, choosing the negative root θ+(0) we get

(θ+(0))
3 = −E′3

1 + 6E′
1
5
+ · · ·

(
∂θ+
∂ξ1

)(0) = 2E′
1 − 7E′

1
5 − · · ·

(
∂2h+
∂θ+∂ξ1

)
(
0, θ1(0)

)
=

15

4
E′2

1 +
2095

32
E′4

1 + · · ·

(
∂2h+
∂ξ21

)
(
0, θ+(0)

)
= −2E′

1 −
15

2
E′3

1 −
1983

16
E′5

1 − · · ·

so

(
∂G+

∂ξ1
)(0, 0;E′

1) = 0

Another computation shows that

(
∂2G+

∂ξ21
)(0, 0;E′

1) =
1

E′
1
+

3

4
E′

1 + · · · 6= 0

For ω = −1, we choose instead the positive root θ−(0) > 0, and show

(
∂G−
∂ξ1

)(0, 0;E′
1) = 0, (

∂2G−
∂ξ21

)(0, 0;E′
1) 6= 0

which takes the proof of Lemma 5.2 to an end. ♣
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5.3.3 Proof of Lemma 5.3

Here we compute the critical point ξρω(x1, E
′
1) for x1 < 0. We have

Gω(x1, ξ1;E
′
1) = ω (E1 + x1) + θω(ξ1) + 2ω ξ1 θω(ξ1) +

9

4
ξ21 θω(ξ1) +

5

4

(
θω(ξ1)

)3

+ ω

(
9 ξ31 θω(ξ1) +

23

2
ξ1
(
θω(ξ1)

)3
)
+

515

32

(
θω(ξ1)

)5
+

1073

16
ξ21
(
θω(ξ1)

)3

+
1015

32
ξ41 θω(ξ1) + ω

(
3439

16
ξ1
(
θω(ξ1)

)5
+

765

2
ξ31
(
θω(ξω)

)3
+

2037

16
ξ51 θω(ξ1)

)
+ · · ·

For ω = 1, we choose the branch θ+(0) < 0, and we get

G+(x1, ξ1;E
′
1) = x1+

( 1

2E′
1
+

3

8
E′

1+
95

64
E′

1
3
+ · · ·

)
ξ21 +

( 1

E′
1

+
3

4
E′

1+
95

32
E′

1
3
+ · · ·

)
ξ31 + · · ·
(132)

Using Lemma 5.1, in particular aω(0;E
′
1) = 0, we expand

a+(x1;E
′
1) = a+(0;E

′
1) + (

∂a+
∂x1

)(0;E′
1)x1 + · · · = (

∂a+
∂x1

)(0;E′
1)x1 + · · ·

b+(x1;E
′
1) = b+(0;E

′
1) + (

∂b+
∂x1

)(0;E′
1)x1 + · · · = (

∂b+
∂x1

)(0;E′
1)x1 + · · ·

A+(x1, ξ1;E
′
1) = A+(0, 0;E

′
1) + (

∂A+

∂x1
)(0, 0;E′

1)x1 + (
∂A+

∂ξ1
)(0, 0;E′

1) ξ1 + · · ·

By identification

A+(0, 0;E
′
1) =

1

2E′
1

+
3

8
E′

1 +
95

64
E′

1
3
+ · · ·

(
∂A+

∂ξ1
)(0, 0;E′

1) =
1

E′
1

+
3

4
E′

1 +
95

32
E′

1
3
+ · · ·

(
∂A+

∂ x1
)(0, 0;E′

1) = 0

(
∂a+
∂x1

)(0;E′
1) = −4E′

1 + 3E′
1
3
+

77

8
E′

1
5
+ · · ·

(
∂b+
∂x1

)(0;E′
1) = 2E′

1 −
3

2
E′

1
3 − 77

16
E′

1
5 − · · ·

It follows

G+(x1, ξ1;E
′
1) = A+(x1, ξ1;E

′
1)
(
ξ21 +

(
− 4E′

1 + 3E′
1
3
+

77

8
E′

1
5
+ · · ·

)
x1 ξ1+

(
2E′

1 −
3

2
E′

1
3 − 77

16
E′

1
5 − · · ·

)
x1
) (133)

and the expression for ξρ,ω+ follows easily, by solving the quadratic equation.

Now for ω = −1, we choose θ−(ξ1) > 0, and get

G−(x1, ξ1;E
′
1) = −x1−

( 1

2E′
1
+

3

8
E′

1+
95

64
E′

1
3
+ · · ·

)
ξ21+

( 1

E′
1

+
3

4
E′

1+
95

32
E′

1
3
+ · · ·

)
ξ31+ · · ·
(134)

We notice that

G+(x1,−ξ1;E′
1) = −G−(x1, ξ1;E

′
1) (135)

and get similarly the expression for ξρ−. This proves Lemma 5.3. ♣

37



6 Spinors in the spatial representation outside the

branching points

We diagonalize P − E outside the branching points and construct WKB solutions extending

microlocal solutions of Sect.4 as WKB solutions along simple bicharacteristics. The situation

is close to the “pseudo-scalar” case set up in [Ro], because there is no longer “strong mixing”

between electronic and hole wave-functions. See also [Iv] for general systems. Recall the

Lagrangian manifold Λ>E consists in 2 branches ΛρE = Λ>,ρE , ρ = ±1 so that ρ = +1 belongs

to the electronic state (ξ1 > 0 in the local coordinates near a above), resp. ρ = −1 to the

hole state (ξ1 < 0). These states mix up when ∆(x) 6= 0, but we can still sort them out

semiclassically, outside a, a′. Call the vector space of C2 generated by
(1
0

)
the space of (pure)

electronic states, or electronic spinors, and this by
(0
1

)
the space of (pure) hole states, or hole

spinors.

Recall from (51) that the positive eigenvalue of P(x, ξ) is λ(x, ξ) =
√

∆(x)2 + (ξ2 − µ(x))2,

and the corresponding normalized eigenvector (for the pointwise hermitian norm in C2)

Y (x, ξ) =
(
∆2 + (−ξ2 + µ+ λ)2

)−1/2
(

∆eiφ/2

−ξ2 + µ+ λ

)
(136)

Let λρ(x, ξ) = ρλ(x, ξ). On ΛρE we consider the line bundle with fiber

Yρ(x, ξ) =
(
∆2 + (−ξ2 + µ+ λρ )

2
)−1/2

(
∆eiφ/2

−ξ2 + µ+ λρ

)
(137)

The vectors Yρ(x, ξ) are orthogonal, and Y+(x, ξ) = Y (x, ξ). When ∆(x) = 0, Λ+
E = {ξ2 =

µ(x) + E} carries a pure electronic state, spanned by Y+(x, ξ) while Λ−
E = {ξ2 = µ(x) − E}

carries a pure hole state, spanned by Y−(x, ξ). Because of the normalization factor in (137),

Yρ has a discontinuity on ΛρE when ∆ vanishes, while Y−ρ is continuous. To analyse the

discontinuity, we use the identity

−ξ2 + µ+ ρ
√

∆2 + (ξ2 − µ)2 = −∆2
(
−ξ2 + µ− ρ

√
∆2 + (ξ2 − µ)2

)−1

to show

Yρ(x, ξ) =
(
1 +

∆2

(
−ξ2 + µ− ρ

√
∆2 + (ξ2 − µ)2

)2
)−1/2

(
eiφ(x)/2

∆
(
ξ2 − µ+ ρ

√
∆2 + (ξ2 − µ)2

)−1

)

(138)

Because of the jump of x 7→ φ(x) at x = 0, Yρ(x, ξ) is only piecewise smooth on ΛρE ,

and Yρ(x, ξ) =
(ei sgn(x)φ/2

0

)
where ∆ = 0, while Y−ρ(x, ξ) is everywhere smooth on ΛρE, and

Y−ρ(x, ξ) =
(0
1

)
where ∆ = 0.

Thus it can be convenient to view Yρ as a smooth section over ΛE (up to the branching

points a, a′) valued in the projective space P1(C), where
(
ei sgn(x)φ/2

0

)
is identified with

(
1
0

)
. At

a they consist of the most “hybrid” superposition of electronic and hole states 1√
2

(
eiφ/2

1

)
, and

similarly at a′. Moreover it satisfies the symmetry I∨Yρ = Yρ.
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Let ξρω(x, h′) be the critical point computed in Lemma 5.3 (which depends on ω only by its

sign), we identify the section Yρ(x, ξ) over ΛE with a function of x, as

Yρ(x, h
′) = Yρ(x, ξ)|ξ1=ξρω(x,h′)

Choose (xρ, ξρ) ∈ ΛρE \ {a, a′}, and let us construct WKB solutions starting from (xρ, ξρ). The

vectors Yρ make a unitary matrix with (piecewise) smooth coefficients, Aρ(x, ξ), defined along

the piece ρ of ΛE containing (xρ, ξρ), and up to the branching points, such that

A∗
ρ(P − E)Aρ =

(
λρ − E 0

0 λ−ρ − E

)
(139)

When looking at an electronic state, we choose ρ = +1 so that λρ(xρ, ξρ) − E = 0, while

λ−ρ(xρ, ξρ) − E is elliptic. When looking at a hole state instead, we choose ρ = −1 so that

λ−ρ(xρ, ξρ)− E = 0, while λρ(xρ, ξρ)− E is elliptic.

