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ON FINITE ADDITIVE 2-BASES

Laurent Habsieger

Abstract. For a positive integerN , a set B of integers from {0, 1, . . . , N−1} is called
an additive 2-basis for N if every integer n ∈ {0, 1, . . . , N −1} may be represented as

the sum of 2 elements of B. We discuss the methods used to estimate the minimal
size of an additive 2-basis for N . We provide new examples to enrich this survey,

which give good bounds. For instance, we slightly improve on the current record,
from 0.46972 to 0.46906.

1. Introduction

A 2-basis for N is a set B of integers in [0, N − 1] such that every nonnegative
integer up to N − 1 may be written as the sum of two elements in B. It is quite
natural to ask for B to be of minimal size. The exact asymptotic behaviour of
this minimal cardinality is still unknown. By enumerating sums of either distinct
elements or identical elements, we get the inequality(

|B|
2

)
+ |B| ≥ N ,

that is |B|2 + |B| ≥ 2N . We shall study

σ = lim sup
N→∞

N

|B|2
,

and we already know the trivial estimate σ ≤ 1/2. The best construction of a
2-basis was found by Mrose [6] and gives the lower bound σ ≥ 2/7 = 0.285714 . . . .
Numerous authors have found small improvements on the upper bound:

0.4992 Rohrbach [8] 1937
0.4903 Moser [4] 1960
0.4867 Riddell [7] 1960
0.4847 Moser, Pounder, Riddell [5] 1969
0.4802 Klotz [3] 1969
0.4789 Güntürk, Nathanson [2] 2006
0.4775 An-Ping [1] 2012
0.46972 Yu [9] 2008
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Li An-Ping’s was unaware of the results in [3,9], and extended Klotz approach [4];
that is why we included his result in the list. The paper needs some fixing, that
should be done in section 4.

All the methods used after Rohrbach’s result involve Fourier series, in some way
or another. In section 2 we shall show that the only use of generalized Fourier series
is not sufficient to get interesting results. So the methods are always combined with
an extra idea that allows to get a non trivial bound. We distinguish four methods,
namely:
i) the use of a basic combinatorial lemma;
ii) refining this combinatorial lemma;

iii) using double Fourier series;
iv) using periods greater than one.

Each of these methods will be described in sections 3-6, together with numerous
examples. Some new examples give better results than the ones in the literature.
For instance we improve on the best current bound, as shown in the following Table.

Method Previous results New results
Combinatorial lemma 0.4903 [4] 0.4843 [Ex. 3.3]

0.4867 [7] 0.4827 [Ex. 3.4]
0.4847 [5]

Refined combinatorial lemma 0.4802 [3] 0.47737 [Sect. 4]
0.4775 [1]

Double Fourier series 0.4789 [2] 0.47873 [Sect. 5]
Periods greater than one 0.46972 [9] 0.46906 [Ex. 6.3]

2. A general approach

Assume B is an additive 2-basis for N . We shall use several auxiliary functions,
namely the (complex) generating function fB, the representation function rB(n)
and the difference function dB(n). More precisely define

fB(t) =
∑
b∈B

exp(2iπbt) ,

rB(n) = #{(b1, b2) ∈ B2 : b1 + b2 = n} ,
dB(n) = #{(b1, b2) ∈ B2 : b1 − b2 = n} .

Note that fB is a 1-periodic function with fB(0) = |B|. Let us try to estimate it:

fB(t)2 =

2N−2∑
n=0

rB(n) exp(2iπnt) = 2

N−1∑
m=0

exp (2iπmt) +

2N−2∑
m=0

r∗B(m) exp (2iπmt) ,

(2.1)
with

r∗B(m) =

{
rB(m)− 2 if 0 ≤ m ≤ N − 1,

rB(m) otherwise.

Since B is a 2-basis for N , we get

r∗B(m) ≥
{ −1 if m ∈ 2 · B and 0 ≤ m ≤ N − 1,

0 otherwise.
(2.2)
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This implies that

M2 :=

2N−2∑
m=0

|r∗B(m)| ≤
2N−2∑
m=0

r∗B(m) + 2|B| =
2N−2∑
m=0

rB(m)− 2N + 2|B|

= |B|2 − 2N + 2|B| . (2.3)

We can use this last property to upper bound the generating function on the unit
circle.

Lemma 2.1. For |t| ≤ 1/2, we have∣∣∣∣fB(t)2 − 2N

∫ 1

0

exp(2iπNtx)dx

∣∣∣∣ ≤ |B|2 − 2N + 2|B|+ 2π .

Proof. The inequality is trivial for t = 0. For t 6= 0, we extend the proof of [9,
Lemma 2.2]. We use (2.1) and (2.3) to obtain∣∣∣∣fB(t)2 − 2

1− exp (2iπNt)

1− exp (2iπt)

∣∣∣∣ ≤ 2N∑
m=0

|r∗B(m)| ≤ |B|2 − 2N + 2|B| .

We easily check that, for |x| ≤ π:∣∣∣∣ 1

1− exp(ix)
+

1

ix

∣∣∣∣ =

∣∣∣∣∣
∫ x
0

(x− t) exp(it)dt

x sin(x/2)

∣∣∣∣∣ ≤
∫ x
0

(x− t)dt
x2/π

=
π

2
,

which implies the inequalities∣∣∣∣1− exp (2iπNt)

1− exp (2iπt)
−N

∫ 1

0

exp(2iπNtx)dx

∣∣∣∣ ≤ π

2
|1− exp (2iπNt)| ≤ π .

The lemma then easily follows.

�
Define W the set of functions w such that:

i) there exists a sequence of real numbers (tk)k∈Z with t0 = 0,
ii) there exists a sequence of complex numbers (ŵ(k))k∈Z with

‖w‖ :=
∑
k∈Z
|ŵ(k)| <∞ ;

iii) for x real, we have w(x) =
∑
k∈Z ŵ(k) exp (2iπtkx).

