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EXPLICIT BOUNDS FOR THE DIOPHANTINE EQUATION A!B! = C!

LAURENT HABSIEGER

Abstract. A nontrivial solution of the equation A!B! = C! is a triple of positive integers
(A,B,C) with A ≤ B ≤ C − 2. It is conjectured that the only nontrivial solution is
(6, 7, 10), and this conjecture has been checked up to C = 106. Several estimates on
the relative size of the parameters are known, such as the one given by Erdös C −B ≤
5 log logC, or the one given by Bhat and Ramachandra C−B ≤ (1/ log 2+o(1)) log logC.
We check the conjecture for B ≤ 103000 and give better explicit bounds such as C−B ≤
log log(B+1)

log 2 − 0.8803.

1. Introduction

Many authors [6] considered the diophantine equation

(1) n! =
r
∏

i=1

ai!

in the integers r, a1, . . . , ar, with r ≥ 2 and a1 ≥ · · · ≥ ar ≥ 2. A trivial solution is given
by a1 = n− 1 and n =

∏r
i=2 ai!. Hickerson conjectured that the only non-trivial solutions

are 9! = 7!3!3!2!, 10! = 7!6! = 7!5!3! and 16! = 14!5!2!. He checked it for n ≤ 410, which
was improved to 18160 by Shallit and Easter (see [6]). Surányi also conjectured the case
r = 2 (see [4]) and this was verified up to n = 106 by Caldwell [2].

Luca [8] proved there are finitely many non-trivial solutions to (1), assuming the abc-
conjecture. Erdös [4] showed that, if the largest prime number of n(n+1) is greater than
4 logn for any positive integer n, then there are only finitely many nontrivial solutions to
(1).

From now on, we shall focus on the case r = 2, i. e. the equation

(2) A!B! = C! ,

which has been studied by Caldwell [2] for C ≤ 106. Erdös [5] proved that C − B ≤
5 log logC for C sufficiently large, and noted that it would be nice to obtain a bound of
the form C − B = o(log logC). His result was improved by Bhat and Ramachandra [1],
who showed that C−B ≤ (1/ log 2+o(1)) log logC. Hajdu, Papp and Szakács [7] recently
proved that non-trivial solutions different from 10! = 7!6! satisfy to C < 5(B − A) and
B −A ≥ 106. The aim of this paper is to get better explicit inequalities.
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2 LAURENT HABSIEGER

Let a ≥ 2 be an integer. Let sa denote the sum of the digits of an integer written in
the basis a. When p is a prime, Legendre’s formula gives the exponent of p in n!:

vp(n!) =
n− sp(n)

p− 1
.

When we apply this formula to (2), we find A− vp(A) + B − vp(B) = C − vp(C). Since

vp(C) ≥ 1 and vp(n) ≤
(p−1) log(n+1)

log p
(see Lemma 1 below), we obtain

(3) C ≥ A+B + 1−
log(A+ 1)

log 2
−

log(B + 1)

log 2
.

Since logC! = logA! + logB!, the condition (3) implies that A is much smaller that B.
We shall make this assertion explicit by proving the following theorem.

Theorem 1. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solutions triple of (2). For any

real number t > −1− 1+2 log log 2
log 2

= −1.3851 . . . we have

A ≤
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t

when B is sufficiently large. Moreover we have

A ≤
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ 2.1221 .

We can slightly improve on Bhat and Ramachandra’s result [1].

Theorem 2. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (2). For any real

number u > −1+log log 2
log 2

= −0.9139 . . . , we have

C −B ≤
log log(B + 1)

log 2
+ u

when B is sufficiently large. Moreover we have

C − B ≤
log log(B + 1)

log 2
+ 1.819 .

We also deduce a better explicit estimate than B − A > C/5 given by Hajdu, Papp
and Szakács [7].

Theorem 3. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (2). For any real

number v < 1 + 2+3 log log 2
log 2

= 2.299 . . . , we have

B − A > C −
log(C + 1)

log 2
−

3 log log(C + 1)

log 2
+ v

when B is sufficiently large. Moreover we have

B −A > C −
log(C + 1)

log 2
−

3 log log(C + 1)

log 2
− 3.9411 .
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All these general estimates used the fact that B ≥ 106 for nontrivial solutions triple
distinct from (6, 7, 10). We use these estimates to improve both on the range of validity
of Surányi’s conjecture and the estimates given before.

