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During the past decades, quantum mechanical methods have undergone an amazing transition
from pioneering investigations of experts into a wide range of practical applications, made by a vast
community of researchers. First principles calculations of systems containing up to a few hundred
atoms have become a standard in many branches of science. The sizes of the systems which can
be simulated have increased even further during recent years, and quantum-mechanical calculations
of systems up to many thousands of atoms are nowadays possible. This opens up new appealing
possibilities, in particular for interdisciplinary work, bridging together communities of different needs
and sensibilities. In this review we will present the current status of this topic, and will also give an
outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic
structure calculations, making this field an important working tool and bringing together researchers
of many different domains.

I. INTRODUCTION

The fundamental laws for a Quantum Mechani-
cal (QM) description of atomistic systems up to the
nanoscale are known and have been well established for
a little less than a century. Yet, there are many chal-
lenges related to the Quantum Mechanical treatment of
large systems. In the vast majority of cases, we are still
unable to solve the fundamental Schrödinger equation
for systems of realistic sizes in such a way that the re-
sults satisfy “universal” requirements of accuracy, pre-
cision and especially predictability. Unfortunately, this
also implies that we are still far from being able to quan-
titatively predict experimental results at the nanoscale.

The problems are not only related to the computa-
tional complexity needed to solve the equations of QM,
there are also intrinsic obstacles. To give an example, let
us remind the so-called “Coulson’s challenge”. In 1960,
Coulson1 noticed that the most compact object needed
to characterize quantum mechanically an N -electron sys-
tem (at least in its ground state) is the two-body reduced
density matrix (2RDM). However, it turns out that we do
not know all the necessary conditions for the 2RDM to
be N -representable, i.e. coming from an anti-symmetric
wavefunction of an N -electron system. Thus, even if a
compact (and, in principle, computationally accessible)
object exists, theoretical and algorithmic bottlenecks hin-
der its practical usage. In 19642 and 19653, Kohn, Ho-
henberg and Sham further reduced the complexity by
showing that the electronic density is in a one-to-one
correspondence with the ground state energy of a sys-
tem of interacting electrons, and that such an interact-
ing system can be replaced by a mean-field problem of N

non-interacting fermions that provide the same distribu-
tion of the density. These are the fundamental ideas of
Density Functional Theory (DFT).

DFT has been, for more than twenty years, the
workhorse method for simulations within the solid state
community. Moreover, in spite of the fact that DFT dras-
tically reduces the complexity with respect to the ab ini-

tio methods of Quantum Chemistry, the success of such
a treatment in the latter community is undeniable. This
is mainly due to the fact that, on one hand, the qual-
ity of the exchange and correlation functionals available
permits the calculation of certain properties with almost
chemical accuracy, and, on the other hand, there are nu-
merous software packages, which are relatively easy to
use, that have contributed to the diffusion of the compu-
tational approach.

During the past years, there has been a multiplication
of DFT software packages that are able to treat systems
of increasingly large size. This has, on one hand, been
enabled by both the advances in supercomputing archi-
tectures and the code developers continuously improving
their codes to exploit the steadily increasing performance
provided, but it is at the same time also motivated by
various scientific needs. This fact clearly extends the
range of possible applications to new fields, and to com-
munities traditionally focused on larger systems. In a
similar manner to the uptake of DFT in the Quantum
Chemistry community, things are progressing as if we
are entering a “second era” of DFT calculations, where
DFT and, more generally, large-scale quantum mechani-
cal treatments, are susceptible to wide diffusion in other
communities.

In this review paper we will present some of the mo-
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tivations that led computational physicists and quantum
chemists into this second era. The different aspects will
be separated into various subcategories, while trying to
give a general overview, and will be completed by no-
table examples in the literature. This inspection of the
state-of-the-art will provide the reader with an outlook
on the present capabilities of QM approaches. We will
then continue our discussion by presenting the key con-
cepts that have emerged in the last decade. These con-
cepts are often specific to QM calculations at large scale
and are rather different from those which are typical of
traditional calculations, where the systems’ sizes are lim-
ited to a few hundreds of orbitals. These concepts are
therefore of high importance for potential users of such
advanced DFT methods.

