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EXPLICIT BOUNDS FOR THE DIOPHANTINE EQUATION A!B! = C!

A nontrivial solution of the equation

It is conjectured that the only nontrivial solution is (6, 7, 10), and this conjecture has been checked up to C = 10 6 . Several estimates on the relative size of the parameters are known, such as the one given by Erdös C -B ≤ 5 log log C, or the one given by Bhat and Ramachandra C -B ≤ (1/ log 2+o(1)) log log C. We check the conjecture for B ≤ 10 3000 and give better explicit bounds such as C -B ≤ log log(B+1) log 2 -0.8803.

Introduction

Many authors [START_REF] Guy | Unsolved problems in number theory[END_REF] considered the diophantine equation [START_REF] Bhat | A remark on factorials that are products of factorials[END_REF] n! = r i=1 a i ! in the integers r, a 1 , . . . , a r , with r ≥ 2 and a 1 ≥ • • • ≥ a r ≥ 2. A trivial solution is given by a 1 = n -1 and n = r i=2 a i !. Hickerson conjectured that the only non-trivial solutions are 9! = 7!3!3!2!, 10! = 7!6! = 7!5!3! and 16! = 14!5!2!. He checked it for n ≤ 410, which was improved to 18160 by Shallit and Easter (see [START_REF] Guy | Unsolved problems in number theory[END_REF]). Surányi also conjectured the case r = 2 (see [START_REF] Erdös | Problems and results on number theoretic properties of consecutive integers and related questions[END_REF]) and this was verified up to n = 10 6 by Caldwell [START_REF] Caldwell | The diophantine equation A!B! = C![END_REF].

Luca [START_REF] Luca | On factorials which are products of factorials[END_REF] proved there are finitely many non-trivial solutions to [START_REF] Bhat | A remark on factorials that are products of factorials[END_REF], assuming the abcconjecture. Erdös [START_REF] Erdös | Problems and results on number theoretic properties of consecutive integers and related questions[END_REF] showed that, if the largest prime number of n(n + 1) is greater than 4 log n for any positive integer n, then there are only finitely many nontrivial solutions to [START_REF] Bhat | A remark on factorials that are products of factorials[END_REF].

From now on, we shall focus on the case r = 2, i. e. the equation

(2) A!B! = C! ,
which has been studied by Caldwell [START_REF] Caldwell | The diophantine equation A!B! = C![END_REF] for C ≤ 10 6 . Erdös [START_REF] Erdös | A consequence of a factorial equation[END_REF] proved that C -B ≤ 5 log log C for C sufficiently large, and noted that it would be nice to obtain a bound of the form C -B = o(log log C). His result was improved by Bhat and Ramachandra [START_REF] Bhat | A remark on factorials that are products of factorials[END_REF], who showed that C -B ≤ (1/ log 2+o(1)) log log C. Hajdu, Papp and Szakács [START_REF] Hajdu | On the equation A!B! = C![END_REF] recently proved that non-trivial solutions different from 10! = 7!6! satisfy to C < 5(B -A) and B -A ≥ 10 6 . The aim of this paper is to get better explicit inequalities.

Let a ≥ 2 be an integer. Let s a denote the sum of the digits of an integer written in the basis a. When p is a prime, Legendre's formula gives the exponent of p in n!:

v p (n!) = n -s p (n) p -1 .
When we apply this formula to (2), we find

A -v p (A) + B -v p (B) = C -v p (C). Since v p (C) ≥ 1 and v p (n) ≤ (p-1) log(n+1) log p (see Lemma 1 below), we obtain (3) C ≥ A + B + 1 - log(A + 1) log 2 - log(B + 1) log 2 .
Since log C! = log A! + log B!, the condition (3) implies that A is much smaller that B.

We shall make this assertion explicit by proving the following theorem. We also deduce a better explicit estimate than B -A > C/5 given by Hajdu, Papp and Szakács [START_REF] Hajdu | On the equation A!B! = C![END_REF].