Note that condition ii) implies that w is a continuous function. If all the gener-
alized Fourier coefficients ŵ(k) are nonnegative, we remark that ‖w‖ = w(0).

When x is replaced by x+ y, we get a similar expansion for w(x+ y), with ŵ(k)
replaced by ŵ(k) exp(2iπtky). This shows that both ŵ(0) and ‖w‖ are invariant by
variable-translation.

For w ∈ W, define

RB(w) =

2N−2∑
n=0

w(n/N)rB(n) and DB(w) =

N−1∑
n=−N+1

w(n/N)dB(n) .
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Using the expansion of w, we obtain

RB(w) =
∑
k∈Z

ŵ(k)

2N−2∑
n=0

rB(n) exp (2iπtkn/N) =
∑
k∈Z

ŵ(k)fB

(
tk
N

)2

, (2.4)

and similarly

DB(w) =
∑
k∈Z

ŵ(k)

∣∣∣∣fB ( tkN
)∣∣∣∣2 . (2.5)

Lemma 2.2. For w ∈ W, we have∣∣∣∣RB(w)− 2N

∫ 1

0

w(x)dx

∣∣∣∣ ≤ ‖w‖ (|B|2 − 2N + 2|B|+ 2π
)
.

Proof. By the definition of w and (2.4), we have

RB(w)− 2N

∫ 1

0

w(x)dx = RB(w)− 2N
∑
k∈Z

ŵ(k)

∫ 1

0

exp(2iπtkx)dx

=
∑
k∈Z

ŵ(k)

(
fB

(
tk
N

)2

− 2N

∫ 1

0

exp(2iπtkx)dx

)
,

from which we get∣∣∣∣RB(w)− 2N

∫ 1

0

w(x)dx

∣∣∣∣ ≤∑
k∈Z
|ŵ(k)|

(
|B|2 − 2N + 2|B|+ 2π

)
,

by Lemma 2.1. The lemma then easily follows from the definition of ‖w‖.

�

Lemma 2.3. For w ∈ W, we get(
min
x∈[0,2]

w(x) + o(1)

)(
|B|2 − 2N

)
≤ RB(w)− 2N

∫ 1

0

w(x)dx ≤
(

max
x∈[0,2]

w(x) + o(1)

)(
|B|2 − 2N

)
.

Proof. By the definition of r∗B(n) and (2.2), we obtain

RB(w)− 2

N−1∑
n=0

w(n/N) =

2N−2∑
n=0

w(n/N)r∗B(n) =

2N−2∑
n=0

w(n/N)|r∗B(n)|+O(|B|) .

By (2.3) we get

min
x∈[0,2]

w(x)
(
|B|2 − 2N

)
+O(|B|)

≤ RB(w)− 2

N−1∑
n=0

w(n/N) ≤ max
x∈[0,2]

w(x)
(
|B|2 − 2N

)
+O(|B|) .
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Since w is continuous, we have

N−1∑
n=0

w(n/N) = N

∫ 1

0

w(x)dx+ o(N)

and the lemma follows.

�
We see from Lemmas 2.2 and 2.3 that this way to use generalized Fourier series

is not sufficient to get any information on the size of B: once divided by |B|2− 2N ,
these inequalities only involve w, and don’t provide any information on |B|. We
therefore need extra tools, and we shall investigate several possible ones in the
following sections.

In view of Lemma 2.1, it is natural to pay special attention to the values t =
1/N, 2/N, . . . , 1−1/N , since the integral vanishes in this case. By (2.4) we are thus
led to study usual Fourier series, namely those for which tk = k. This will be done
in the next three sections, while the fourth forthcoming section will be devoted
to the more general case tk = k/p. Other choices of the sequence (tk) could be
interesting, but it seems difficult to get accurate estimates then.

3. Using a combinatorial lemma

Let us consider the case tk = k, so that

fB

(
k

N

)2

=

2N−2∑
m=0

r∗B(m) exp

(
2iπm

k

N

)

for N - k. In this special case, we can deduce an upper bound from (2.3):∣∣∣∣fB ( k

N

)∣∣∣∣ ≤M (3.1)

for N - k, while fB(k/N) = |B| for N | k.
Let us intoduce an auxiliary function ϕ defined by

ϕ(t) =
∑
k∈Z

ϕ̂(k) exp(2iπkt)

with ‖ϕ‖ =
∑
k |ϕ̂(k)| <∞. We therefore have

S :=
∑
b∈B

ϕ

(
b

N

)
=
∑
k∈Z

ϕ̂(k)fB

(
k

N

)
. (3.2)

Put ` = #B ∩ [N/2, N − 1]. Moser’s combinatorial lemma [5] may be stated as
follows.

Lemma 3.1. We have ` ≤M , which gives

#B ∩ [N/2, N − 1] ≤
√
|B|2 − 2N + 2|B| .
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Proof. The sum of any pair of elements in B ∩ [N/2, N − 1] will give an element in
(B + B) ∩ [N, 2N − 2]. We thus get

`2 ≤
2N−2∑
m=N

rB(m) =

2N−2∑
m=N

r∗B(m) ≤
2N−2∑
m=0

|r∗B(m)| = M2 ,

and the lemma is proved.

�
Let us use the double expression for S given in (3.2). By (3.1) we have

(|B| − `) min
[0,1/2]

ϕ+ ` min
[1/2,1]

ϕ ≤ S ≤M
∑
N -k

|ϕ̂(k)|+ |B|

ϕ̂(0) +
∑
N|k
k 6=0

ϕ̂(k)

 . (3.3)

In order to use Lemma 3.1, we need to assume that min[0,1/2] ϕ ≥ min[1/2,1] ϕ. We
then get from (3.3)

S ≥ |B| min
[0,1/2]

ϕ−M
(

min
[0,1/2]

ϕ− min
[1/2,1]

ϕ

)
. (3.4)

From ‖ϕ‖ <∞ we deduce ∑
N|k
k 6=0

|ϕ̂(k)| = o(1) .