Theorem 4. Let (A,B,C) 6= (6, 7, 10) be a nontrivial solution triple of (2). Then we

have B ≥ 103000 and

A ≤
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
− 1.3479 ,

C − B ≤
log log(B + 1)

log 2
− 0.8803 ,

B − A > C −
log(C + 1)

log 2
−

3 log log(C + 1)

log 2
+ 2.2282 .

Remark 5. Caldwell’s result C ≥ 106 concerning Surányi’s conjecture is extended to the

much larger region C ≥ 103000.

We first establish useful general properties for the sum of digits and for the Γ function in
the next section. In section 3, we prove a key lemma that studies the asymptotic behaviour

of logC!− logA!− logB! under the condition (3), for A = log(B+1)
log 2

+ 2 log log(B+1)
log 2

+ t. We
deduce Theorems 1-3 in section 4. In section 5 we use these results to prove Theorem
4, hence also to check Surányi’s conjecture further, and to improve on the results of the
preceeding section. We end this paper with a few remarks on possible ways to get better
results.

2. General properties of sa and Γ

We first give a tight upper bound for the sum of the digits function.

Lemma 1. Let a ≥ 2 be an integer. For any nonnegative integer n, we have the upper

bound

sa(n) ≤
(a− 1) log(n+ 1)

log a
.

Proof. Let n be a nonnegative integer. Write sa(n) = (a−1)b+r, where b is a nonnegative
integer and 0 ≤ r ≤ a− 2. We have

n ≥

b−1
∑

i=0

(a− 1)ai + rab = (r + 1)ab − 1 .

The function x → x − (a − 1) log(x+1)
log a

is convex and vanishes at x = 0 and x = a − 1.

Therefore this function is nonpositive on the interval [0, a− 1]. We thus get

sa(n) = (a− 1)b+ r ≤ (a− 1)
log(ab)

log a
+ (a− 1)

log(r + 1)

log a
≤

(a− 1) log(n+ 1)

log a
.
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Put Ψ(z) = Γ′(z)/Γ(z). Let γ denote Euler’s constant. We recall the formulas (see [3],
p. 15)

(4)

Ψ(z) = −γ +
∞
∑

k=0

(

1

k + 1
−

1

z + k

)

Ψ′(z) =

∞
∑

k=0

1

(z + k)2
,

and Binet’s second expression for log Γ (see [3], p. 22)

(5) log Γ(x) =

(

x−
1

2

)

log x− x+
log(2π)

2
+ 2

∫

∞

0

arctan(t/x)

e2πt − 1
dt .

From the bounds 0 ≤ arctan(t/x) ≤ t/x and from (5), we get the well-known explicit
Sirtling’s formula

(6) 0 ≤ log Γ(x)− x(log x− 1)−
log(2π/x)

2
≤

1

12x
.

Derivating (5) also leads to the formula

Ψ(x) = log x−
1

2x
−

∫

∞

0

2t

(t2 + x2)(e2πt − 1)
dt

and the bounds 0 ≤ 1/(t2 + x2) ≤ 1/x2 give the estimates

(7) −
1

12x2
≤ Ψ(x)− log x+

1

2x
≤ 0 .

3. The key lemma

Let us define

R(A,B) = log Γ

(

A+B + 2−
log(A+ 1)

log 2
−

log(B + 1)

log 2

)

−log Γ (A+ 1)−log Γ (B + 1) ,

and let us put

At =
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t

for any real number t.

Lemma 2. Let t be a real number, t > −1 − 1+2 log log 2
log 2

= −1.3851 . . . . There exists a

function C(t, B + 1) such that

R(At, B) ≥ C(t, B + 1) log(B + 1) ,

with

lim
B→+∞

C(t, B + 1) = t+ 1 +
1 + 2 log log 2

log 2
> 0 .

Moreover we can have C(2.1221, B + 1) > 0 for B ≥ 106.
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Proof. For B ≥ 2, we can have

log (At + 1) = log

(

log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t+ 1

)

≤ log log(B + 1)− log log 2 +
2 log log(B + 1) + (t+ 1) log 2

log(B + 1)

and therefore

At +B + 2−
log(At + 1)

log 2
−

log(B + 1)

log 2
= B + t+ 2 +

2 log log(B + 1)

log 2
−

log(At + 1)

log 2

≥ B + t + 2 +
log log 2

log 2
+

log log(B + 1)

log 2
−

2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)
> B + 1 ,

for B ≥ 35. We thus get from (4) and (7), for B ≥ 35:

log Γ

(

At +B + 2−
log(At + 1)

log 2
−

log(B + 1)

log 2

)

− log Γ (B + 1)

≥

(

log log(B + 1)

log 2
+ t+ 1 +

log log 2

log 2
−

2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)

)

Ψ(B + 1)

≥

(

log log(B + 1)

log 2
+ t+ 1 +

log log 2

log 2
−

2 log log(B + 1) + (t+ 1) log 2

log 2 log(B + 1)

)

×

(

log(B + 1)−
1

2(B + 1)
−

1

12(B + 1)2

)

.