Theorem 3. Let (A, B, C) = (6, 7, 10) be a nontrivial solution triple of (2). For any real number v < 1 + 2+3 log log 2 log 2 = 2.299 . . . , we have

B -A > C - log(C + 1) log 2 - 3 log log(C + 1) log 2 + v
when B is sufficiently large. Moreover we have

B -A > C - log(C + 1) log 2 - 3 log log(C + 1) log 2 -3.9411 .
All these general estimates used the fact that B ≥ 10 6 for nontrivial solutions triple distinct from [START_REF] Guy | Unsolved problems in number theory[END_REF][START_REF] Hajdu | On the equation A!B! = C![END_REF]10). We use these estimates to improve both on the range of validity of Surányi's conjecture and the estimates given before. Theorem 4. Let (A, B, C) = (6, 7, 10) be a nontrivial solution triple of (2). Then we have B ≥ 10 3000 and

A ≤ log(B + 1) log 2 + 2 log log(B + 1) log 2 -1.3479 , C -B ≤ log log(B + 1) log 2 -0.8803 , B -A > C - log(C + 1) log 2 - 3 log log(C + 1) log 2 + 2.2282 .
Remark 5. Caldwell's result C ≥ 10 6 concerning Surányi's conjecture is extended to the much larger region C ≥ 10 3000 .

We first establish useful general properties for the sum of digits and for the Γ function in the next section. In section 3, we prove a key lemma that studies the asymptotic behaviour of log C! -log A! -log B! under the condition (3), for A = log(B+1) log 2 + 2 log log(B+1) log 2 + t. We deduce Theorems 1-3 in section 4. In section 5 we use these results to prove Theorem 4, hence also to check Surányi's conjecture further, and to improve on the results of the preceeding section. We end this paper with a few remarks on possible ways to get better results.

General properties of s a and Γ

We first give a tight upper bound for the sum of the digits function.

Lemma 1. Let a ≥ 2 be an integer. For any nonnegative integer n, we have the upper bound s a (n) ≤ (a -1) log(n + 1) log a .

Proof. Let n be a nonnegative integer. Write s a (n) = (a-1)b+r, where b is a nonnegative integer and 0 ≤ r ≤ a -2. We have

n ≥ b-1 i=0 (a -1)a i + ra b = (r + 1)a b -1 . The function x → x -(a -1) log(x+1) log a
is convex and vanishes at x = 0 and x = a -1. Therefore this function is nonpositive on the interval [0, a -1]. We thus get

s a (n) = (a -1)b + r ≤ (a -1) log(a b ) log a + (a -1) log(r + 1) log a ≤ (a -1) log(n + 1) log a .
Put Ψ(z) = Γ ′ (z)/Γ(z). Let γ denote Euler's constant. We recall the formulas (see [START_REF] Erdélyi | Higher transcendental functions[END_REF], p. 15) ( 4)

Ψ(z) = -γ + ∞ k=0 1 k + 1 - 1 z + k Ψ ′ (z) = ∞ k=0 1 (z + k) 2 ,
and Binet's second expression for log Γ (see [START_REF] Erdélyi | Higher transcendental functions[END_REF], p. 22)

(5) log Γ(x) = x - 1 2 log x -x + log(2π) 2 + 2 ∞ 0 arctan(t/x) e 2πt -1 dt .
From the bounds 0 ≤ arctan(t/x) ≤ t/x and from (5), we get the well-known explicit Sirtling's formula

(6) 0 ≤ log Γ(x) -x(log x -1) - log(2π/x) 2 ≤ 1 12x
.

Derivating (5) also leads to the formula

Ψ(x) = log x - 1 2x - ∞ 0 2t (t 2 + x 2 )(e 2πt -1)
dt and the bounds 0 ≤ 1/(t 2 + x 2 ) ≤ 1/x 2 give the estimates

(7) - 1 12x 2 ≤ Ψ(x) -log x + 1 2x
≤ 0 .

The key lemma

Let us define + ϕ 1 (t, B + 1) -ϕ 2 (t, B + 1). Note that the functions ϕ 1 (t, x) and ϕ 2 (t, x) tend to 0 when x goes to infinity, which proves the first part of the lemma.