By (3.3) this implies

S ≤M (‖ϕ‖ − |ϕ̂(0)|) + |B|ϕ̂(0) + o(|B|) . (3.5)

Combining (3.4) and (3.5) leads to the nontrivial inequality

|B|
(

min
[0,1/2]

ϕ− ϕ̂(0) + o(1)

)
≤M

(
‖ϕ‖ − |ϕ̂(0)|+ min

[0,1/2]
ϕ− min

[1/2,1]
ϕ

)
. (3.6)

Note that the factor of M is positive when ϕ is nonconstant. By (2.3), we know that

M ≤
√
|B|2 − 2N +O(|B|). Plugging in (3.6) this estimate leads to an inequality

involving only |B|, N and ϕ:

min
[0,1/2]

ϕ− ϕ̂(0) + o(1) ≤

√
1− 2N

|B|2

(
‖ϕ‖ − |ϕ̂(0)|+ min

[0,1/2]
ϕ− min

[1/2,1]
ϕ

)
. (3.7)

In order to square (3.7), we ask for the condition min[0,1/2] ϕ > ϕ̂(0) to be satisfied.
Since 2ϕ̂(0) ≥ min[0,1/2] ϕ + min[1/2,1] ϕ, this last condition implies the earliest
condition min[0,1/2] ϕ ≥ min[1/2,1] ϕ. We thus deduce the following theorem.

Theorem 3.2. For min[0,1/2] ϕ− ϕ̂(0) ≥ 0 , we have

σ ≤ 1

2

(
1−

(
min[0,1/2] ϕ− ϕ̂(0)

‖ϕ‖ − |ϕ̂(0)|+ min[0,1/2] ϕ−min[1/2,1] ϕ

)2
)
.

If ϕ is changed into ϕ+C, for some constant C, the differences min[0,1/2] ϕ−ϕ̂(0),
‖ϕ‖− |ϕ̂(0)| and min[0,1/2] ϕ−min[1/2,1] ϕ remain invariant. So the bound given in
the theorem is also invariant when ϕ is replaced by Aϕ+B, for any constants A and
B > 0. People often consider the case ϕ̂(0) = 0, but this is only for convenience.

We shall illustrate this theorem with several examples. It would be interesting
to find the best possible constant obtained this way, but this seems to be a very
difficult task.
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Example 3.1 [4]. Take

ϕ(t) = sin(2πt) +
cos(4πt)

2
=

1

2
+ (1− sin(πt)) sin(πt) .

We have ϕ̂(0) = 0, ‖ϕ‖ = 3/2, min[0,1/2] ϕ = 1/2 and min[1/2,1] ϕ = −3/2, which
gives the upper bound σ ≤ 24/49 < 0.4898.

Example 3.2 [5]. Define

ϕ(t) =

{
1 if t ∈ [0, 1/2],

1 + π sin(2πt) if t ∈ [1/2, 1].

We find

ϕ̂(k) =


π
4ik if k = ±1,

2
k2−1 if k is even, k 6= 0,

0 otherwise.

We thus get ‖ϕ‖ = ϕ(0)+π/2 = 1+π/2. By construction we also have min[0,1/2] ϕ =
1 and min[1/2,1] ϕ = 1− π. Applying Theorem 3.2 gives

σ ≤ 1

2

(
1−

(
1 +

3π

2

)−2)
< 0.4847 .

Another natural function to consider is given in the next example.

Example 3.3. Consider

ϕ(t) =

{
0 if t ∈ [0, 1/2],

(x− 1/2)(x− 1) if t ∈ [1/2, 1].

We easily find min[0,1/2] ϕ = 0 and min[1/2,1] ϕ = −1/16. The Fourier coefficients
are given by

ϕ̂(n) =


−1/48 if n = 0,

1
4π2n2 if n 6= 0 is even,
i

2π3n3 if n is odd.

We thus get

‖ϕ‖ − |ϕ̂(0)| = 1

48
+

7ζ(3)

8π3
= 0.05475549 . . . .

We obtain this way σ < 0.4843.
Let us give our best example now, whose form was motivated by the study in

section 6.

Example 3.4. Consider

ϕ(t) =


0 if t ∈ [0, 1/2],

(1/2− x)/δ if t ∈ [1/2, 1/2 + δ],

−1 if t ∈ [1/2 + δ, 1− δ],
(x− 1)/δ if t ∈ [1− δ, 1].



8 LAURENT HABSIEGER

It is obvious that min[0,1/2] ϕ = 0 and min[1/2,1] ϕ = −1. With the notations of
section 6, we have ϕ = −w1,1/4−δ,1/4,1/4. Using the calculations detailed there, we
get ϕ̂(0) = −1/2 + δ and

‖ϕ‖ − |ϕ̂(0)| =
∞∑
n=1

| cos(2πn(1/4− δ))− cos(πn/2)|
π2δn2

.

The choice δ = 1/14 seems to be the best one, and leads to the better bound
σ < 0.4827.

4. Using a refined combinatorial lemma

Klotz [3] and Li An-Ping [1] used the following lemma with θ = 3/8, a lemma
that refines Lemma 3.1.

Lemma 4.1. For any θ ∈ [0, 1/2], we have

M2 ≥ `2 + 2`1(θ)`2(θ) ,

with `1(θ) = #B ∩ [θN,N/2] and `2(θ) = #B ∩ [(1− θ)N,N ].