It is standard (see e.g. [HeSj], [Iv], [Ro,Sect.4]) that we can implement this diagonalization

at the level of operators, in particular the first 2 terms of the Weyl symbol of λρ(x, hDx, h)−E
are computed in [HeSj2,Sect 6]. Of course, due to the discontinuity of x 7→ φ(x) at x = 0, the

corresponding operators should be considered separately for x > 0 and x < 0, so we change the

phase factor eiφ/2 on x > 0 to e−iφ/2 on x < 0, so that the spinors verify Definition 3.1. It is

convenient to keep the (real valued) subprincipal symbol λ
(1)
ρ (x, ξ) together with the principal

symbol λρ(x, ξ), so let

λ̂ρ(x, ξ, h) = λρ(x, ξ) + hλ(1)ρ (x, ξ) (140)

In the “quasi-particle local frame”, we look for a WKB solution Zρ(x, h) of

A∗
ρ(P − E)AρZ

ρ(x, h) = 0

of the form

Z+(x, h) = eiS+(x,h)/h

(
w+(x, h)

0

)
, Z−(x, h) = eiS−(x,h)/h

(
0

w−(x, h)

)
(141)

where Sρ solves the modified eikonal equation λ̂ρ(x, ∂xSρ, h) = E, and the symbol wρ =

wρ0 + hwρ1 + · · · is uniquely determined up to a constant factor by solving transport equations

along ρ. In particular wρ0(x, h) satisfies :

∂ξλ̂ρ(x, ∂xSρ(x, h), h)∂xw
ρ
0 +

1

2

∂2

∂x∂ξ
λ̂ρ(x, ∂xSρ, h)w

ρ
0 = 0

so wρ0 can be chosen to be real. More invariantly,

LHλρ |Λρ(E)(w
ρ
0(x, h)|dx|1/2) = 0 (142)

where LHλρ
denotes the Lie derivative acting on half-densities. Applying Aρ we get

W ρ(x, h) = AρZ
ρ(x, h) = eiSρ(x,h)/h

(
wρ0(x, h)Yρ(x, ∂xSρ)+O(h)

)
= eiSρ(x,h)/hW̃ ρ(x, h) (143)

We summarize our constructions in the:
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Proposition 6.1. Let Kρ
h(E) = Kerρh(P − E) be the microlocal kernel of P along ΛρE, with

Kerh(P − E) = K+
h (E) ∪ K−

h (E). Then Kρ
h(E) is one-dimensional and consists of spinors

W ρ(x, h) defined in (143).

7 Connexion formulas and BS rules

First we look for connexion formulas between microlocal solutions near the branching points,

and WKB solutions along the pieces of bicharacteristics.

The set Kh(E) of asymptotic solutions to (P − E)U = 0 as a vector bundle over R with

compact base [−xE , xE ], projects microlocally on 2 sub-bundles over γ>,ρ(E), ρ = ± (joining

smoothly at aE, a
′
E , where the electron and the hole state are indistinguishable), or equivalently

of the 2 sub-bundles over γ<,ρ(E) obtained from γ>,ρ(E) by the complex involution I. For

short we identity γ>,ρ(E) with ρ.

We shall determine 2 sequences of eigenvalues E = Eρn(h), ρ = ±, in such a way that

Kh(E) consists of 2 orthogonal line bundles (modulo small corrections), carrying the electron

state for ρ = 1, resp. the hole state for ρ = −1.

7.1 Relative monodromy matrices

The key point in our argument is that along simple characteristics, Kρ
h(E) is one dimensional;

in particular the phase function Sρ(x;h) (including the h-correction) and the leading order,

real valued amplitude (as |aνω| in Proposition 3.1) are uniquely defined (see [HeSj,App.a.3] for

a general discussion).

Recall from (53) and (54) BdG Hamiltonians near a, a′ respectively. Because of Proposition

4.2 for each ω, ε, ρ = ±1, the normalized microlocal solutions U j,ρ,a
′

ε,ω are related to the extension

Uk,ρ,a
′

ε,ω,ext of the normalized microlocal solutions Uk,ρ,aε,ω along ρ by the relative monodromy matrix

over [−xE, xE ]

Ma,a′
ρ =

(
dρ11 dρ12

dρ21 dρ22

)
∈ U(1, 1) (144)

where we claim that dρij ∈ C does not depend on (ε, ω). We also claim (see Proposition 4.1)

that Ma′,a
ρ (E) ∈ U(1, 1) obtained by extending from the left to the right, and applying PT

symmetry, takes the form

Ma′,a
ρ (E) = I(Ma,a′

ρ (E))−1I =
(
Ma,a′

ρ (E)
)−1

(145)

We are to compute the coefficients dρij at first order in h by connecting the microlocal

solutions from a to a′. Considerations made in Sect.5.2.1 concerning the behavior of the

complex germs of microlocal solutions U jε,ω beyond the branching points, fix the choice of the

dρij as follows.
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Extend a microlocal solution near a of the form α1U
ν,a
ε,ω + α2U

−ν−1,a
ε,ω towards a′. We have

(
α1U

ν,a
ε,ω + α2U

−ν−1,a
ε,ω

)
ext

= β1U
ν,a′
ε,ω + β2U

−ν−1,a′
ε,ω (146)

By definition of Ma,a′(E)

(
Uν,aε,ω

)
ext

= d11U
ν,a′
ε,ω + d21U

−ν−1,a′
ε,ω

(
U−ν−1,a
ε,ω

)
ext

= d12U
ν,a′
ε,ω + d22U

−ν−1,a′
ε,ω

(147)

Projecting microlocally onto ρ, (147) takes the form

(
Uν,aε,ω

)ρ
ext

= dρ11U
ν,a′
ε,ω + dρ21U

−ν−1,a′
ε,ω

(
U−ν−1,a
ε,ω

)ρ
ext

= dρ12U
ν,a′
ε,ω + dρ22U

−ν−1,a′
ε,ω

(148)

Similarly (
Uν,a

′

ε,ω

)ρ
ext

= eρ11U
ν,a
ε,ω + eρ21U

−ν−1,a
ε,ω

(
U−ν−1,a′
ε,ω

)ρ
ext

= eρ12U
ν,a′
ε,ω + eρ22U

−ν−1,a′
ε,ω

(149)

For each scattering process, the dominant branch (i.e. exponentially growing outside [−xE, xE ])
of the microlocal solution at either branching point a, a′ becomes recessive (i.e. exponentially

decaying outside [−xE , xE ]) at the other point. There are actually 2 possible cases. First:

dρ11 = dρ22 = 0 (150)

The relation Ma,a′
ρ (E) ∈ U(1, 1) expresses as dρ12d

ρ
21 = 1 and by (145), we have Ma′,a

ρ (E) =

Ma,a′
ρ (E). Second:

dρ12 = dρ21 = 0 (151)

and dρ11d22
ρ
= 1, so Ma′,a

ρ (E) = σxMa,a′
ρ σx, with σx =

(
0 1

1 0

)
.

By (149) we have
(
Uν,a,ρε,ω

)
ext

= dρ21U
−ν−1,a′,ρ
ε,ω and

(
U−ν−1,a,ρ
ε,ω

)
ext

= dρ12U
ν,a′,ρ
ε,ω in case (150),

resp.
(
Uν,a,ρε,ω

)
ext

= dρ11U
−ν−1,a′,ρ
ε,ω and

(
U−ν−1,a,ρ
ε,ω

)
ext

= dρ22U
−ν−1,a′,ρ
ε,ω in case (151).

We show in Remark 7.1 below that Gram matrix is meaningless in case (151), so shall only

consider Ma,a′
ρ (E) in case (150).

The extension determines the normalization in the sense of Sect.4 along the bicharacter-

istics ρ = ±. Namely, choose a pair of normalized solutions (U1, U3) with U1 = Uν,aε,ω and

U3 = U−ν−1,a
ε,ω near a, so that

(
i
h [P, χa]ρU1|U3

)
= 1 (still at leading order in h) and deform

continuously χa into χ ∈ C∞
0 (R2) so that χ equals 1 near Λ>E \ {a′E}. By the discussion after

Definition 4.1, the normalization remain unchanged along ρ, namely

ρ
( i
h
[P, χa]ρU1|U3

)
= ρ
( i
h
[P, χ]ρdρ21U−ν−1,a′

ε,ω |dρ12Uν,a
′

ε,ω

)
= 1 (152)

since dρ21d
ρ
12 = 1 and ρ

(
i
h [P, χa

′

]ρU
−ν−1,a′
ε,ω |Uν,a′ε,ω

)
= 1. So by (145) we have

Ma,a′
ρ =

(
0 dρ12

dρ21 0

)
, Ma′,a

ρ =

(
0 (dρ21)

−1

dρ21 0

)
=

(
eρ11 eρ12

eρ21 eρ22

)
(153)
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Let also U2 be a normalized solution, such that Ua
′

2 = U−ν−1,a′
ε,ω near a′, and

Ua2 =
(
U−ν−1,a′
ε,ω

)
ext

= eρ12U
ν,a
ε,ω = dρ12U

ν,a
ε,ω (154)

near a. We have

ρ
( i
h
[P, χa]ρU1|U2

)
= ρ
( i
h
[P, χ]ρdρ21U−ν−1,a′

ε,ω |U−ν−1,a′
ε,ω

)
= 0 (155)

Similarly, let U4 be a normalized solution, such that Ua
′

4 = Uν,a
′

ε,ω near a′, and

Ua4 =
(
Uν,a

′

ε,ω

)
ext

= eρ21U
−ν−1,a
ε,ω = eρ21U

−ν−1,a
ε,ω (156)

near a. We have

ρ
( i
h
[P, χa]ρU3|U4

)
= ρ
( i
h
[P, χ]ρU−ν−1,a

ε,ω |eρ21U−ν−1,a
ε,ω

)
= 0 (157)

Moreover, formula (152) with U1, U3 carries to U2, U4.