A. The need for large-scale QM

Given the unbiased predictive power of Quantum Me-
chanics, there is obviously no need to explain why sys-
tems containing only a few atoms should be modelled
using this approach. However, for simulations of sys-
tems at the nanoscale, composed of many thousands of
atoms, the question of the need for a Quantum Mechan-
ical treatment might appear legitimate. For systems of
these sizes, the electronic degrees of freedom are seldom
of interest, and the interatomic potential might be de-
scribed by more compact approaches like Force Fields,
possibly fine-tuned for describing experimentally known
structural and dynamical or polarizability properties. In
other terms, the intimate nature of the problem changes:
instead of focussing solely on the correct estimation of in-
teractions and correlation between electrons, one rather
has to concentrate on the exhaustive sampling of the con-
figuration space, thereby losing the need for an intrinsic
quantum mechanical description.
In addition we know that, even if a QM approach were

feasible, this would not necessarily lead to a better de-
scription. Although the complexity of the model is cer-
tainly higher and the description is less biased, there are
still many approximations which are hidden in a Quan-
tum Mechanical calculation; therefore we are—even for
a system containing only a handful of atoms—in general
still far from chemical accuracy. The situation for large
systems will be the same or even worse, since more se-
vere approximations have to be adopted. However, the
need for QM calculations of large systems does not solely
come from a quest for accuracy. Indeed there are other
reasons why an ab initio description for large systems
is desirable or even crucial, and one of the purposes of
this review paper is to identify and discuss some of these
aspects.
The present-day scenario of the available methodolog-

ical techniques to study systems at the atomistic level
can be sketched in Fig. 1: here various methods are illus-
trated within the typical scales where they have been usu-
ally applied. It is interesting to notice that the size where

typical QM approaches are developed and improved is
of the order of few atoms, even though some of these
concepts are then also applied to larger systems. John
Perdew introduced the renowned metaphor of Jacob’s

Ladder4, where the computational complexity of the im-
plementation of the DFT exchange and correlation func-
tional is (in principle) directly related to the accuracy
of the description, aiming at the “heaven” of chemical
accuracy.

Likewise, for more than ten years, a lot of work has
been done to extend the range of applicability of QM
methods to larger systems. The so-called nearsighted-

ness property5 suggested that, at least in principle, one
could exploit locality to build linear scaling methods that
are able to reach larger scales. Initially, the develop-
ment of such computational methods was driven by the
“academic” purpose of verifying the computational con-
sequences of nearsightedness. In Sec. II we will overview
the most important advancements in this topic and some
of the established computational approaches in large-
scale QM. This is by no means new and there are a num-
ber of valid review papers on the topic, to which we will
also refer. Our aim is not to be fully exhaustive on this
topic as there has been many research studies in this di-
rection. However we would like to put the emphasis on
the fact that nowadays the panorama is so rich and there
is enough diversity in the computational approaches to
claim that such a discipline is now mature enough to be
largely diffused also among non-specialists.

The reason for this diffusion is related to the opportu-
nities that a QM approach opens for systems composed
of thousands, if not hundreds of thousands, atoms. On
the one hand, there are quantities which are intrinsi-
cally only accessible using QM, for example all investiga-
tions dealing with electronic excitations6; we will present
some more examples in Sec. III and IV. On the other
hand, large QM calculation are also needed to access
error bars and statistics of the results. An example
is the need to get good statistics among different con-
stituents in a morphology—a task which is not possible
by implicit, classical modelling of the environment. In
addition, another aspect where first-principles QM ap-
proaches are important is the need for validation of non-
QM approaches.

For all of these tasks, there is a typical length scale,
ranging from a few hundred to many thousands of atoms,
where it is important to master both QM and classical
approaches. As discussed in the introduction, it was
not possible in the initial implementations of DFT soft-
ware packages—for various reasons, including the avail-
able computational resources— to reach such large length
scales, i.e. there was a “length scale gap” between the
maximum scale which was accessible to QM and the typ-
ical scale at which classical approaches are applied. QM
computational paradigms had to bridge this gap in or-
der to be used as investigation tools for systems of many
thousand atoms. However, since a few years ago and
mostly driven by the development of linear-scaling QM
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methods, this gap has vanished. Thus, intensive research
and investigation in this range will allow the set up of
new, powerful computational approaches in various dis-
ciplines such as soft matter, biology and life sciences.