Proof. We proceed as in the proof of Lemma 3.1, and look for elements in B + B
that are at least N . The sums b1 + b2 and b2 + b1, with b1 ∈ B ∩ [θN,N/2] and
b2 ∈ B ∩ [(1− θ)N,N ], are not counted in the proof of Lemma 3.1. So we get

`2 + 2`1(θ)`2(θ) ≤
2N−2∑
m=N

rB(m) ≤M2 ,

�
Klotz [3] used the function

ϕ(t) =


1 if t ∈ [0, 1/4],

3− 8x if t ∈ [1/4, 1/2],

−1 if t ∈ [1/2, 3/4],

8x− 7 if t ∈ [3/4, 1],

to get the inequality

`1(3/8) ≥ #B ∩ [0, N/4]− `−
√

2M . (4.1)

He also considered the function given in Example 3.2 to obtain the lower bound

π

(
1− 1√

2

)
`2(3/8) ≥ |B| − π√

2
`−

(
1 +

π

2

)
M . (4.2)

He then proved the bound σ ≤ 0.4802 by combining Lemma 4.1 with (4.1) and
(4.2), and using the fact that B ∩ [0, N/4] is a 2-base dor N/4.

Li An-Ping [1] studied three other auxiliary functions to relate `, `1(3/8) and
`2(3/8) to |B| and M . More precisely he stated the three inequalities

`1(3/8) ≥ 15

16
|B| − 2.1M − 2`+ o(1) , (4.3)

4π

3
`2(3/8) ≥ |B| − 3.893M + o(1) , (4.4)

`2(3/8) ≥ 11

16
|B| − 2.148M − `+ o(1) . (4.5)

Let us describe how to get these. We can also try to refine these inequalities by
studying other examples similar to those from Section 3. We checked numerous
examples, but only one allowed us to improve on Li An-Ping’s result.
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Example 4.1. The inequality (4.3) is obtained by studying the function ϕ =
−w1,5/32,9/32,9/32 − 1

2w1,0,1/16,9/16, with the notations of section 6. Using the cal-
culations detailed there, we get ϕ̂(0) = −15/32 and

ϕ̂(n) =
4

π2n2
exp

(
9iπn

16

)(
cos

(
9πn

16

)
− cos

(
5πn

16

))
+

4

π2n2
exp

(
9iπn

8

)(
cos
(πn

8

)
− 1
)
.

We deduce the more accurate inequality

`1(3/8) ≥ 0.9375|B| − 2.1008878M − 2`+ o(1) := x1 − 2` . (4.6)

Example 4.2. The inequality (4.4) is obtained by studying the function

ϕ(t) =

{
1 if 0 ≤ t ≤ 5/8,

1 + 4π
3 sin

(
8π
3 (t− 1)

)
if 5/8 ≤ t ≤ 1.

The constant 3.893 is an approximate value of the sum

∞∑
n=1

∣∣∣∣32 cos(5πn/8)

9n2 − 16

∣∣∣∣ ,
and could be replaced by the more accurate value 3.89284896. We deduce a more
convenient form of (4.4):

`2(3/8) ≥ 0.2387324|B| − 0.9293493M + o(1) := x3 . (4.7)

Example 4.3. The inequality (4.5) is obtained by studying the function ϕ =
−w1,3/32,7/32,7/32 − 1

2w1,0,1/16,7/16, with the notations of section 6. Using the cal-
culations detailed there, we get ϕ̂(0) = −11/32 and

ϕ̂(n) =
4

π2n2
exp

(
7iπn

16

)(
cos

(
7πn

16

)
− cos

(
3πn

16

))
+

4

π2n2
exp

(
7iπn

8

)(
cos
(πn

8

)
− 1
)
.

We deduce the more accurate inequality

`2(3/8) ≥ 0.6875|B| − 2.1472415M − `+ o(1) := x4 − ` . (4.8)

Example 4.4. Consider

ϕ(t) =


0 if t ∈ [0, 3/8],

−8x+ 3 if t ∈ [3/8, 1/2],

−1 if t ∈ [1/2, 7/8],

8x− 8 if t ∈ [7/8, 1].
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With the notations of section 6, we have ϕ = −w1,3/16,5/16,5/16. Using the calcula-
tions detailed there, we get ϕ̂(0) = −1/2 and

‖ϕ‖ − |ϕ̂(0)| = 8

∞∑
n=1

| cos(5πn/8)− cos(3πn/8)|
π2 n2

< 0.923879532512 .

Since min[0,3/8] ϕ = 0, min[3/8,1/2] ϕ = min[1/2,1] ϕ = −1, we obtain

`1(3/8) ≥ |B|
2
− 0.9238796M − `+ o(1) := x2 − ` . (4.9)

Let us now explain how to deduce a bound for σ from inequalities (4.6-9) and
Lemma 3.1. Without loss of generality, we may assume that |B|/M ≥ 3.9: the
inequality |B| < 3.9M would give σ < 0.4672, a new record. Note that in this case,
we have x3 ≥ 0. We deduce from (4.6-9) the inequlity

M2 ≥ `2 + 2 max(x1 − 2`, x2 − `) max(x3, x4 − `) . (4.10)

Put L1 = x1 − x2 and L2 = x4 − x3. One easily checks that 0 ≤ L1 ≤ L2 using
the assumption |B| < 3.9M . Let us simplify (4.10) according to the possible values
of `.

For ` ≤ L1, we get

M2 ≥ `2 + 2(x1 − 2`)(x4 − `) = (2x4 + x1 − `)2 − (2x4 + x1)2 + 2x1x4

≥ L2
1 + 2(x1 − 2L1)(x4 − 2L1) ,

since 2x4 + x1 − ` ≥ 2x4 + x1 − L1 ≥ 0 for |B| > 2.7832M .
For ` ≥ L2, we get

M2 ≥ `2 + 2x3(x2 − `) = (`− x3)2 − x23 − 2x2x3 ≥ L2
2 + 2x3(x2 − L2) ,

since `− x3 ≥ L2 − x3 ≥ 0 for |B| > 1.3738M .
For L1 ≤ ` ≤ L2, we get

M2 ≥ `2 + 2(x2 − `)(x4 − `) = (x2 + x4 − `)2 − (x2 + x4)2 + 2x2x4

≥ L2
2 + 2(x2 − L2)(x4 − L2) ,

since x2 + x4 − ` ≥ x2 + x4 − L2 ≥ 0 for |B| > 2.5087M .
We thus get that, for any value of `, we have M2 ≥ L2

2 + 2(x2 − L2)(x4 −
L2). This inequality may be rewritten as 0.2258540264|B|2 − 1.047945832|B|M −
0.06321968572M2 ≤ 0, which gives |B| < 4.6994881M and therefore σ ≤ 0.4773604.
The same method applied without using Example 4.4 leads to Li An-Ping’s result
σ < 0.4774024.