=

(

log log(B + 1)

log 2
+ t + 1 +

log log 2

log 2
+ ϕ1(t, B + 1)

)

log(B + 1)

with

ϕ1(t, x) = −
2 log log x+ (t+ 1) log 2

log 2 log x

−
1

log x

(

1

2x
+

1

12x2

)(

log log x

log 2
+ t+ 1 +

log log 2

log 2
−

2 log log x+ (t+ 1) log 2

log 2 log x

)

.

Stirling’s formula (6) gives

log Γ(x) ≤ x(log x− 1) +
log(2π/x)

2
+

1

12x
≤ x(log x− 1)

for x ≥ 6.448, from which we obtain

log Γ (At + 1) ≤

(

log(B + 1)

log 2
+

2 log log(B + 1)

log 2
+ t + 1

)

×

(

log log(B + 1)− 1− log log 2 +
2 log log(B + 1) + (t+ 1) log 2

log(B + 1)

)

,
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when At ≥ 6.448. Since At > A
−1− 1+2 log log 2

log 2

≥ 6.448 for B ≥ 23, we get

log Γ (At + 1) ≤

(

log log(B + 1)

log 2
−

1 + log log 2

log 2
+ ϕ2(t, B + 1)

)

log(B + 1)

for B ≥ 23, with

ϕ2(t, x) =
2 log log x+ (t + 1) log 2

log 2 log x

(

log log x− log log 2 +
2 log log x+ (t+ 1) log 2

log x

)

.

We deduce

R(At, B) ≥

(

t + 1 +
1 + 2 log log 2

log 2
+ ϕ1(t, B + 1)− ϕ2(t, B + 1)

)

log(B + 1) ,

for B ≥ 35, and we put C(t, B+1) = t+1+ 1+2 log log 2
log 2

+ϕ1(t, B+1)−ϕ2(t, B+1). Note

that the functions ϕ1(t, x) and ϕ2(t, x) tend to 0 when x goes to infinity, which proves
the first part of the lemma.

For t ≥ −1 and x ≥ 106, we have

−C(t, x) ≤
2 log log x+ (t + 1) log 2

log 2 log x

(

log log x+ 1− log log 2 +
2 log log x+ (t+ 1) log 2

log x

)

+

(

1

2x
+

1

12x2

)

(0.2634 + 0.0672(t+ 1)) + t + 1 +
1 + 2 log log 2

log 2
,

a decreasing function of x. We thus deduce C(2.1221, 106) > 0.000016, which completes
the proof . �

4. Proof of the first three theorems

4.1. Proof of Theorem 1.

Lemma 3. If (A,B,C) is a solution of (2), then R(A,B) ≤ 0. The function R is an

increasing function of A for 1 ≤ A ≤ B.

Proof. The first claim follows directly from (3): R(A,B) ≤ logC! − logA! − logB! = 0.
We compute

∂2R

∂A∂B
(A,B)

=

(

1−
1

(A+ 1) log 2

)(

1−
1

(B + 1) log 2

)

Ψ′

(

A+B + 2−
log(A+ 1)

log 2
−

log(B + 1)

log 2

)

.
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From (4) we get ∂2R
∂A∂B

(A,B) ≥ 0 for 1 ≤ A ≤ B. We use (4) to deduce

∂R

∂A
(A,B) ≥

∂R

∂A
(A,A) =

(

1−
1

(A+ 1) log 2

)

Ψ

(

2A+ 2− 2
log(A+ 1)

log 2

)

−Ψ(A+ 1)

=
γ

(A + 1) log 2
+

∞
∑

k=0

(

1

k + A+ 1
−

1− 1
(A+1) log 2

k + 2A+ 2− 2 log(A+1)
log 2

)

=
γ

(A + 1) log 2
+

∞
∑

k=0

k
(A+1) log 2

+ A+ 1− 2 log(A+1)
log 2

+ 1
log 2

(k + A+ 1)(k + 2A+ 2− 2 log(A+1)
log 2

)
> 0

when A+ 1 ≥ max
(

2 log(A+1)
log 2

− 1
log 2

, log(A+1)
log 2

)

≥ 0, which is true for A ≥ 1. �

Thus we only need to find Ā such that R(Ā, B) > 0 to get a bound A < Ā. For
t > −1 − 1+2 log log 2

log 2
we have R(At, B) > 0 for B large enough by Lemma 2, which gives

the first part of Theorem 1. Hajdu, Papp and Szakács [7] proved B − A ≥ 106, which
ensures us that B ≥ 106. We can therefore deduce the second part of the theorem from
the inequality C(2.1221, B + 1) > 0, also given in Lemma 2.