II. LARGE SCALE QM: METHODOLOGICAL
AND COMPUTATIONAL APPROACHES

The problem of treating large systems with DFT is
not a new one; indeed research into this area goes back
more than two decades8,9. This work focused on devel-
oping new methods with reduced scaling, leading to the
different linear-scaling DFT (LS-DFT) codes which exist
today. The emphasis was initially on academic interest,
that is to say the focus was on the methods themselves
and finding new and better ways to accelerate calcula-
tions of ever larger systems, rather than on the appli-
cation to major scientific problems. Indeed, until more
recently, the vast majority of applications were limited
to proof-of-concept calculations, which served to demon-
strate the capability of these algorithms to treat ever
larger systems, while hinting at future possibilities for
production calculations. Nonetheless, without this pio-
neering work, we would not be in the position today to
tackle large and challenging systems such as those dis-
cussed in more detail below.
The development of reduced scaling methods was also

naturally coupled with the availability of high perfor-
mance computing resources; thanks to both the increase
in computing power of the fastest supercomputers and
the widespread availability of commodity clusters, LS-
DFT can now not only be applied to very large systems
indeed, but it can also do so while maintaining the same
accuracy as more traditional cubic-scaling approaches.
As a result of the complexities involved in such meth-

ods, their usage was initially mostly limited to experts
within the community. This is no longer entirely the case,
however there remain a number of additional concepts
with which interested users must familiarize themselves
before attempting practical calculations. In this section
we give an overview of some of these important concepts,
notably the quantum-mechanical principle of nearsight-
edness, which provides the justification for linear-scaling
methods, and the codes within which they are imple-
mented. This is not intended to be a fully exhaustive
list, rather the aim is to highlight the most popular ap-
proaches and some of the key achievements within the
field. For a more thorough discussion, the reader is en-
couraged to refer to other, more extensive reviews of the
subject8–11.

A. Nearsightedness and linear scaling

In the context of DFT, the tendency of the Kinetic En-
ergy operator to favour the delocalisation of the Kohn-
Sham orbitals means that they are in general extended

over the entire system. This non-locality leads to an
unfavorable cubic scaling, meaning that an increase of
the system size by a factor of ten leads to a computa-
tional effort which is 1000 times greater. Even though
this is considerably better than the scaling of other pop-
ular Quantum Chemistry methods, which ranges from
O(N4) for Hartree Fock (HF) to O(N5) for MP2, O(N6)
for MP3 and O(N7) for MP4, CISD(T) and CCSD(T),
it still makes large scale simulations prohibitive.
On the other hand, the density matrix F (r; r′), which

is an integrated quantity that is invariant under unitary
transformations of the Kohn-Sham orbitals, does not re-
flect this non-locality. Indeed it can be shown that the
elements of the density matrix decay rapidly with re-
spect to the distance between r and r

′: for insulators
and metals at finite temperature exponentially12–18, and
for metals at zero temperature algebraically19. Kohn has
coined the term “nearsightedness” for this effect20, and
this concept is the key towards calculations of very large
systems: by truncating elements beyond a given cutoff
radius it is possible to reach an algorithm which scales
only linearly with respect to the size of the system.
An illustration of this effect is shown in Fig. 2

for the case of a water droplet containing 1500
atoms. Here we plot on the left side the iso-
surface of an extended Kohn-Sham orbital, and
on the right side the density matrix of the sys-
tem in the x dimension, i.e. F (x, y0, z0;x

′, y0, z0) =∑
i f(ǫi)ψi(x, y0, z0)ψi(x

′, y0, z0), where ψi are the Kohn-
Sham orbitals and f(ǫi) their occupation numbers. As
can be seen, the summation of the extended orbitals nev-
ertheless leads to a localized quantity, meaning that the
non-local contributions are cancelled due to interference
effects.
In a linear-scaling DFT approach, this locality must be

taken advantage of, which can be achieved by building
the algorithm directly on the density matrix, rather than
the Kohn-Sham orbitals. Since this may introduce an ad-
ditional computational overhead, these O(N) algorithms
are usually slower for small systems than traditional ap-
proaches and only outperform the latter ones beyond a
critical system size, the so-called crossover point. This
crossover point is dependent not only on the details of
the method used, but also the properties, in particular
the dimensionality of the system being studied. In many
linear-scaling DFT approaches, such as onetep21, Con-
quest22, Quickstep23 and BigDFT24,25, the density
matrix is written in separable form as