We focused in this section on the case θ = 3/8. The examples presented here
may be adapted to other values of θ. However it seems quite unlikely to obtain a
significant improvement on σ by choosing another special value of θ. We made very
few numerical experiments with other values of θ, since it requires much work to
get interesting inequalities, and our results were quite disappointing. It would be
interesting to understand why the choice θ = 3/8 is almost optimal.
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5. Using double Fourier series

When we are dealing with usual Fourier series, we basically have to square the
functions to be able to use the 2-basis hypothesis. Using double Fourier series will
enable us to use directly this condition. We can also use multiple Fourier series, but
the computation will reduce them to double ones. However using h-tuple Fourier
series would be interesting in the study of h-basis.

We proceed as in section 3 and we intoduce an auxiliary function ϕ defined by

ϕ(t1, t2) =
∑

k1,k2∈Z
ϕ̂(k1, k2) exp(2iπ(k1t1 + k2t2))

with ‖ϕ‖ =
∑
k1,k2

|ϕ̂(k1, k2)| <∞. As before we have

S :=
∑

b1b2∈B

ϕ

(
b1
N
,
b2
N

)
=

∑
k1,k2∈Z

ϕ̂(k1, k2)fB

(
k1
N

)
fB

(
k2
N

)
. (5.1)

We shall use the following quantities, defined by Güntürk and Nathanson [2]:

Caxial =
∑
k∈Z
k 6=0

(|ϕ̂(k, 0)|+ |ϕ̂(0, k)|) and Cmain =
∑

k1,k2∈Z
k1k2 6=0

|ϕ̂(k1, k2)| ,

α1 = min
t1,t2∈[0,1]
t1+t2≤1

ϕ(t1, t2) and α2 = min
t1,t2∈[0,1]
t1+t2≥1

ϕ(t1, t2) ,

L =
∑
n≥N

rB(n) .

The one-dimensional case studied in section 3 maybe easily extended. The proof of
Lemma 3.1 implies

L ≤M2 , (5.2)

and we deduce from (5.1) inequalities analogous to (3.4) and (3.5):

(|B|2 − L)α1 + Lα2 ≤ S ≤ ϕ̂(0, 0)|B|2 + Caxial|B|M + CmainM
2 + o(|B|2) . (5.3)

For α1 ≥ α2 we can plug (5.2) into (5.3) to get

0 ≤ (ϕ̂(0, 0)− α1) |B|2 + Caxial|B|M + (Cmain + α1 − α2)M2 + o(|B|2) . (5.4)

This inequality involves a second-degree polynomial in M/|B|, whose leading coef-
ficient is positive, and whose roots have opposite signs when ϕ̂(0, 0)−α1 ≤ 0. Note
that this last condition also implies the condition α1 ≥ α2, as in the one-dimensional
case. Computing the roots of this polynomial leads to the estimate

M

|B|
≥
−Caxial +

√
C2
axial + 4(α1 − ϕ̂(0, 0))(Cmain + α1 − α2)

2(Cmain + α1 − α2)
+ o(1) ,

from which we deduce the following theorem.
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Theorem 5.1. For α1 ≥ ϕ̂(0, 0), we have

σ ≤ 1

2
− 1

2

(
−Caxial +

√
C2
axial + 4(α1 − ϕ̂(0, 0))(Cmain + α1 − α2)

2(Cmain + α1 − α2)

)2

.

Note that the estimate given in this theorem is invariant when ϕ is replaced by
Aϕ+B, for any constants A and B > 0.

Let us now study several examples. It is quite natural to require that ϕ is
constant, say 0, in the triangle t1, t2, 1 − t1 − t2 ≥ 0. Since ϕ has to be doubly
1-periodical, this implies that ϕ(1, t2) = ϕ(t1, 1) = ϕ(t, 1 − t) = 0. The first three
examples are simple functions ϕ satisfying to these boundaries conditions, and are
two-dimensional extensions of Examples 3.2 and 3.3.

Example 5.1. Define ϕ on [0, 1]2 by

ϕ(t1, t2) =

{
0 if t1 + t2 ≤ 1,

sin(πt1) sin(πt2) sin(π(t1 + t2)) if t1 + t2 ≥ 1.

We get α1 = 0 and one easily checks that α2 = ϕ(2/3, 2/3) = −(
√

3/2)3. The
Fourier coefficients also enjoy the symmetry property ϕ̂(r, s) = ϕ̂(s, r) and they are
given by

ϕ̂(r, s) =



0 for r(r2 − 1)s(s2 − 1)(r − s)(r − s+ 1)(r − s− 1) 6= 0,
1

8π(r−1)(r+1) for r = s 6= ±1,

− 1
16πr(r−1) for r = s+ 1 6= 0, 1,

− 1
16πr(r+1) for r = s− 1 6= 0,−1,

− 1
16πr(r−1) for s = 1 and r 6= 0, 1,

− 1
16πr(r+1) for s = −1 and r 6= 0,−1,

1
8π(r−1)(r+1) for s = 0 and r 6= ±1,

− 1
16π for r = −s = ±1,

3−2iπ
32π for (r, s) ∈ {(1, 1), (0,−1)},

3+2iπ
32π for (r, s) ∈ {(−1,−1), (0, 1)},
− 3

8π for r = s = 0.