So we only have to determine dρ21. Note that ρ
(
i
h [P, χa]ρU1|U3

)
= 0 mod O(h).

7.2 Computing d
ρ
21

Arguing essentially as in [IfaLouRo], we identify the WKB solutions of Sect.6 with the mi-

crolocal solutions along ρ. Recall from Proposition 6.1 that the WKB solutions are of the

form

W ρ(x, h) = C̃ρe
iφ/2eiSρ(x,h)/h

(
wρ0(x, h)Yρ(x, ∂xSρ)+O(h)

)
= C̃ρe

iφ/2eiSρ(x,h)/hW̃ ρ(x, h) (158)

where the factor eiφ/2 arises as an initial data for the transport equation in the region where

∆(x) = 0, when extending U1 from aE to a′E . By (151) the normalization of U1 near a

determines uniquely C̃ρ > 0. Near a′, we have

U1 =W ρ(x, h) = dρ21U
−ν−1,a′,ρ
ε,ω (x, h) (159)

Computing in two different ways
(
i
h [Pa′ , χa

′

]ρU1|Uν,a
′

ε,ω

)
gives dρ21. Namely on the one hand

( i
h
[Pa′ , χa

′

]ρU1|Uν,a
′

ε,ω

)
= dρ21

( i
h
[Pa′ , χa

′

]ρU
−ν−1,a′
ε,ω |Uν,a′ε,ω

)
= dρ21Wa′

ρ

(
U−ν−1
ε,ω , Uνε,ω

)
=

= dρ21Wa′

ρ

(
Û−ν−1
ε,ω , Ûνε,ω

)
(Plancherel)

= −dρ21Wa
ρ

(
Û−ν−1
− ε,−ω, Û

ν
− ε,−ω

)
= −dρ21Wa

ρ

(
Ûν− ε,−ω, Û

−ν−1
− ε,−ω

)
(by (104))

= −ρdρ21 (by (99))

(160)

Here we used microlocal solutions normalized as in Sect.4. On the other hand, by (159)

( i
h
[Pa′ , χa

′

]ρU1|Uν,a
′

ε,ω

)
=
( i
h
[Pa′ , χa

′

]ρW
ρ(x, h)|Uν,a′ε,ω

)

Identifying with (160) gives

−ρdρ21 =
( i
h
[Pa′ , χa

′

]ρW
ρ(x, h)|Uν,a′ε,ω

)
(161)
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Proposition 7.1. We have

( i
h
[Pa′ , χa

′

]ρW
ρ|Uν,a′,ρε,ω

)
= 2 C̃ρ e

iπ/4eiφ/2
∫

exp
[
iS̃ρ(x;h)/h]β

ν
ω(x, h) (χ

a′

1 )′(x) dx+O(h)

(162)

the phase S̃ρ(x;h) and amplitude βνω(x, h) being defined in (169) below. Actually S̃ρ(x;h) is

independent of x, and takes the form

S̃ρ(x, h) = τρ(h) = −
∫ xE

−xE
ξρ(y;h) dy + b(E′

1;h) (163)

The boundary term

b(E′
1;h) =

(2 ξE)
3

α
Ψν,a,ρ

− ε,−ω(xE) + hRν−ω
(
θ−ω(0)

)
(164)

has the following expansion (independent of ρ and with only odd powers of E′
1)

b(E′
1;h) = −(2 ξE)

3

α

(2
3
E′

1
3
+

7

6
E′

1
5
+ · · ·

)
+ h

(
E′

1 +
35

12
E′

1
3
+ · · ·

)
(165)

Moreover the amplitude βνω(x, h), real mod O(h), is again independent of x.

Proof. Recall Yρ from (138), of the form

Yρ(x, ξ) = Aρ(x, ξ)

(
eiφ/2

Bρ(x, ξ)

)

In the spatial representation (recall µ > E is a constant near a′)

Pa′(x, hDx) =

(
(hDx)

2 − µ ∆(−x) e−iφ/2

∆(−x) eiφ/2 −(hDx)
2 + µ

)

We choose χa
′

(x, ξ) = χ1(x)χ2(ξ) where, contrary to the choice made in Fourier representation,

supp(χ1) is so small that χ2(ξ) ≡ 1 on ωa
′

ρ (recall that normalization does not depend on χa
′

).

Computing the commutator, (158) shows

i

h
[Pa′ , χa

′

]ρW
ρ = 2C̃ρ e

iφ/2eiSρ/h ∂xSρ(x;h)

(
eiφ/2zρ(x;h)

−tρ(x;h)

)
χ′
1(x) +O(h′)

with

zρ(x;h) = wρ0(x;h)Aρ
(
x, ∂xSρ(x;h)

)

tρ(x;h) = wρ0(x;h)Aρ
(
x, ∂xSρ(x;h)

)
Bρ
(
x, ∂xSρ(x;h)

)

With the notation of (119) we recall

Uν,a
′,ρ

ε,ω (x;h) = Ũν,a
′,ρ

ε,ω (x) exp
[ i
h

(
x ξE +

(2 ξE)
3

α
Ψν,a′,ρ
ε,ω (x)

)]
=

Uν,a,ρ− ε,−ω(−x;h) = Ũν,a,ρ− ε,−ω(−x) exp
[ i
h

(
x ξE − (2 ξE)

3

α
Ψν,a,ρ

− ε,−ω(−x)
)]
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Thus the critical values of the phase in the spatial representation near a′ are given by

Ψν,a′,ρ
ε,ω (x) = −Ψν,a,ρ

− ε,−ω(−x) = −Ψν,a,ρ
− ε,−ω(−x) (166)

and

Ũν,ρ,a
′

ε,ω (x) = Ũν,ρ,a− ε,−ω(−x)

where, with ξ = ξρ,a(x) as in (59) , ξ1 = ξρ,aω (x)

Ũν,a,ρε,ω (x) = aνω
(
ξ1, θω(ξ1)

) (Lρω(x)
i

)−1/2

(
eiφ/2

(
ξ2 − µ− E

)−1/2
Xν
ω

(
ξ1, θω(ξ1)

)
(
ξ2 − µ− E

)1/2

)
(167)

Let Ψ̃ν,ρ,a′
ε,ω (x) = x ξE + (2 ξE)3

α Ψν,a′,ρ
ε,ω (x). Recall aνω from (74), with ξ1 = ξρω(x). Modulo O(h),

we have ( i
h
[Pa′ , χa

′

]ρW
ρ|Uν,ρ,a′ε,ω

)
= 2C̃ρ e

iπ/4 eiφ/2
∫
ei
(
Sρ(x;h)−Ψ̃ν,a′,ρ

ε,ω (x)
)
/h

eiφ/2
[
zρ(x;h)(ξ

2 − µ− E)−1/2Xν
−ω − tρ(x;h)(ξ

2 − µ− E)1/2
]

∂xSρ(x;h) a
ν
−ω
(
L
(ρ)
−ω(−x)

)−1/2
(χa

′

1 )
′(x) dx

(168)

the factor eiπ/4 arising from (167). Let

S̃ν,ρ,a
′

ε,ω (x;h) = Sρ(x;h) −
(
Ψ̃ν,ρ,a′
ε,ω (x)− hRν−ω

(
θ−ω(ξ

ρ
−ω(−x))

))

βνω(x;h) =
(
zρ(x;h)(ξ

2 − µ− E)−1/2Xν
−ω − tρ(x;h) (ξ

2 − µ− E)1/2
)
∂xSρ |aν−ω|

(
L
(ρ)
−ω(−x)

)−1/2

(169)

Then (168) takes the form

( i
h
[Pa′ , χa

′

]ρW
ρ|Uν,ρ,a′ε,ω

)
= 2C̃ρe

iπ/4 eiφ/2
∫
eiS̃

ν,ρ,a′

ε,ω (x;h)/h βνω(x;h) (χ
a′
1 )′(x) dx (170)

We are left to show that S̃ν,ρ,a
′

ε,ω (x;h) and βω(x;h) are constant. Recall the h-dependent action

ξρ(x;h) = ∂xSρ(x;h) is well-defined all along ρ, in particular

ξρ(x;h) = ξρ(x)− h
∂

∂x

(
Rν−ω

(
θ−ω(ξ

ρ
−ω(−x))

))
(171)

We recall from (59), (63) and (113), that ξρ0(x) = ξE + 2ωξEξ
ρ
ω(x) satisfies (x, ξ

ρ
0(x)) ∈ γρ(E).