F (r, r′) =
∑

α,β

φα(r)K
αβφβ(r

′), (1)

with a set of so-called support functions φα(r) and the
density kernel K. In order to reach a linear complex-
ity, the support functions are strictly localized and the
density kernel is enforced to be sparse, meaning that el-
ements are set to zero beyond a given cutoff radius. Dif-
ferent approaches can be used to find the ground state
density matrix, which are discussed below.
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FIG. 1. Overview of the popular methods used in simulations of systems with atomistic resolution, showing the typical
length scales over which they are applied as well as the degree of transferability of each method, i.e. the extent to which
they give accurate results across different systems without re-tuning. On the left hand side we have the Quantum Chemistry
methods which are highly transferable but only applicable to a few tens of atoms; on the right hand side we see the less
transferable (semi-)empirical methods, which can however express reliable results (as they are parametrized for) for systems
containing millions of atoms; and in the middle we see the methods—in particular linear-scaling DFT—which can bridge the
gap between the two regimes. The vertical divisions and corresponding background colors give an indication of the fields in
which the methods are typically applied, namely chemistry, materials science, biology and an intermediary regime (‘bridging
the length scale gap’) between materials science and biology. The line colours indicate whether a method is QM or MM, while
the typical regime for QM/MM methods is indicated by the shaded region. In the top left the region wherein efforts to improve
the quantum mechanical treatment are focussed, that is the quest to climb ‘Jacob’s ladder’ by developing new and improved
exchange correlation functionals, is also highlighted. Some representative systems for the different regimes are depicted along
the bottom: the amino acid tryptophan with a multi-resolution grid, a defective Si nanotube with an extended KS wavefunction,
DNA with localized orbitals, and the protein mitochondrial NADH:ubiquinone oxidoreductase7.

B. Reduced-scaling approaches and established
codes

In the following we describe both pioneering early ap-
proaches to LS-DFT and modern, state of the art meth-
ods currently being used for applications. Since this re-
view is intended to be of practical use rather than purely
theoretical, where appropriate, we categorize the various

approaches by the code in which they are implemented.
It should be noted that many, though not all, of the ap-
proaches to LS-DFT described below are valid only for
systems with a band gap, since, as mentioned above, the
density matrix decays only algebraically at zero temper-
ature for metals, rather than exponentially. Exponential
decay, is, however, recovered for metals at finite temper-
ature, thereby providing one avenue for LS-DFT with
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FIG. 2. Left: Isosurface of one Kohn-Sham orbital for a water
droplet consisting of 1500 atoms. Right: density matrix in the
x dimension, i.e. F (x, y0, z0; x′, y0, z0), for the same system.

metals. Where relevant, we mention if the codes are ca-
pable of treating metallic systems.

a. Pioneering Order N methods
The earliest LS-DFT method was the divide and conquer
approach of Yang26. As the name implies, in this ap-
proach the system of interest is divided into a number of
smaller subsystems which can be treated independently
using a local approximation to the Hamiltonian. The KS
energy for the full system is extracted from the subsys-
tems, which are coupled via the local potential and Fermi
energy. Since the size of the subsystems is independent
of the total system size, the method scales linearly, and is
also straightforward to parallelize, however, the crossover
point can be rather high.

Another pioneering work proposed an order N method
to calculate the density of states and the band structure
by means of the Green function and a recursion method
to calculate the moments of the electronic density27 in
real space using a finite difference scheme. The evalua-
tion of the moments of the electronic density by means
of random vectors was also used to treat systems up to
2160 atoms28. Many density matrix minimization meth-
ods were also developed; the Fermi Operator Expansion
(FOE)29,30, LNV (Li-Nunes Vanderbilt)31,32 and other
approaches related to the purification transformation33

are currently used in various codes today. The authors
refer to the comprehensive review of S. Goedecker9 for a
full description of these different methods.

b. SIESTA

The first widely used code with a linear-scaling method
was SIESTA34–36, which is based on numerical atomic
orbitals. The original linear-scaling approach is based on
the minimization of the functional of Kim, Mauri and
Galli37, which avoids explicit orthogonalization. More
recently a divide-and-conquer algorithm has also been
implemented38. There are many real applications using
SIESTA for large systems, but these calculations use a
traditional cubic-scaling scheme based on the diagonal-
ization of the Hamiltonian. In 2000, λ-DNA of 715 atoms
was calculated using the linear-scaling method to show
the absence of DC-conduction39. In 2006, the calcula-
tion of some CDK2 inhibitors was done using SIESTA,
with also a comparison to onetep40. Recently SIESTA

has been coupled41 with the PEXSI library42, which
avoids the cubic-scaling diagonalization of the Hamil-
tonian by taking advantage of its sparsity in the local-
ized basis. This reduces the computational complexity
without the need for nearsightedness or other simplifi-
cations, thus allowing considerably larger systems to be
tackled without requiring any explicit truncation of the
density matrix. The first published scientific application
of SIESTA-PEXSI examines carbon nanoflakes up to a
size of 11,700 atoms43. In addition SIESTA allows one to
perform electron transport calculations using the Tran-
SIESTA tool44 providing a tight binding Hamiltonian
and can also be used for QM/MM simulations45.