For all (r, s) ∈ Z2 \ {(1, 1), (0,−1), (−1,−1), (0, 1)}, the sign of ϕ̂(r, s) is obvious,
and the above formulas make Cmain and Caxial computable:

Caxial = 4
∑
r≥2

1

8π(r − 1)(r + 1)
+ 4

√
9 + 4π2

32π
=

3 +
√

9 + 4π2

8π

and

Cmain =
∑
r≥2

2

8π(r2 − 1)
+
∑
r≥2

4

16πr(r − 1)
+

2

16π
+

2
√

9 + 4π2

32π
+
∑
r≥3

8

16πr(r − 1)

=
13 +

√
9 + 4π2

16π
.

Plugging in these values in Theorem 5.1 gives the bound σ < 0.48069.
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Example 5.2. Define ϕ on [0, 1]2 by

ϕ(t1, t2) =

{
0 if t1 + t2 ≤ 1,

(1− t1)(1− t2)(1− t1 − t2) if t1 + t2 ≥ 1.

We thus get α1 = 0, and an easy calculation shows that α2 = ϕ(2/3, 2/3) = −1/27.
The Fourier coefficients enjoy the symmetry property ϕ̂(r, s) = ϕ̂(s, r) and are given
by

ϕ̂(r, s) =


− r2−rs+s2

8π4r2s2(r−s)2 for rs(r − s) 6= 0,

π2r2+3iπr−6
24π4r4 for r = s 6= 0,

π2r2−3iπr−6
24π4r4 for s = 0 6= r,

− 1
120 for r = s = 0.

Since ∑
rs(r−s) 6=0

2(r2 − rs+ s2)

r2s2(r − s)2
=

∑
rs(r−s)6=0

(
1

r2s2
+

1

r2(r − s)2
+

1

s2(r − s)2

)

= 3
∑

rs(r−s)6=0

1

r2s2
= 3

∑
rs6=0

1

r2s2
− 3

∑
r 6=0

1

r4
=

4π4

15
,

we get

Cmain =
1

60
+ S and Caxial = 2S

with

S =

∞∑
r=1

√
π4r4 − 3π2r2 + 36

12π4r4
∈ [0.014082, 0.01408201] .

Plugging in these values in Theorem 5.1 gives the bound σ < 0.48004.

Example 5.3.
Define ϕ on [0, 1]2 by

ϕ(t1, t2) =

{
0 if t1 + t2 ≤ 1,

1 + cos(πt1) + cos(πt2) + cos(π(t1 + t2)) if t1 + t2 ≥ 1.

As in the previous examples, we get α1 = 0 and α2 = ϕ(2/3, 2/3) = −1/2. The
Fourier coefficients also enjoy the symmetry property ϕ̂(r, s) = ϕ̂(s, r) and they are
given by

ϕ̂(r, s) =


−2(4r2−4rs+4s2−3)

π2(4r2−1)(4s2−1)(4(r−s)2−1) for rs 6= 0,

8r3−6r−iπ(4r2−1)/2
π2r(4r2−1)2 for r 6= s = 0,

π2−12
2π2 for r = s = 0.

Since ϕ̂(r, s) ≥ 0 for rs(r − s) 6= 0 and ϕ̂(r, r) ≤ 0 for r 6= 0, we find

Cmain = −
∑
rs6=0

ϕ̂(r, s) + 2
∑
r 6=0

ϕ̂(r, r)

= −ϕ(0, 0) + ϕ̂(0, 0) +
∑
r 6=0

(ϕ̂(r, 0) + ϕ̂(0, r) + 2ϕ̂(r, r))

=
π2 − 12

2π2
+

16

π2

∑
r≥1

4r2 − 3

(4r2 − 1)2
=
π2 − 12

2π2
+

16

π2

(
3

2
− π2

8

)
=

3(12− π2)

2π2
.
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Computing the first 300000 terms of the series defining Caxial gives the estimate
Caxial ∈ [0.362208, 0.362209]. Plugging in these values in Theorem 5.1 gives the
bound σ < 0.47927.

Note that

1+cos(πt1)+cos(πt2)+cos(π(t1+t2)) = 4 cos

(
πt1
2

)
cos

(
πt2
2

)
cos

(
π(t1 + t2)

2

)
,

and we see that Examples 5.1-3 correspond to the cases (a, b, c) = (π, π, π), (0, 0, 0),
(π/2, π/2, π/2) respectively, in the family of functions

ϕa,b,c(t1, t2) =

{
1 if t1 + t2 ≤ 1,

sin(a(1− t1)) sin(b(1− t2)) sin(c(1− t1 − t2)) if t1 + t2 ≥ 1.

It would be interesting to find the optimal choice for the triple of complex numbers
(a, b, c).

We can also add extra factors to get good bounds, as in the next example.

Example 5.4 [2].
Define ϕ on [0, 1]2 by

ϕ(t1, t2) =

{
1 if t1 + t2 ≤ 1,

1− 40(1− t1)(1− t2)(1− (2− t1 − t2)6) if t1 + t2 ≥ 1.

Güntürk and Nathanson [2] computed α1 = 1 and α2 = 1−15×2−5/3, and gave the
estimates 2.90278 ≤ Caxial ≤ 2.90289 and 4.75145 ≤ Cmain ≤ 4.76146. Plugging
these values in Theorem 5.1 gives the upper bound σ < 0.4789.

Let us now explain how Lemma 4.1 can also be used here to sharpen these results.
Put `01 = 0.2387234|B|− 0.9293493M and `02 = 0.5|B|− 1.9238796M . From Lemma
4.1, formulas (4.7) and (4.9), we get

M2 − `2 ≥ 2`1(3/8)`2(3/8) ≥ 2`01`
0
2 . (5.5)

Also define
α3 = min

(t1,t2)∈[0,1]2\[1/2,1]2
t1+t2≥1

ϕ(t1, t2) .