Integrating (171) along [−xE, xE ], we find that

τρ(h) = S̃ν,ρ,a
′

ω (x;h) = −
∫ xE

−xE
ξρ(y;h) dy +

(2 ξE)
3

α
Ψν,a,ρ

− ε,−ω(xE) + hRν−ω
(
θ−ω(0)

)
(172)

is a constant. The boundary term b(E′
1;h) = (2 ξE)3

α Ψν,a,ρ
− ε,−ω(xE) + hRν−ω

(
θ−ω(0)

)
can be

computed with asymptotics (165). On the other hand, by (152) and Lemma 4.1, it turns out

that βνω(x;h) is indeed a real constant that we denote by D̃ρ. This takes the proof to an

end.
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Thus Proposition 7.1 shows that

( i
h
[Pa′ , χa

′

]ρW
ρ|Uν,a′,ρε,ω

)
= 2C̃ρD̃ρe

iτρ(h)/heiπ/4 eiφ/2
∫

(χa
′

1 )
′(x) dx = −2C̃ρD̃ρe

iτρ(h)/heiπ/4 eiφ/2

(173)

Comparison with (162) eventually gives, still at leading order in h

−ρdρ21 = (2C̃ρD̃ρ)
−1eiτρ(h)/heiφ/2eiπ/4 (174)

7.3 Gram matrix and Bohr-Sommerfeld quantization rules

Recall from (101) for j = ν,−ν − 1

F j,aε,ω =
i

h
[Pa, χa]Û j,aε,ω

in spatial representation, and similarly with a′ instead of a. It is convenient to view F−ν−1,ρ,a
ε,ω

and F ν,ρ,a
′

ε,ω as belonging to the microlocal co-kernel of P − E in the sense that they are not

annihilated by P − E. Everything will be computed mod O(h).

With U1, U2 we form Gram matrix

G(a,a′)
ρ (E) =

((
U1|F−ν−1,ρ,a

ε,ω

) (
U2|F−ν−1,ρ,a

ε,ω

)
(
U1|F ν,ρ,a

′

ε,ω

) (
U2|F ν,ρ,a

′

ε,ω

)
)

(175)

We have by (99), (103) and Plancherel formula

(
U1|F−ν−1,ρ,a

)
=
(
Uν,aε,ω |F−ν−1,ρ,a

ε,ω

)
= Wa

ρ

(
Uν,aε,ω , U

−ν−1,a
ε,ω

)
= Wa

ρ

(
Ûν,aε,ω , Û

−ν−1,a
ε,ω

)
= 1

and using also (154) defining eρ12

(
U2|F−ν−1,ρ,a

ε,ω

)
= e12

(
Uν,aε,ω |F−ν−1,ρ,a

ε,ω

)
= e12 Wa

ρ

(
Uν,aε,ω , U

−ν−1,a
ε,ω

)
= e12 Wa

ρ

(
Ûν,aε,ω , Û

−ν−1,a
ε,ω

)
= eρ12

Recall the symmetry Û j,ρ,a
′

ε,ω = IÛ j,ρ,a− ε,−ω, where I denotes complex conjugation. By (104)

and the definition of dρ21

1

dρ21

(
U1|F ν,ρ,a

′

ε,ω

)
=
(
U−ν−1,ρ,a′
ε,ω |F ν,ρ,a′ε,ω

)
= Wa′

ρ

(
Û−ν−1,a′
ε,ω , Ûν,a

′

ε,ω

)
= −Wa

ρ

(
Ûν,a− ε,−ω, Û

−ν−1,a
− ε,−ω

)
= −1

and similarly (
U2|F ν,ρ,a

′

ε,ω

)
=
(
U−ν−1,ρ,a′
ε,ω |F ν,ρ,a′ε,ω

)
= −1

Note that we could use the basis (U3, U4) instead, and define Gram matrix as

G(a,a′)
ρ (E) =

( (
U3|F ν,ρ,aε,ω

) (
U4|F ν,ρ,aε,ω

)
(
U3|F−ν−1,ρ,a′

ε,ω

) (
U4|F−ν−1,ρ,a′

ε,ω

)
)

(176)
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So in any case, Gram matrix takes the form

Ga,a′ρ (E) =

(
1 eρ12

−dρ21 −1

)
(177)

By our Definition 1.1, E verifies Bohr-Sommerfeld quantization rule precisely when Ga,a′ρ (E)

is singular. But detGa,a′ρ (E) = 0 iff eρ12 d
ρ
21 = 1, or by (174)

dρ21

dρ21
= 1 ⇐⇒ arg dρ21 = 0modπ (178)

Then (174) gives again sin
(
1
hτρ +

φ
2 + π

4

)
= 0, and by (172)

∫ xE

−xE
ξρ(y;h) dy + h

φ

2
+ h

π

4
+ b(E′

1;h) ≡ 0, modπhZ (179)

which eventually proves Theorem 1.1.

To conclude this Section, we show that case (151) is inconsistent. There are 2 cases.

(1) Let as before U1 = Uν,aε,ω near a, and Ua
′

2 = U−ν−1,a′
ε,ω near a′. By (148) and (149) we

have U1 = dρ11U
−ν−1,a′,ρ
ε,ω near a′ and U2 = eρ22U

−ν−1,a,ρ
ε,ω near a. Then Gram matrix becomes

G(a,a′)
ρ (E) =

((
U1|F−ν−1,ρ,a

ε,ω

) (
U2|F−ν−1,ρ,a

ε,ω

)
(
U1|F ν,ρ,a

′

ε,ω

) (
U2|F ν,ρ,a

′

ε,ω

)
)

=

((
Uν,aε,ω |F−ν−1,ρ,a

ε,ω

)
e22
(
U−ν−1,a
ε,ω |F−ν−1,ρ,a

ε,ω

)

d11
(
Uν,a

′

ε,ω |F ν,ρ,a′ε,ω

) (
U−ν−1,a
ε,ω |F ν,ρ,a′ε,ω

)
)

=

(
1 0

0 1

)

which is inconsistent for it is never singular.

(2) Let as before U3 = U−ν−1,a
ε,ω near a, and U4 = Uν,a

′

ε,ω near a′. By By (148) and (149) we

have U3 = dρ22U
−ν−1,a′
ε,ω near a′, and U4 = e11U

ν,a
ε,ω near a. Then Gram matrix writes

G(a,a′)
ρ (E) =

((
U3|F−ν−1,ρ,a

ε,ω

) (
U4|F−ν−1,ρ,a

ε,ω

)
(
U3|F ν,ρ,a

′

ε,ω

) (
U4|F ν,ρ,a

′

ε,ω

)
)

=

( (
U−ν−1,a
ε,ω |F−ν−1,ρ,a

ε,ω

)
e11
(
Uν,aε,ω |F−ν−1,ρ,a

ε,ω

)

d22
(
U−ν−1,a′
ε,ω |F−ν−1,ρ,a

ε,ω

) (
Uν,a

′

ε,ω |F ν,ρ,a′ε,ω

)
)

=

(
0 e11

d22 0

)

which is again inconsistent.

We can also try to modify G(a,a′)
ρ (E), according to (176), either with the pair (U1, U2)

or (U3, U4). Both cases are inconsistent. So there is only one possible choice for defining

Ma,a′
ρ (E).

8 An extension to the SFS junction

Following mainly [CaMo] we try to extend our constructions to the case of a SFS junction,

taking into account the spins (↑, ↓) of a pair of quasi-particles in the state (u↑, v↓) and the other
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pair in the state (u↓, v↑). Let J(x) be the spin interaction, vanishing in the supra-conducting

bulk, such that only quasi-particles of the same species (i.e electron/electron, or hole/hole)

do interact through their spin. We take J(x) ≤ 0 in the ferromagnetic case, J(x) ≥ 0 in

the antiferromagnetic case. Let also F (x) ≥ 0 be the exchange energy, vanishing in the

supra-conducting bulk, and A(x) a smooth magnetic potential. We consider the Hamiltonian

(omitting the variable x from the notations)

P(x, ξ) =




(ξ −A)2 − µ− F ∆eiφ/2 J 0

∆e−iφ/2 −(ξ −A)2 + µ− F 0 J

J 0 (ξ −A)2 − µ+ F ∆eiφ/2

0 J ∆e−iφ/2 −(ξ −A)2 + µ+ F




(180)

and the corresponding operator P(x, hDx) acting on vectors t(u↑, v↓, u↓, v↑) ∈ L2(R) ⊗ C4.

Such a model for the SFS junction is discussed in [CaMo]. The term 2J(x)Re(u↑|u↓) +
2J(x)Re(v↑|v↓) stands for the spin interaction, while the term−F (x)(|u↑|2+|v↓|2)+F (x)(|u↓|2+
|v↑|2) accounts for the itinerant (anti-)ferromagnetism. We assume F, J to be smooth over R

and small enough. The exchange energy should be small with respect to Fermi energy EF , so

we do not assume here that Fermi energy is taken to 0, and energy equals now E = EF + ε,

where ε stands for the spectral parameter.

The corresponding semi-classical Hamiltonian P(x, hDx) is similar to a Dirac operator and

could be described within the general framework of [Wo].

Moreover, in case A = 0, P(x, hDx) is just the product of 2 decoupled operators of type (1)

for |x| > L, since we assumed J(x) = F (x) = 0 in the supraconductor. Hence the scattering

problem is essentially the same as in Sect.1.3.2.