c. ONETEP

The Order-N Electronic Total Energy Package
onetep21,46–48 is a LS-DFT code which employs a
density matrix approach, wherein the strictly localized
support functions, termed Non-orthogonal Generalized
Wannier Functions (NGWFs), are represented in a basis
of periodic sinc (psinc) functions and optimized in situ,
adapting themselves to the chemical environment. Since
the psinc basis can be directly related to plane-waves,
the NGWFs form a localized minimal basis with the
same accuracy as a plane-wave calculation. The density
kernel is calculated primarily using the LNV approach
in combination with other methods49. A number of
functionalities have been implemented in onetep such
as DFT+U50, the calculation of optical spectra51, in-
cluding via time-dependent (TD) DFT52,53, constrained
DFT54, electronic transport55, natural bond orbital
analysis56, and implicit solvents57. A method to treat
metallic systems at finite temperature has also been
implemented58.

Many large calculations have been performed with
onetep, such as on DNA (2606 atoms)21, carbon nan-
otubes (4000 atoms)59, a silicon crystal (4096 atoms)60,
and point defects in Al2O3

59. onetep was also used
in biology to study the binding process within a 1000-
atom QM model of the myoglobin metalloprotein61 and
also, in a QM/MM approach, the transition state opti-
mization of some enzyme-catalyzed reactions62. Some of
the applications with onetep have clearly highlighted
the need for and challenges associated with large scale
QM calculations. For example there is a clear need for
methods capable not only of incorporating and analysing
electronic effects on a large scale in proteins including
the solvent effect, at least implicitly, as demonstrated by
the study of a 2615-atom protein-ligand complex57, but
also of optimizing transition state (TS) structures in this
context. In another study, onetep was used to put in ev-
idence the importance of preparing systems correctly to
avoid the problem of the vanishing gap for large systems
(proteins and water clusters)63.

d. OPENMX

TheOpenMX code64,65 has both a linear-scaling version,
based on the divide and conquer approach defined in a
Krylov subspace64, and a cubic-scaling version which uses
diagonalization. It uses a basis set of pseudo-atomic or-



6

bitals (PAOs) and a number of functionalities have been
implemented, such as DFT+U66, electronic transport67

and the calculation of natural bond orbitals68. This lat-
ter capability was used to analyze a molecular dynam-
ics simulation on a liquid electrolyte bulk model, namely
propylene carbonate + LiBF

4
in a model containing 2176

atoms68.

e. FHI-aims

The Fritz-Haber-Institute ab initio molecular simulations
package69,70 uses explicit confining potentials to con-
struct numerical atom-centered orbital basis functions;
around 50 basis functions per atom are needed to have
an accurate solution of less than one meV per atom. This
scheme can be used naturally to achieve quasi-linear scal-
ing for the grid based operations71 with a demonstrated
O(N1.5) overall scaling for a linear system of polyalanine
up to 603 atoms. The authors of FHI-aims have also
developed a massively parallel eigensolver, ELPA72, for
large dense matrices based on a two-step procedure (full
matrix to a banded one, and banded matrix to a tridago-
nal one). Traditional DFT and embedded-cluster DFT73

calculations can be done on molecules74, but also on pe-
riodic systems. Hybrid functionals74, RPA, MP2, and
GW methods are also implemented using a resolution of
identity75 based on auxiliary basis functions.

f. CONQUEST
Conquest10,22,76,77 uses an approach based on support
functions and density matrix minimization. The support
functions can be represented either in a systematic B-
spline basis, or in a basis of PAOs, according to the user’s
preference. There is also a choice of using a linear-scaling
approach wherein the density matrix is optimized using
LNV or a cubic-scaling approach using diagonalization.
Constrained DFT78 and multisite support functions are
implemented, wherein the support functions are associ-
ated with more than one atom79. Scaling tests have been
performed on up to 2 million atoms of bulk Si22 and the
approach has also been applied to Ge hut clusters on Si,
for systems of up to 23, 000 atoms80. Other examples of
calculations with Conquest include 3400 atom simula-
tions of hydrated DNA81 and molecular dynamics (MD)
simulations of over 30, 000 atoms of crystalline Si82 using
the extended Lagrangian Born-Oppenheimer method83.