The left-hand side of (5.3) may be sharpened as S ≥ (|B|2−L)α1+`2α2+(L−`2)α3,
from which we deduce a refinement of (5.4):

α1(|B|2 −M2) + α2M
2 + 2(α3 − α2)`01`

0
2

≤ ϕ̂(0, 0)|B|2 + Caxial|B|M + CmainM
2 + o(|B|2) .

This last inequality still lead to a second degree inequality in |B|/M . We find this
way the following estimates.

Example α3 |B|/M σ
5.1 −1/2 5.0040621 0.48004
5.2 −1/32 4.9765891 0.47982

5.3 1−
√

2 4.8875498 0.47907
5.4 −3.4546435221 4.8474023 0.47873
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6. Using periods greater than one

We shall focus on the case tk = k/p for some period p > 1, and more precisely
we shall study the following family of functions.

Let p, α and β be real numbers with 0 ≤ α < β ≤ p/2 and p ≥ 1. Define a
p-periodic real function wp,α,β by

wp,α,β(x) =


1 if |x| ≤ α,

1− ||x|−α|β−α if α ≤ |x| ≤ β,

0 if β ≤ |x| ≤ p/2.

Since wp,α,β is p-periodic, it is natural to look for its Fourier expansion.

Lemma 6.1. We have ŵp,α,β(0) = (α+ β)/p and

ŵp,α,β(n) =
p

2π2n2(β − α)

(
cos

(
2πnα

p

)
− cos

(
2πnβ

p

))
,

for n 6= 0.

Proof. The evaluation of ŵp,α,β(0) easily follows from the formula from a trapezoid.
Let n be a nonzero integer. We get

ŵp,α,β(n) =
1

p

∫ p/2

−p/2
wp,α,β(x) exp(−2iπnx/p)dx

=
1

2iπn

∫ p/2

−p/2
w′p,α,β(x) exp(−2iπnx/p)dx

=
1

2iπn(β − α)

(∫ −α
−β

exp(−2iπnx/p)dx−
∫ β

α

exp(−2iπnx/p)dx

)

=
1

πn(β − α)

∫ β

α

sin(2πnx/p)dx,,

and the lemma follows.

�
Note that ŵp,0,β(n) ≥ 0 and ‖wp,0,β‖ = wp,0,β(0) = 1. This is the only obvious

case of nonnegativity. This special case has been studied by Yu [9], and he proved
the following lemma.

Lemma 6.2. We have

DB (wp,0,β) ≤ DB (w1,0,β) ≤ |B|2 − (1− β)2N + o(N) .

For κ ∈ R, let us introduce the p-periodic real function wp,α,β,κ defined by
wp,α,β,κ(x) = wp,α,β(x + κ). Let us estimate RB(wp,α,β,κ). By Lemma 2.3 we
obtain

RB(wp,α,β,κ) ≤ 2NIκ + |B|2 − 2N + o(N) , (6.1)
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with Iκ =
∫ 1

0
wp,α,β,κ(x)dx =

∫ κ+1

κ
wp,α,β(x)dx. Using formula (2.4) and the fact

that ŵp,α,β,κ(n) = exp(2iπnκ/p)ŵp,α,β(n), we get

RB(wp,α,β,κ) ≥ α+ β

p
|B|2 −

∑
n 6=0

∣∣ŵp,α,β(n)
∣∣× ∣∣∣∣fB ( n

pN

)∣∣∣∣2 . (6.2)

Remark that the right-hand side of (6.2) does not depend on κ. So we need to
minimize Iκ to get the lowest possible upper bound in (6.1). It is easy to check
that Iκ is minimal for κ = (p− 1)/2. More precisely we have

min
κ
Iκ =


0 if p ≥ 1 + 2β,
(β−(p−1)/2)2

β−α if 1 + 2α ≤ p ≤ 1 + 2β,

β + α− (p− 1) if p ≤ 1 + 2α.

(6.3)

The main difficulty is thus to estimate the right-hand side of (6.2). Let us
describe several approaches, including Yu’s one [9]. Since the case when ŵ(n) ≥ 0
is much easier to handle and occurs when α = 0, all these methods links cases with
α 6= 0 to other cases with α = 0. Let us start with this main special case.

Example 6.1 The case α = 0.
In this case (6.2) becomes

RB(wp,0,β,κ) ≥ 2β

p
|B|2 −DB (wp,0,β) ≥

(
2β

p
− 1

)
|B|2 + (1− β)2N + o(N) ,

by Lemma 6.2. We deduce from this last inequality and (6.1) the bound

2N

|B|2
≤ 2(1− β/p)

2− β − Iκ
+ o(1) .

We use (6.3) to get upper bounds for σ. The choice of parameters β = 0.283654,
p = 1.390814 leads to σ < 0.471345691842.

Example 6.2 The case β = 3α.
This case enjoys so many properties we can describe several approaches.

6.2.1 A first inequality.
First notice the basic equality

cosx− cos 3x = 2 cosx(1− cos 2x) . (6.4)

By Lemma 1, it implies the inequality

| ̂wp,α,3α,κ(n)| ≤ 2 ŵp,0,2α(n) . (6.5)

Plugging (6.5) in (6.2) gives

RB(wp,α,3α,κ) ≥ 4α

p
|B|2 − 2

(
DB(wp,0,2α)− ŵp,0,2α(0)|B|2

)
≥
(
−2 +

8α

p

)
|B|2 + (1− 2α)4N + o(N) ,

by Lemma 6.2. We use Lemma 6.1 to get the bound

2N

|B|2
≤ 3− 8α/p

3− 4α− Iκ
+ o(1) .

By (6.3) this provides upper bounds for σ. The choice of parameters α = 0.08944,
p = 1.3992 leads to σ < 0.4756831656.
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6.2.2 A refined inequality.

The inequality (6.5) may be refined when nα/p only takes a finite number of
values modulo 1. For instance let us consider the case p = 2qα, for some positive
integer q. We obtain

| ̂w2qα,α,3α,κ(n)| ≤ 2 cos

(
π

q

)
̂w2qα,0,2α(n) .