Look now at the geometry of P(x, ξ). Let q(x, ξ) = (ξ − A(x))2 − µ(x). The determinant

of P(x, ξ) − E is given by :

δ = q4−2q2(E2+F 2+J2−∆2)+(E2−F 2)2−2∆2(E2+F 2)+2J2(F 2−E2)+∆4−∆2J2+J4

The discriminant of the quadratic equation δ = 0 is 4E2(F 2 + J2 + ∆2) + ∆2(4F 2 − J2), so

that the characteristic variety ΣE is given by

(ξ −A(x))2 = µ(x) + ε2

√
E2 −∆2 + F 2 + J2 + ε1

√
4E2(F 2 + J2 +∆2) + ∆2(4F 2 − J2)

(181)

with εj = ±1. The focal points in turn are determined by ∂ξ(det(P(x, ξ) − E)) = 0, or

4E2(F 2 + J2 +∆2) + ∆2(4F 2 − J2) = 0 (182)

If F 2 + J2 + ∆2 > 0 and 2F > J there are no focal point: itinerant (anti-)ferromagnetism

is dominant, and no Andreev current occurs. For small F however, (182) is analogous to the

previous relation ∆(x) = E, and there is generically a one-parameter family of focal points

aE = (xE , ξE) in x > 0 (and symmetrically in x < 0), depending smoothly on E. Then (181)
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would define 2 closed orbits in ΣE corresponding to quasi-particles with opposite spin, and

meeting tangentially (vertically) at aE . In absence of the magnetic field, and if ∆
√

J2−F 2/4
F 2+J2+∆2

varies linearly in x near xE we can expect that our previous constructions apply, and give raise

to 4 monodromy matrices, labelled by ρ = ±, σ =↑, ↓, and thus to 4 quantization rules.

9 Appendix A: The normal form for the anharmonic

oscillator

We need a refinement of the theory of [HeSj] on normal forms for a h-PDO Pω of the form (61)

acting on the semi-classical distributions Dν and D−ν−1 (Gaussian wave-packets). Another

normal form to Weber equation is presented in [AoYo], using Sato’s microdifferential Calculus,

but it holds for fixed energy E, so does not preserves unitarity.

Consider

Pωβ(−hDξ′ , ξ
′;h) = (−hDξ′)

2 + (ξ′ + ωβξ′2)2 + h2f(ωβξ′) (183)

where β as in (59) can be thought of a large parameter, and f a real analytic function defined

near 0 and given by (62). Here we have changed the notation Pβ to Pωβ to emphasize some

homogeneity properties. For ω = ±1, Pωβ(−hDξ′ , ξ
′;h) is self-adjoint. Modulo a lower order

term in h2, Pωβ is the familiar Schrödinger operator with potential V (ξ′) = (ξ′ + ωβξ′2)2,

having non degenerate minima at 0 and −1/ωβ and a non degenerate local maximum at

ξ′ = −1/(2ωβ). Moreover f has a pole at one of the turning points given by V (ξ′) = E2
1
β2 . We

will take Pω(−hDξ′ , ξ
′;h) microlocally near (0,0) to G(P0;h), by conjugating with a unitary

h-FIO Aω. The role of the principal part G0 of G is to make the period of the Hamiltonian

flow independent of energy (isochore Morse Lemma).

9.1 Isochore Morse Lemma

Here we compute G0 (and its inverse F0), as well as the canonical relation associated with Aω.

We shall always assume ω = ±1. For energies below the critical level (4β)−2, the variable ξ′

can be restricted in a neighborhood of 0. So when 0 < E1 < 1/4, we consider the equation,

with energy parameter rescaled as in (61)

(
Pωβ − (

ωE1

β
)2
)
uω(ξ

′) = 0 (184)

Our goal is to take the principal symbol of Pω(−hDξ′ , ξ
′;h) to its normal form by means of an

elliptic integral. Let pωβ(x
′, ξ′) = (−x′)2 + (ξ′ + ωβξ′2)2, p0(y, η) =

1
2

(
(−y)2 + η2

)
.

Proposition A.1. There exists an analytic diffeomorphism t 7→ F0(t, ωβ) defined in a

neighborhood of 0, F0(0) = 0, with inverse G0, and a real analytic phase function φωβ(ξ
′, θ),

defined in a neighborhood of (0,0), of the form φωβ(ξ
′, θ) = ξ′θ + gωβ(ξ

′, θ), gωβ(ξ′, θ) =
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O(|ξ′, θ|3), parametrizing the canonical transformation κωβ : (∂θϕωβ , θ) 7→ (ξ′, ∂ξ′ϕωβ), such

that F0 ◦ pωβ ◦ κωβ = p0. At leading order we have :

F0(t) =
1

2
(t+

3

2
t2β2 +

35

4
t3β4 +

1155

16
t4β6 + · · · ) (185)

G0(s) = 2(s− 3s2β2 − 17s3β4 − 375

2
s4β6 − 10689

4
s5β8 − · · · ) (186)

and

gωβ(ξ
′, θ) = ωβξ′2θ +

2ωβ

3
θ3 +

3β2

4
ξ′3θ +

5

4
β2ξ′θ3 +

5

2
ωβ3θ5 +

9

4
ωβ3ξ′4θ +

23

4
ωβ3ξ′2θ3

(187)

+
515

32
β4ξ′θ5 +

1073

48
β4ξ′3θ3 +

203

32
β4ξ′5θ +

376

16
ωβ5θ7 + · · ·

In particular, gωβ is invariant under the reflection (ξ′, θ, ω) 7→ (−ξ′,−θ,−ω), and odd under

the reflection (ξ′, θ, ω) 7→ (−ξ′, θ,−ω). Moreover, (ωβ)2gωβ
( ξ′
ωβ ,

θ
ωβ

)
is independent of ωβ.

Proof. Consider first F0(t) =
∮
(−x′) dξ′ where the integral is computed on the energy surface

Σt = {pω = t}. When

4β
√
t < 1 (188)

which is the condition for the harmonic approximation to hold near ξ′ = 0, Σt has two

connected components. Changing variables, the elliptic integral F0(t) = t
2π

∫ 2π
0 cos2 u(1 +

4β
√
t sinu)−1/2du can be expanded as a (convergent) power series in 4β

√
t, and equation

(185) follows, which we invert according to (186), for s in a suitable neighborhood of 0.

Next, still at the level of Taylor series we determine gωβ(x, θ) by :

gωβ(ξ
′, θ) =

∑

n=(n1,n2),|n|≥3

anξ
′n1θn2 , an ∈ R

using the relation pωβ ◦ κωβ(y, η) = G0(p0), with

κωβ : (y, η) = (ξ′ + ∂θgωβ(ξ
′, θ), θ) 7→ (ξ′, x′) = (ξ′, θ + ∂ξ′gωβ(ξ

′, θ)) (189)

Keeping terms up to order 3 in G0 we obtain first, at order 5,

gωβ(ξ
′, θ) = ωβξ′2θ +

2ωβ

3
θ3 +

3β2

4
ξ′3θ +

5β2

4
ξ′θ3 +

5

2
ωβ3θ5 +

9

4
ωβ3ξ′4θ +

23

4
ωβ3ξ′2θ3

+ a04(ξ
′2 + θ2)2 + 4βa04(ξ

′5 + 2ξ′θ4 + 3ξ′3θ2) + · · ·

Next truncating G0 to order 4, we expand gω(ξ
′, θ) to order 6, this gives a04 = 0, and we find

gωβ(ξ
′, θ) = βξ′2θ +

2ωβ

3
θ3 +

3β2

4
ξ′3θ +

5β2

4
ξ′θ3 +

5

2
ωβ3θ5 +

9

4
ωβ3ξ′4θ +

23

4
ωβ3ξ′2θ3

+
515

32
β4ξ′θ5 +

1073

48
β4ξ′3θ3 +

203

32
β4ξ′5θ + a06(ξ

′2 + θ2)3 + · · ·

Finally, at order 5 for G0, we observe that within this accuracy, the (ξ′2+θ2)3 term in gωβ(ξ
′, θ)

vanishes, and (187) holds.
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9.2 The semi-classical normal form of Helffer-Sjöstrand

We bring next the operator Pω(−hDξ′ , ξ
′;h) to its normal form P0(−hDη , η) =

1
2

(
(−hDη)

2 +

η2 − h
)
by conjugating with FIO’s Aω.

LetX,Y ⊂ R be open sets, κ : T ∗X×Y → T ∗Y a smooth canonical map, parametrized by a

non degenerate phase function ϕ(x, y, θ) and Γ′
κ = {(x, ξ; y,−η) : (x, ξ) = κ(y, η)} ⊂ T ∗(X×Y )

the corresponding canonical relation. There is a Lagrangian embedding Cϕ = {(x, y, θ) :

∂θϕ(x, y, θ) = 0} 7→ Γ′
κ. Let A be a h-FIO whose Schwartz kernel belongs to the class

O0(X×Y ; Γ′
κ) of oscillatory integrals (or semi-classical distributions) defined via an amplitude

c(x, y, θ;h). Then it is known that c(x, y, θ;h) is not uniquely defined, but only its restriction

to the critical set Cϕ. In the normal form of Helffer-Sjöstrand (see (191) below) the choice

of c(x, y, θ;h) is constrained on another set, so that the extension is simply parametrized by

a family of functions aθ(u, v) (in local coordinates) non vanishing near (u, v) = (0, 0). It is

necessary to find such an extension when A acts on semi-classical distributions u of Gaussian

type, such as the parabolic cylinder functions Dν ,D−ν−1. Again, we content ourselves of the

level of Taylor series.