4.2. Proof of Theorem 2. Note that

logA! = log
C!

B!
≥ (C −B) log(B + 1) .

For A ≤ At, we have showed in the proof of Lemma 2 that

logA! ≤ log Γ(At + 1) ≤

(

log log(B + 1)

log 2
−

1 + log log 2

log 2
+ ϕ2(t, B + 1)

)

log(B + 1) .

Therefore

C − B ≤
log log(B + 1)

log 2
−

1 + log log 2

log 2
+ ϕ2(t, B + 1) ,

thus proving the first part of the theorem, since ϕ2(t, x) tend to 0 when x goes to infinity.
Each monomial term (log log x)n(log x)−m defining ϕ2 is a positive decreasing function

of x for t ≥ −1 and x ≥ 106. We find −1+log log 2
log 2

+ ϕ2(2.1221, 10
6) < 1.819 and the

theorem follows, as in the previous subsection.

4.3. Proof of Theorem 3. We write B − A = C − A− (C −B) and we use Theorems
1 and 2 to get

B −A ≥ C −
log(B + 1)

log 2
−

3 log log(B + 1)

log 2
− 3.9411 .

The second part of the theorem follows, and the first part is straightforward.
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5. The proof of Theorem 4

Theorems 2 and 3 show that both A and C − B are small with respect to B. Let us
put k = C − B to simplify the statements.

Lemma 4. Let (A,B,C) a be a nontrivial solutions triple of (2). For k = C − B ∈
{2, 3, . . . , 20}, we have B = Bk(A) := ⌈(A!)1/k − (k + 1)/2⌉.

Proof. We have

A! =
k
∏

i=1

(B + i) =
k
∏

i=1

√

(B + i)(B + k + 1− i) <

(

B +
k + 1

2

)k

,

which shows that B > (A!)1/k − (k + 1)/2.

We used MAPLE to check that the polynomial
∏k

i=1(B + i) − (B + (k − 1)/2)k is a
polynomial in B− 1 with nonnegative coefficients and with a positive value at B = 1, for
2 ≤ k ≤ 12. This implies that B < (A!)1/k − (k − 1)/2, and the lemma follows. �

We checked that the inequality A! =
∏k

i=1(Bk(A) + i) never occurred for A ≤ 10000
and 2 ≤ k ≤ 12 using MAPLE; we asked for a 40000-digits precision (enough to write all
the digits of A!), and this required about twenty-eight hours of computations.

For B ≤ 101000, Theorems 2 and 3 give A ≤ 3346 and k ≤ 12, so that the equation (2)
has no solution for 106 ≤ B ≤ 101000. We can get better inequalities in these theorems,
using B ≥ 101000. Computing C(−1.2979, 101000) and ϕ2(1.2979, 10

1000) leads to

A ≤
log(B + 1)

log 2
+

2 log log(B + 1)

log 2
− 1.2979 ,

C −B ≤
log log(B + 1)

log 2
− 0.8362 .

For 101000 ≤ B ≤ 103000, we thus obtain A ≤ 9993 and k ≤ 11, and the equation (2) has
no solution on this interval. Computing C(−1.3479, 103000) and ϕ2(1.3479, 10

3000) gives
the inequalities from Theorem 4.

6. Concluding remarks

Our method is based on two informations: an arithmetical information obtained by
considering the dyadic valuation of the factorials, and an asymptotic information obtained
from Stirling’s formula. In order to improve on the orders of magnitude of our estimates,
one should get more arithmetical information. First, we applied the estimate from Lemma
1 both for A! and for B!, and it is quite uncommon that this estimate can be sharp in
both cases. Second, we did not use any property of the p-adic valuations for p ≥ 3, and
any useful information could lead to improvements.

The algorithm we used to check that A!Bk(A)! 6= (Bk(A)+k)! is rather basic. A smarter
one should lead to an even much larger bound than ours.
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