R(A, B) = log Γ A + B + 2 - log(A +
For t ≥ -1 and x ≥ 10 6 , we have 

-C(t,
Lemma 3. If (A, B, C) is a solution of (2), then R(A, B) ≤ 0. The function R is an increasing function of A for 1 ≤ A ≤ B.
Proof. The first claim follows directly from (3): R(A, B) ≤ log C! -log A! -log B! = 0. We compute

∂ 2 R ∂A∂B (A, B) = 1 - 1 (A + 1) log 2 1 - 1 (B + 1) log 2 Ψ ′ A + B + 2 - log(A + 1) log 2 - log(B + 1) log 2 .
From (4) we get

∂ 2 R ∂A∂B (A, B) ≥ 0 for 1 ≤ A ≤ B. We use (4) to deduce ∂R ∂A (A, B) ≥ ∂R ∂A (A, A) = 1 - 1 (A + 1) log 2 Ψ 2A + 2 -2 log(A + 1) log 2 -Ψ(A + 1) = γ (A + 1) log 2 + ∞ k=0 1 k + A + 1 - 1 - 1 (A+1) log 2 k + 2A + 2 -2 log(A+1) log 2 = γ (A + 1) log 2 + ∞ k=0 k (A+1) log 2 + A + 1 -2 log(A+1) log 2 + 1 log 2 (k + A + 1)(k + 2A + 2 -2 log(A+1) log 2 ) > 0 when A + 1 ≥ max 2 log(A+1) log 2 -1 log 2 , log(A+1) log 2
≥ 0, which is true for A ≥ 1.

Thus we only need to find Ā such that R( Ā, B) > 0 to get a bound A < Ā. For t > -1 -1+2 log log 2 log 2

we have R(A t , B) > 0 for B large enough by Lemma 2, which gives the first part of Theorem 1. Hajdu, Papp and Szakács [START_REF] Hajdu | On the equation A!B! = C![END_REF] proved B -A ≥ 10 6 , which ensures us that B ≥ 10 6 . We can therefore deduce the second part of the theorem from the inequality C(2.1221, B + 1) > 0, also given in Lemma 2. For A ≤ A t , we have showed in the proof of Lemma thus proving the first part of the theorem, since ϕ 2 (t, x) tend to 0 when x goes to infinity. Each monomial term (log log x) n (log x) -m defining ϕ 2 is a positive decreasing function of x for t ≥ -1 and x ≥ 10 6 . We find -1+log log 2 log 2 + ϕ 2 (2.1221, 10 6 ) < 1.819 and the theorem follows, as in the previous subsection. Proof. We have

A! = k i=1 (B + i) = k i=1 (B + i)(B + k + 1 -i) < B + k + 1 2 k , which shows that B > (A!) 1/k -(k + 1)/2.
We used MAPLE to check that the polynomial k i=1 (B + i) -(B + (k -1)/2) k is a polynomial in B -1 with nonnegative coefficients and with a positive value at B = 1, for 2 ≤ k ≤ 12. This implies that B < (A!) 1/k -(k -1)/2, and the lemma follows.

We checked that the inequality A! = k i=1 (B k (A) + i) never occurred for A ≤ 10000 and 2 ≤ k ≤ 12 using MAPLE; we asked for a 40000-digits precision (enough to write all the digits of A!), and this required about twenty-eight hours of computations.

For B ≤ 10 1000 , Theorems 2 and 3 give A ≤ 3346 and k ≤ 12, so that the equation (2) has no solution for 10 6 ≤ B ≤ 10 1000 . We can get better inequalities in these theorems, using B ≥ 10 1000 . Computing C(-1.2979, 10 1000 For 10 1000 ≤ B ≤ 10 3000 , we thus obtain A ≤ 9993 and k ≤ 11, and the equation ( 2) has no solution on this interval. Computing C(-1.3479, 10 3000 ) and ϕ 2 (1.3479, 10 3000 ) gives the inequalities from Theorem 4.

Concluding remarks

Our method is based on two informations: an arithmetical information obtained by considering the dyadic valuation of the factorials, and an asymptotic information obtained from Stirling's formula. In order to improve on the orders of magnitude of our estimates, one should get more arithmetical information. First, we applied the estimate from Lemma 1 both for A! and for B!, and it is quite uncommon that this estimate can be sharp in both cases. Second, we did not use any property of the p-adic valuations for p ≥ 3, and any useful information could lead to improvements.

The algorithm we used to check that A!B k (A)! = (B k (A)+k)! is rather basic. A smarter one should lead to an even much larger bound than ours.
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