Theorem A.2. For real ω, there exists a (formally) unitary FIO operator A = Aω defined

microlocally near (0,0), of the form :

Av(ξ′, h) = (2πh)−1

∫ ∫
eiϕωβ(ξ

′,η,θ)/hcω(ξ
′, η, θ, h)v(η, h) dη dθ (190)

and a real valued analytic symbol

F (t, ωβ, h) = F0(t, ωβ) + hF1(t, ωβ) + · · ·

with F1(t, ωβ) = −1
2 such that

A∗F (Pω , ωβ, h)A = P0 (191)

The phase function is given by

ϕωβ(ξ
′, η, θ) = φωβ(ξ

′, θ)− ηθ = (ξ′ − η)θ + gωβ(ξ
′, θ) (192)

with gωβ parametrizing κωβ , as in Proposition A.1. The analytic symbol

cω(ξ
′, η, θ, h) = c0(ξ

′, η, θ) + hc1(· · · ) + · · ·

with real principal part c0 is determined by the unitarity relations A∗A ≡ AA∗ ≡ Id, up to

its extensions from Γ′
κ, which can be chosen, in suitable local coordinates (u, v), of the form

(aθ(u, v) being elliptic)

c(ξ′, η, θ) =
(
1 +

∂2gωβ
∂ξ′∂θ

(ξ′, θ)
)1/2

+ aθ(u, v)uv (193)
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Proof. F0 has been computed in Proposition A.1; the value of F1 is due to [HeRo]. Let us

compute c0. In order to comply with usual notations, we change for a moment the name of

the variables. With ϕωβ as in (192) we have

Au(y;h) = (2πh)−1

∫ ∫
ei
(
(y−z)ξ+gωβ(y,ξ)

)
/hc(y, z, ξ;h)u(z) dz dξ

Then

A∗v(x;h) = (2πh)−1

∫ ∫
ei
(
(y−z)ξ−gωβ(y,θ)

)
/hc(y, x, θ;h)v(y) dy dθ

and

A∗Au(x) = (2πh)−1

∫ ∫
I(x, z, ξ)u(z) dz dξ

The phase function associated with the oscillatory integral defining I(x, z, ξ) is given by

Φωβ(y, θ;x, z, ξ) = (x− y) θ + (y − z) ξ + gωβ(y, ξ) − gωβ(y, θ)

Writing g2(y, θ, θ) = ∂θ gωβ(y, θ), we have

gωβ(y, ξ)− gωβ(y, θ) = (ξ − θ) g2(y, ξ, θ)

thus the critical points (yc, θc) of Φωβ(., .;x, z, ξ) solve

−θ + ξ + (ξ − θ) ∂y g2(y, ξ, θ) = 0, x− y − ∂θ gω β(y, θ) = 0

or

θc = ξ, x− yc − ∂ξ gω β(yc, ξ) = 0

and the critical value is the pseudo-differential phase Φω β(yc, θc;x, z, ξ) = (x−z)ξ. Computing

Hess Φω β
(
yc, θc;x, z, ξ

)
, and using that c0 is obviously real, Theorem 2.1 shows that (193),

microlocally near (0,0), takes the form

A∗Au(x;h) = (2π h)−1

∫ ∫
e

i
h
(x−z) ξ J(x, z, ξ)u(z) dz dξ +O(h)

with

J(x, z, ξ) =
(
1 + (∂yg2)(yc, ξ, ξ)

)−1
c0(yc, x, ξ) c0(yc, z, ξ)

The unitarity condition gives in particular J(x, x, ξ) = 1, that is

c0(zc, x, θ) =
(
1 + (

∂2gω β
∂x ∂θ

)(zc, θ)
)1/2

, zc = zc(x, θ) = x+ ∂θgωβ(zc, θ) (194)

Computing similarly AA∗ we find

c0(x, yc, θ) =
(
1 + (

∂2gωβ
∂x ∂θ

)(x, θ)
)1/2

, yc = yc(x, θ) = x+ ∂θgωβ(x, θ) (195)

With the help of (187), we find easily

xc(y, θ) = y + 2ωβθ2 + ωβy2 +
11

4
β2y3 +

31

4
β2yθ2 + · · · (196)
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There remains to compute c0(x, y, θ) from (194) and (195). Changing again notations, we

write (194)-(195) as

c(xc(y, θ), y, θ) = F (y, θ), c(x, yc(x, θ), θ) = G(x, θ) (197)

Consider the family of parametrized curves tθ : x 7→ tθ(x) = (x, yc(x, θ), sθ : y 7→ tθ(y) =

(xc(y, θ), y), where yc(x, θ) as in (195) and xc(y, θ) = y + ∂θgωβ(xc, θ) is implicitely defined

as in (194). For θ = 0, Proposition A.1 shows that t0 ∩ s0 = (0, 0); the “velocity vectors”

verify t′0(0) = s′0(0) = (1, 1), while the “acceleration vectors” verify t′′0(0) = (0, 2ωβ) and

s′′0(0) = (2ωβ, 0). So these curves are not transverse when θ 6= 0, but when θ 6= 0 (but still

small enough), it turns out that (tθ, sθ) can be straightened to new axis of coordinates. First

we look for the points Mθ = (xθ, yθ) where these curves intersect. We have

yθ = xθ +
∂gωβ
∂θ

(xθ, θ)

xθ = xc(yθ, θ) = yθ +
∂gωβ
∂θ

(xc(yθ, θ), θ)

(198)

Substituting for xθ = x0θ + x1θ
2 + x2θ

3 + · · · , xθ = y0θ + y1θ
2 + y2θ

3 + · · · , and using (196),

we find x0 = y0 together with the relations

y1 = x1 + 2ωβ + ωβx20

y2 = x2 + 2ωβx0x1 +
3

4
β2x30 +

15

4
β2x0

x1 = y1 + 2ωβ + ωβy20

x2 = y2 + 2ωβy0y1 + 2β2y30 +
15

4
β2y0

The first and third Eq. give x20 + 2 = 0, so the intersection of tθ and sθ consists in 2 complex

points Mθ,M θ; we shall only consider Mθ, with xθ = i
√
2θ+ · · · . Substituting into the second

and fourth Eq. yields x1 = y1 = −7
4ωβ. So (up to this accuracy) Mθ,Mθ lie on the (complex)

diagonal. We check that t′θ(xθ) and s
′
θ(yθ) are transverse when θ 6= 0 is small enough, since

det
(
t′θ(xθ), s

′
θ(yθ)

)
= −35

4
β2θ2 + · · · 6= 0

So we change to a local frame, choose origin at Mθ, and set y = yθ + y′, x = xθ + x′,

u = y − yc(x, θ) = y′ − y′c(x
′, θ), v = x − xc(y, θ) = x′ − x′c(y

′, θ); here we have made use of

the fact that xθ = yθ (up to this accuracy). The curves tθ and sθ take the form u = 0, resp.

v = 0. Consider the local diffeomorphism Φθ : (x, y) 7→ (u, v). Put c̃θ = c ◦ Φ−1
θ , with c as in

(197). We have

c(xc(y, θ), y, θ) = F (y, θ) = c̃θ(u, 0) = F̃θ(u)

c(x, yc(x, θ), θ) = G(x, θ) = c̃θ(0, v) = G̃θ(v)
(199)

so that by Taylor expansion at first order

c̃θ(u, v) = c̃(0, 0) + ∂uc̃θ(0, 0)u + ∂v c̃θ(0, 0)v + · · · = ∂uF̃θ(0)u+ G̃θ(0)v + · · · (200)
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and we are left to compute ∂uF̃θ(0), ∂vG̃θ(0). This gives only the germ of c at order 1, since

we have no information on the mixed derivatives.

We may proceed a bit further by setting

f(x, y, θ) = c(x, y, θ)−
(
1 +

∂2gωβ
∂x∂θ

(x, θ)
)1/2

(201)

We notice that f vanishes along the curves tθ and sθ

f(x, yc(x, θ), θ) = 0, f(xc(y, θ), y, θ) = 0

which in the local coordinates (u, v) above centered at Mθ, takes the form

f̃θ(u, 0) = f̃θ(0, v) = 0 (202)

Generically (divisors with normal crossings) there is aθ(u, v) elliptic at (0,0), such that

f̃θ(u, v) = aθ(u, v)uv (203)

This gives the required extension.

The function aθ will be chosen below by checking that AωDν and AωDν−1 actually solve

(184).

10 Appendix B: Constructing the microlocal solu-

tions

10.1 Microlocal solutions with the Dν function

Assume already we have chosen a suitable extension of the amplitude of Aω as in (193),

ω = ±1. It follows from Theorem A.2 that equation (184) takes the form, with vω = A∗
ωuω

and ν = 1
hF (

E2
1
β2 , h) :

P0vω = F (
E2

1

β2
, h)vω = hνvω (204)

or, after the scaling η = (h/2)1/2ζ, of Weber equation (10). In view of (185) we also set

E′
1
2

2β2
= F (

(ωE1)
2

β2
;h) + h = (ν + 1)h (205)

so that 0 < E′
1 ∼ E1 as (E1, h) → 0. Inserting vω(η) = Dν(ε(h/2)

−1/2η) (independent of β) in

(190) and using the fact that Aω is (formally) unitary, we get with uνω = uνε,ω(ξ
′, h)

uνε,ω(ξ
′, h) = Aω

(
Dν(ε(h/2)

−1/2·)
)
(ξ′) =

Γ(ν + 1)

−2iπ

1

2πh

×
∫ ∫ (0+)

∞
eiψ̃

ν
ε,ω(ξ

′,η,θ,s)/hc(ξ′, η, θ, h)(−s)−(ν+1) ds dη dθ

(206)
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where :

ψ̃νε,ω = (ξ′ − η)θ + gωβ(ξ
′, η) + i

[η2
2

+ ε(h/2)−1/2ηsh+
s2

2
h+ (ν + 1)h log(−s)

]

We rescale the variables as :

θ1 = βθ, η1 = βη, s1 = β
√
hs, ξ1 = βξ′

and set h′ = β2h as in (60) so that

uνε,ω(ξ
′, h) = − Γ(ν + 1)