g. BIGDFT

The BigDFT code84 emerged as an outcome of an EU
project in 2008. One of the most particular features of
this code is the basis set it uses, Daubechies wavelets85.
These functions have the remarkable property of — at the
same time — being orthonormal, having compact sup-
port in both real and reciprocal space and forming a com-
plete basis set. Such a basis set offers optimal properties
for DFT at large scale. The code was first designed fol-
lowing a traditional cubic-scaling approach86, and later
complemented with a linear-scaling algorithm24,25. Since
wavelets form a very accurate basis set, BigDFT is — in
conjunction with elaborate pseudopotentials — capable
of yielding a very high precision87 at maintainable com-
putational costs. This is also true for the linear-scaling

version, where the support functions are expanded in
the wavelet basis and can thus be adapted in situ. The
main approach used to optimize the density matrix and
thereby achieve linear scaling is Fermi Operator Expan-
sion9.

Some features implemented in BigDFT are, among
others, time dependent DFT88 and constrained DFT,
which has been implemented based on a fragment ap-
proach89, along a similar spirit to the fragment molecular
orbital approach described in more detail below. In addi-
tion BigDFT incorporates a very efficient Poisson Solver
based on interpolating scaling functions90–93, which
solves the electrostatic problem with a low O(N logN)
complexity and a small prefactor and can thus also be
used for large scale applications. BigDFT was also one
of the first DFT codes taking benefit of accelerators used
in HPC systems, such as Graphic Processing Units94.
Some of the code developers are among the authors of
the present review, therefore some illustrative examples
that will be given in the following sections originate from
runs with BigDFT.

h. ERGOSCF
ErgoSCF95,96 is a quantum chemistry code for large
scale HF and DFT calculations, which has a variety of
pure hybrid functionals available and is an all-electron
approach based on Gaussian basis sets. It uses a trace-
correcting purification method in conjunction with fast
multipole methods, hierarchic sparse matrix algebra, and
efficient integral screening to achieve linear scaling. It has
been applied to protein calculations, using both explicit
and implicit solvents97.

i. FREEON

Formerly mondoscf, FreeON is a suite of linear-
scaling experimental chemistry programs98 which per-
forms HF, pure DFT, and hybrid HF/DFT calculations
in a Cartesian-Gaussian LCAO basis. All algorithms are
O(N) or O(N logN) for non-metallic systems. Different
purification and density matrix minimization approaches
have been implemented and compared in the code99.

j. QUICKSTEP
The quantum mechanical part of the CP2K100 pack-
age, Quickstep23, uses traditional Gaussian basis sets
to expand the orbitals, whereas the electronic density is
expressed in plane waves to perform HF, DFT, hybrid
HF/DFT and MP2101 calculations. The Kohn-Sham en-
ergy and Hamiltonian matrix is calculated using a linear-
scaling approach with screening techniques102.

k. FEMTECK

The Finite Element Method based Total Energy Calcu-
lation Kit femteck code103,104 uses an adaptive finite
element basis to represent Wannier functions, in conjunc-
tion with the augmented orbital minimization method
(OMM), which imposes additional constraints on the or-
bitals to guarantee linear independence in order to over-
come the slow convergence and local minima usually as-
sociated with the standard OMM method. femteck has
been used for molecular dynamics simulations of liquid
ethanol with 1125 atoms105, as well as for the study of
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fast-ionic conductivity of Li ions in the high-temperature
hexagonal phase of LiBH

4
, in MD simulations of 1200

atoms106.

l. RMGDFT
The real space multigrid based DFT electronic struc-
ture code107 (RMGDFT) uses a multigrid108 or a struc-
tured non-uniform mesh109. A linear-scaling method110

was also developed. Using maximally localized Wannier
functions expressed on a uniform finite difference mesh,
Osei-Kuffuor and Fattebert111 performed a molecular dy-
namics simulation up to 101, 952 atoms of polymers to
demonstrate the scalability of their algorithms.