We proceed as below to find

2N

|B|2
≤ 1− 2/q + (1− 1/q)2 cos(π/q)

1− Iκ + (1− 2α)2 cos(π/q)
+ o(1) .

We use (6.3) to get upper bounds for σ. Studying the denominator in terms of α
gives the best choice of parameter: α0 = (4(q−3)2+32 cos(π/q))−1/2. For q = 6 this
leads to σ < 0.471719568373027, while the case q = 7 gives σ < 0.471917965505613.

6.2.3 A special inequality.

We can further refine the preceeding approach. Let us focus on the case p = 12α.
Put xn = 2πnα/p = πn/6. We check that

| cosxn − cos 3xn| ≤ 1− cos 2xn +

√
3− 1

2
(1− cos 3xn) ,

which may be restated as

| ̂w12α,α,3α,κ(n)| ≤ ̂w12α,0,2α(n) +
3(
√

3− 1)

4
̂w12α,0,3α(n) .

Plugging in (6.2) this last estimate, we obtain

R (w12α,α,3α,κ) ≥ |B|
2

3
−5

6
|B|2−9(

√
3− 1)

16
|B|2+(1−2α)2N+

3(
√

3− 1)

4
(1−3α)2N ,

from which we deduce

σ ≤ 3/2 + 9(
√

3− 1)/16

2(1− α) + 3(
√

3− 1)(1− 3α)/4− Iκ
.

The best choice for α is (34 + 18
√

3)−1/2, and gives σ < 0.470711552467.

6.2.4 Yu’s approach [9].

First note that the value of RB(wp,α,β,κ) only depends on the values of w on [0, 2].
So we only need to connect w to functions of type wp,0,β,κ on this interval. The
case β = 3α is of special interest since we have wp,α,3α = wp,0,2α,α + wp,0,2α,−α on
the interval [−3α, 3α]. In this formula, all the periods are chosen to be the same.
However it gives better results to deal with different periods, basically because
1/(p− η) + 1/(p+ η) > 2/p, for any η ∈]0, p[.
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More precisely Yu [9] considered the function w = wp1,0,2α,κ1 + wp2,0,2α,κ2 with
2α = 0.2257, p1 = 1.275, p2 = 1.5889, κ1 = 0.1375 and κ2 = 0.2257. It is defined
on [0, 2] by

w(t) =



(0.0882− t)/0.2257 if t ∈ [0, 0.0882],

0 if t ∈ [0.0882, 0.9118],

(t− 0.9118)/0.2257 if t ∈ [0.9118, 1.1375],

1 if t ∈ [1.1375, 1.3632],

(1.5889− t)/0.2257 if t ∈ [1.3632, 1.5889],

0 if t ∈ [1.5889, 2].

By (6.1) we have the upper bound RB(w) ≤ 2NI + |B|2 − 2N + o(N) with I =
0.08822/0.2257. Combining (6.2) with Lemma 6.2 provides the lower bounds

RB(w) ≥ 4α

(
1

p1
+

1

p2

)
|B|2 −DB (wp1,0,2α,κ1

)−DB (wp2,0,2α,κ2
) + o(N)

≥ 4α

(
1

p1
+

1

p2

)
|B|2 − 2|B|2 + 2(1− 2α)2N + o(N) .

By putting these bounds together we obtain

2N

|B|2
≤

3− 4α
(

1
p1

+ 1
p2

)
3− 4α− I

.

The choice of parameters given above proves the estimate σ < 0.46972.

Example 6.3 Using Cauchy-Schwarz inequality.
We apply Cauchy-Schwarz inequality as follows: we first notice the equalities∣∣ŵp,α,β(n)

∣∣ =
p

2π2n2(β − α)

∣∣∣∣cos

(
2πnα

p

)
− cos

(
2πnβ

p

)∣∣∣∣
=

p

π2n2(β − α)

∣∣∣∣sin(πn(β − α)

p

)
sin

(
πn(β + α)

p

)∣∣∣∣
=

√
β + α

β − α
̂wp,0,β+α(n) ̂wp,0,β−α(n)

and then deduce the upper estimate∑
n 6=0

∣∣ŵp,α,β(n)
∣∣× ∣∣∣∣fB ( n

pN

)∣∣∣∣2

≤

√
β + α

β − α

√
DB (wp,0,β+α)− β + α

p
|B|2

√
DB (wp,0,β−α)− β − α

p
|B|2 .

Using formula (6.2) and Lemma 6.2 gives

RB(wp,α,β,κ) ≥ α+ β

p
|B|2−

√
β + α

β − α

√(
1− β + α

p

)
|B|2 − (1− β − α)2N

×

√(
1− β − α

p

)
|B|2 − (1− β + α)2N . (6.6)
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Combining (6.1), (6.3) and (6.6) leads to a second degree inequation in 2N/|B|2.
The choice of parameters (α, β, p) = (0.27819, 0.071547, 1.398004) provides the bet-
ter bound σ ≤ 0.469055014865, a new record.

References

1. L. An-Ping, On 2-additive basis, http://www.peerevaluation.org/read/libraryID:28270try
(2012).

2. C. Güntürk and M. Nathanson, A new upper bound for finite additive bases, Acta Arith. 124

(2006), 235-255.
3. W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J.

Reine Angew. Math. 238 (1969), 161-168.
4. L. Moser, On the representation of 1, 2, · · · , n by sums, Acta Arith. 6 (1960), 11-13.

5. L. Moser, J. Pounder and J. Riddell, On the cardinality of h-bases for n, J. London Math.

Soc. 44 (1969), 397-407.
6. A. Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Math.

Sem. Univ. Hamburg 48 (1979), 118-124.

7. J. Riddell, On bases for sets of integers, Masters Thesis, University of Alberta, 1960.
8. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), 1-30.

9. G. Yu, Upper bounds for finite additive 2-basis, Proc. Amer. Math. Soc. 137 (2009), 11-18.
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