4iπ2(h′)3/2
exp
[
E′

1
2
(log(h′)/4h′

]

∫ ∫ (0+)

∞
exp

[
ψνε,ω(η1, s1, θ1, ξ1)/h

′] cω(ξ1, η1, θ1;h′) ds1 dη1 dθ1
(207)

where, in the new coordinates

ψνε,ω(ξ1, η1, θ1, s1) = (ξ1 − η1)θ1 + hω(ξ1, θ1) + i
[η21
2

+
s21
2

+
√
2 ε η1s1 +

1

2
E′

1
2
log(−s1)

]
(208)

with hω(ξ1, θ1) = β2 gωβ
( ξ1
β ,

θ1
β

)
independent of β, and

cω(ξ1, η1, θ1;h
′) = c

(ξ1
β
,
η1
β
,
θ1
β
;
h′

β2
)

As in Sect.2, we apply stationary phase to (207) with small parameter h′. The critical points

(η1, s1, θ1) = (ηω, sω, θω) =
(
(ηνω(θω(ξ1)), s

ν
ε,ω(θω(ξ1)), θ

ν
ω(ξ1)

)
(209)

are given by

ξ1 − η1 + ∂θ1hω(ξ1, θ1) = 0, −θ1 + iη1 + i
√
2 ε s1 = 0,

√
2 ε η1 + s1 +

E′
1
2

2s1
= 0 (210)

which yields a quadratic equation for s1 and

η1 = ω(E2
β − θ21)

1/2 (211)

−
√
2 ε s1 = iθ1 + (E′

1
2 − θ21)

1/2 (212)

ξ1 − ω(E2
β − θ21)

1/2 + ∂θ1hω(ξ1, θ1) = 0 (213)

So θνω(ξ1) is a also critical point for

θ1 7→ Hβ(ξ1, θ1) = ξ1θ1 + hω(ξ1, θ1)− ω

∫
(E′

1
2 − θ21)

1/2 dθ1 (214)

Properties of these critical points are summarized in the following :

Lemma B.1. For ω = ± 1 and ξ1 small enough, we have the expansion

(
θνω(ξ1)

)2
=
(
E′2

1 − 4E′4
1 − 18E′6

1 − · · ·
)
− ω

(
4E′2

1 − 8E′4
1 − 58E′6

1 − · · ·
)
ξ1+

(
− 1 +

25

2
E′2

1 + 19E′4
1 + · · ·

)
ξ21 − ω

(
− 2 + 17E′2

1 + 58E′4
1 + · · ·

)
ξ31 +

(
− 3 + 17E′2

1 + · · ·
)
ξ41 − · · ·

(215)

54



and thus
± θνω(ξ1) = E′

1 − 2E′3
1 − 11E′5

1 − · · · − ω
(
2E′

1 − 7E′5
1 − · · ·

)
ξ1+

(
− 1

2E′
1
+

13

4
E′

1 +
21

2
E′3

1 + · · ·
)
ξ21 − ω

(
2E′

1 +
17

2
E′3

1 + · · ·
)
ξ31+

(
− 1

8E′
1
3 − 1

8E′
1
+

91

32
E′

1 + · · ·
)
ξ41 − · · ·

(216)

We denote by θ̂νω(ξ1) ∈ [0, E′
1] the positive critical point of (214). Moreover, there is the

symmetry relation between the critical points θ
(ν)
ω (ξ1) = θ

(ν)
−ω(−ξ1)

Proof. We know that θ1 = θ
(ν)
ω (ξ1) is a root of the equation

ξ1 − ε′ (E′
1
2 − θ21)

1/2 + ∂θ1hω(ξ1, θ1) = 0 (217)

(ε′ = ±1). When ξ1 = 0, we get ε′(E′
1
2 − θ21)

1/2 = ω
(
2θ21 +

25
2 θ

4
1 +

2611
16 θ

6
1 + · · ·

)
which implies

ε′ = ω, and

2θ21 +
25

2
θ41 +

2611

16
θ61 + · · · = (E′

1
2 − θ21)

1/2

Squaring this Eq. we get θ21 + 4 θ41 + 50θ61 + · · · = E′
1
2, and

±θνω(0) = E′
1 − 2E′

1
3 − 11E′

1
5 − · · · (218)

Computing the critical point θ
(ν)
ω (ξ1) from (217) with ε′ = ω, when ω = 1, we get

ξ1+ξ
2
1+2 θ21+

3

4
ξ31+

15

4
ξ1 θ

2
1+

9

4
ξ41+

69

4
ξ21 θ

2
1+

25

2
θ41+

2575

32
ξ1 θ

4
1+

1073

16
ξ31θ

2
1+

203

32
ξ51+· · · = (E′

1
2−θ21)1/2

and θ
(ν)
ω (ξ1) by looking for a power series in ξ1, with coefficients given in turn by power series

in E′
1
2. We proceed in the same way when ω = −1, so we get (215). Taking square root gives

also (216). This brings the proof of Lemma 1.1 to an end.

The Lagrangian manifold ΛE ⊂ {pωβ =
(E2

1
β2

)
}, containing in its interior the connected

component of (ξ1,−x1) = 0 in the potential well V (ξ1) ≤ E1, has a simple representation in

the (ξ1, θ1)-plane, since it becomes symmetric with respect to the ξ1 axis. This is an ovale-

shaped curve, close to the circle of radius E1 and center at the origin, with vertical tangents

at (ξ±1 , 0), ξ
−
1 = −E1 + · · · , ξ+1 = E1 + · · · (the turning points for pωβ), and an horizontal

tangent at (ξ01 ,±θ01) =
(
−2E′

1
2 + · · · ,±E′

1(1 + 2E′
1
2 + · · · )

)
. But the lack of analyticity of f

in (183) forces to exclude (ξ+1 , 0) from that picture.

The critical values of ψνε,β(ξ1, η1, θ1, s1) are of the form

ψνε,β = T νε,β − i
E′

1
2

4

(
1− log

E′
1
2

2

)

T νε,β(ξ1, θc(ξ1)) =
[
ξ1θ1 + hω(ξ1, θ1)− ω

1

2
θ1(E

′
1
2 − θ21)

1/2 − 1

2
E′

1
2]|θ1=θω(ξ1)

(219)

where we recall from (32)

Θ̂ε,ω(θ1) = arg
( ε√

2

(
iθ1 + ω(E′

1
2 − θ21)

1/2
))
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As in Sect.2, we expand the integral by stationary phase according to Theorem 2.1, and

find, at first order in h′ :

uνε,β(ξ
′, h) = Cνh′

∑

θω

exp i
[
T νε,β

(
ξ1, θω

)
/h′
](
Jνω(ξ1, θω)

)−1/2[
c0,ω(ξ1, η

ν
1 (θω), θω) +O(h′)

]
(220)

where we sum over the 2 critical values θω = ±θ̂ω(ξ1), and

Cνh′ =
Γ(ν + 1)

−i(2π)3/2h′
(2eh′
E′

1
2

)E′

1
2/4h′

(221)

Now we compute the half-density
(
Jνω
)−1/2

(independent of ε), where

Jνω
(
ξ1, θω(ξ1)

)
= det

(1
i
Hessψνε,ω(ξ1, θ1, η1, s1)

)
|p.c.

and “p.c”. means : “evaluated at the critical point (θω, ηω, sω)” given in (209). We have :

1

i
Hessψνε,β =

1

i




∂2θ1hω −1 0

−1 i i ε
√
2

0 i ε
√
2 i

(
1− E′

1
2

2s21

)




At the critical point, 1− E′

1
2

2s21
= 2iθω

− ε
√
2sω

, so that using (211) we have :

Im
(
Jνω(ξ1, θω)

)
=

2ω(E′
1
2 − θ21)

1/2

E′
1
2

(
θ1 + ω(E′

1
2 − θ21)

1/2∂2θ1hω(ξ1, θ1)
)
|θ1=θω

Re
(
Jνω(ξ1, θω)

)
=

2θ1

E′
1
2

(
θ1 + ω(E′

1
2 − θ21)

1/2∂2θ1hω(ξ1, θ1)
)
|θ1=θω

(222)

In polar coordinates

Jνω
(
ξ1, θω(ξ1)

)
=
∣∣J (ν)
ω

(
ξ1, θω(ξ1)

)∣∣ exp
(
i Θ̌sgn(θ1),ω(θ1)

)∣∣
θ1=θω(ξ1)

where we recall Θ̌sgn(θ1),ω from (17). If we set

aνω
(
ξ1, θω(ξ1)

)
=
(
Jνω
(
ξ1, θ1)

))−1/2
c0,ω

(
ξ1, η

ν
ω(θ1), θ1

)∣∣
θ1=θω(ξ1)

=
∣∣aνω(ξ1, θ1)

∣∣ exp
[
iRνω(θ1)

]∣∣
θ1=θω(ξ1)

(223)

where

Rνω(θ1) = −1

2
Θ̌sgn(θ1),ω(θ1) (224)

we get eventually

uνε,ω(ξ
′;h) = Cνh′

∑

θ1=±θ̂ω(ξ1)

∣∣aνω
(
ξ1, θ1)

)∣∣ exp
[ i
h′
(
T νε,ω(ξ1, θ1) + h′Rνω(θ1)

]
(225)

In (223), c0,ω
(
ξ1, η

ν
ω(θ1), θ1

)∣∣
θ1=θω(ξ1)

is an extension of c0,ω
∣∣
Γ′

κ
as prescribed in Theorem A.2.

It is obtained by writing that uνε,ω(ξ
′;h) actually solves (184) mod O(h′).

56



10.2 Microlocal solutions with the D−ν−1 function

We proceed now to use D−ν−1(i ε ζ) instead of Dν(ε ζ), and outline the main steps of the

computation. Recall from (13) the integral representation of D−ν−1(i ε ζ), so that as in (206)

u−ν−1
ε,ω (ξ′, h) = Aω

(
D−ν−1(i ε(h/2)

−1/2·)
)
(ξ′) takes the form

u−ν−1
ε,ω (ξ′, h) =

Γ(−ν)
4iπ2h′

exp−
[
E′

1
2
(log(h′)/4h′

] ∫ ∫ (0+)

∞
eiψ

−ν−1
ε,ω /h′cω(ξ

′, η, θ, h) dθ1dη1
ds1
s1
(226)

where the variables (θ1, η1, s1) are chosen as before, and

ψ−ν−1
ε,β (ξ1, η1, θ1, s1) = (ξ1−η1)θ1+hβ(ξ1, θ1)+i

[
−η

2
1

2
+
s21
2
+
√
2i ε η1s1−

1

2
E2
β log(−s1)

]
(227)

The critical points (θ1, η1, s1) are given by

η1 = ξ1 + ∂θ1hω(ξ1, θ1) = 0, η1 = i(θ1 +
√
2 ε s1),

√
2 ε η1 + s1 −

E2
β

2s1
= 0 (228)

They differ from (θνω, η
ν
ω, s

ν
ω) only by the s1 component, and we have the relation

s−ν−1
ω (θω(ξ1)) = i sνω(θω(ξ1)) (229)

It follows in particular that the extension of c0,ω carried in the case of Dν is again valid for

D−ν−1. The critical values of ψν−1
ε,ω (ξ1, η1, θ1, s1) are of the form

ψ−ν−1
ε,ω = T−ν−1

ε,ω + i
E′

1
2

4

(
1− log

E′
1
2

2

)
(230)

where

T−ν−1
ε,ω (ξ1, θω(ξ1)) =

[
ξ1θ1 + hω(ξ1, θ1)−

ωθ1
2

(E′
1
2 − θ21)

1/2 +
E′

1
2

2
Θ̌(ω1)

]∣∣|θ1=θω(ξ1) (231)

We apply again asymptotic stationary phase to (226), using the density

J−ν−1
ω

(
ξ1, θω(ξ1)

)
= Jνω

(
ξ1, θω(ξ1)

)
(232)

and

s−ν−1
ε,ω

(
θω(ξ1)

)
= −ǫ sgn

(
θω(ξ1)

)
E′

1√
2

exp
[
− 2iRνω

(
θω(ξ1)

)]
(233)

If we set

ã−ν−1
ω (ξ1, θω(ξ1)) =

√
2

E′
1

∣∣J−ν−1
ω

(
ξ1, θ1g|−1/2 c0,ω

(
ξ1, ηω(θ1), θ1

)
exp

[
iR−ν−1

ω (θ1)
]∣∣
θ1=θω(ξ1)

=

√
2

E′
1

a−ν−1
ω (ξ1, θω(ξ1))

(234)

and

R−ν−1
ω

(
θω(ξ1)

)
= Rνω

(
θω(ξ1)

)
(235)
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we get eventually

u−ν−1
ε,ω (ξ′;h) = C−ν−1

h′

∑

θω=±θ̂ω

ε sgn(θω)
∣∣ã−ν−1
ω

(
ξ1, θω

)∣∣ exp
[ i
h′
(
T−ν−1
ε,ω

(
ξ1, θω

)
+h′R−ν−1

ω (θω)
)]

(236)

where

C−ν−1
h′ = − Γ(−ν)

(2π)3/2 i
√
h′
(2e h′
E′

1
2

)−E′

1
2/4h′

(237)

With the notation of (48), (T ν , T−ν−1), (aν , a−ν−1) are related by

T−ν−1
ε,ω

(
ξ1, θω(ξ1)

)
= T νε,ω

(
ξ1, θω(ξ1)

)
+
π E′

1
2

2
ζε,ω
(
θω(ξ1)

)

aνω(ξ1, θω(ξ1)) = a−ν−1
ω (ξ1, θω(ξ1))

(238)

10.3 Some symmetries

Many symmetries occur when changing the signs of θ, ε, ω. They imply in particular relations

between microlocal solutions at aE and a′E . First group of parities involve the reflection in θ1.

We have

Θ̂ε,ω(−θ1) = −Θ̂ε,ω(θ1) (239)

Θ̌ε,ω(−θ1) = π − Θ̌ε,ω(θ1), ε ω = 1 (240)

ζ− ε,−ω(−θ1) = ζε,ω(θ1) (241)

T νε,ω(ξ1,−θ1) = −T νε,ω(ξ1, θ1) (242)

T−ν−1
ε,ω (ξ1,−θ1) = −T−ν−1

ε,ω (ξ1, θ1) +
π E′

1
2

2
(243)

sνε,ω(−θ1) = sνε,ω(θ1) (244)

s−ν−1
ω (−θ1) = −s−ν−1

ε,ω (θ1) (245)

As hω(ξ1, θ1) is odd in θ1, we have the following relations

Jνω(ξ1,−θ1) = Jνω(ξ1, θ1) (246)

Rνω(−θ1) = −Rνω(θ1) (247)

c0,ω
(
ξ1, ηω(−θ1),−θ1

)
= c0,ω

(
ξ1, ηω(θ1), θ1

)
(248)

There follows

ajω(ξ1,−θ1) = ajω(ξ1, θ1) (249)

J−ν−1
ω (ξ1,−θ1) = J−ν−1

ω (ξ1, θ1) (250)
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Second group of symmetries involve the reflexions in ω and ε :

Θ̂− ε,−ω
(
θ−ω(−ξ1)

)
= −Θ̂ε,ω

(
θω(ξ1)

)
(251)

Θ̌− ε,−ω
(
θ−ω(−ξ1)

)
= −Θ̌ε,ω

(
θω(ξ1)

)
(252)

T ν− ε,−ω
(
− ξ1, θ−ω(−ξ1)

)
= −T νε,ω

(
ξ1, θω(ξ1)

)
(253)

T−ν−1
ε,−ω

(
− ξ1, θ−ω(−ξ1)

)
= −T−ν−1

ε,ω

(
ξ1, θω(ξ1)

)
(254)

Rj−ω
(
θ−ω(−ξ1)

)
= −Rjω

(
θω(ξ1)

)
, j = ν,−ν − 1 (255)

We also get:

h−ω(−ξ1, θ1) = −hω(ξ1, θ1) (256)

θ−ω(−ξ1) = θω(ξ1) (257)

c0,−ω
(
− ξ1, η−ω

(
θ−ω(−ξ1)

)
, θ−ω(−ξ1)

)
= c0,ω

(
ξ1, ηω

(
θω(ξ1)

)
, θω(ξ1)

)
(258)

J j−ω
(
− ξ1, θ−ω(−ξ1)

)
= J jω

(
ξ1, θω(ξ1)

)
(259)

aj−ω
(
− ξ1, θ−ω(−ξ1)

)
= ajω

(
ξ1, θω(ξ1)

)
, j = ν,−ν − 1 (260)

References

[A] A.F.Andreev. The thermal conductivity of the intermediate state in superconductors. Sov.

Phys. JETP 19, p.1228 (1964)

[AoYo] T. Aoki and J. Yoshida. Microlocal reduction of ordinary differential operators with a

large parameter. Publ RIMS, Kyoto Univ, 29:959–975, 1993.

[Ar] V.Arnold. Geometrical methods in the theory of ordinary differential equations. Springer,

1983.

[BCS] J.Bardeen, L.Cooper, J.Schriefer. Theory of supraconductivity. Phys. Rev. Vol.108

(5), p.1175-1204 (1959).

[CaMo] J.Cayssol, G.Montambaux. Exchange induced by ordinary reflection in a single-

channel SFS junction. Phys.Rev. B70, 224520 (2004).

[CheSi] Li Chen, I.M.Sigal. On the Bogoliubov-de Gennes equations. arxiv:1701.06080v2

[ChLesBl] N.Chtchelkatchev, G.Lesovik, G.Blatter. Supercurrent quantization in a narrow-

channel superconductor-normal-metal-superconductor junctions, Phys.Rev.B, Vol.62, No.5,

p.3559-3564 (2000)

[CdV] Y.Colin de Verdière. Bohr Sommerfeld rules to all orders. Ann. H.Poincaré, 6, p.925-
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[Lé] L.P. Lévy. Magnétisme et supraconductivité. CNRS Editions, EDP Sciences, Paris (1997).

[Olv] J. Olver. Uniform Asymptotic Expansions for Weber Parabolic Cylinder Functions of

Large Orders. J. of Res. of the Nat. Bureau of Standards B. Vol. 63B, No.2, 1959

[Ro] M.Rouleux. Tunneling effects for h-Pseudodifferential Operators, Feshbach resonances

and the Born-Oppenheimer approximation. in: Evolution Equations, Feshbach Resonances,

Singular Hodge Theory. Adv. Part. Diff. Eq. Wiley-VCH (1999)

[Sil] H. Silverstone. Connection-Formula problem revisited via Borel Summation, Physical

Review Letters, 55, p.2523-2526, 1986.
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