m. PROFESS
As the imposition of orthonormality constraints on the
KS orbitals is one of the factors which dominates the
cubic-scaling of standard DFT, one strategy to achieve
linear-scaling is to eliminate the need for the orbitals.
This so-called orbital-free (OF) DFT approach does so
by defining a kinetic energy (KE) functional, for which
several forms have been proposed, see e.g. Refs. 112–
114. Such an approach has been implemented in pro-
fess (Princeton Orbital-Free Electronic Structure Soft-
ware)115–118, which offers a choice between several im-
plemented KE functionals using a grid-based approach
to represent the density. The code requires the use of
local pseudopotentials, which are provided for certain el-
ements only, including Mg, Si and Al. The approach only
achieves the same accuracy as KS-DFT for main group
elements in metallic states, but recent work developing
new KE functionals for semiconductors and transition
metals114,119,120 allow some properties of semiconductors
to also be reproduced well. Despite this limitation, large
defects in crystals (e.g., dislocations, grain boundaries)
and large nanostructures (e.g., nanowires, quantum dots)
are too computationally costly to treat with most first
principles approaches, and so OF-DFT offers an appeal-
ing alternative for such systems. The code has been used
to simulate more than 1 million atoms of bulk Al121 and
to study melting of Li using molecular dynamics122.

n. Quantum chemistry
Reduced-scaling electronic structure methods are a do-
main where the ultimate goal is to have a linear-scaling
approach with chemical accuracy. Based on pair nat-
ural orbitals, a coupled cluster theory method123 has
been developed which scales up to 1000 atoms claiming
that chemical accuracy was achieved. A Quantum Monte
Carlo method is also being developed for large chemical
systems with some calculations on peptides124,125 up to
1731 electrons.

o. Machine learning

Finally we wish to mention the various works on neural
networks and other machine learning techniques where
the goal is to obtain interatomic potentials with the same
accuracy as DFT or even quantum chemistry. The first
works126–128 of J. Behler using a high-dimensional neu-
ral network give a way of calculating potential-energy
surfaces in order to perform metadynamics. Another ap-
proach is to use the electronic charge density coming from

DFT to build interatomic potentials for ionic systems129.
By using GPUs it is possible to speed up the neural net-
work performance by two orders of magnitude, which per-
mits a large computing capacity within a single worksta-
tion. Rupp et al. considerably improved the predictive
precision and transferability of spectroscopically relevant
observables and atomic forces for molecules using kernel
ridge regression130. Once such a system is trained, the
cost for new calculations is orders of magnitude smaller
than for corresponding DFT calculations.

C. Towards coarse-graining modelling of large
systems: FMO and DFTB approaches

p. Fragment Molecular Orbitals

One important method for proteins and other biologi-
cal molecules, which could be considered an extension of
the divide-and-conquer approach, is the fragment molec-
ular orbital (FMO) approach131,132. In this approach,
the molecule is divided into fragments—whose definition
is based on chemical intuition—, which are each assigned
a number of electrons. The size of each fragment might
therefore vary depending on the system in question, for
example 2D pi-conjugated systems would need large frag-
ments for accuracy. The molecular orbitals (MOs) are
then calculated for each fragment, under the constraint
that they remain localized within the fragment. The dis-
tinguishing feature of FMO compared with divide and
conquer is that the MOs for the fragments are calculated
in the Coulomb field coming from the rest of the system
(i.e. the environment), so that long range electrostatics
are included. The fragment MOs must be updated it-
eratively to ensure self-consistency of this environment
electrostatic potential. Different levels of approximation
can be used: the most basic is FMO1, which only ex-
plicitly calculates MOs of single fragments (referred to as
monomers) and constructs the total energy from these re-
sults. The next, and most common level, is FMO2, which
also incorporates explicit dimer calculations (i.e. between
pairs of fragments) into the total energy. There is also
FMO3133, which also adds trimers, and even FMO4,
which incorporates also 4-body terms134. The accuracy
of the approximation, but also the cost increases with the
addition of higher order terms. FMO2 is often sufficiently
accurate for many applications, but there are some cases
where higher order interactions are required, for exam-
ple, at least three-body terms were found to be necessary
for MD of water135; geometry optimizations of open shell
systems may also require higher order terms, or, where
possible, larger fragments in order to ensure good con-
vergence136. FMO has been implemented in GAMESS
(General Atomic and Molecular Electronic Structure Sys-
tem) 137–139, with an implementation which is designed to
exploit massively parallel machines; ABINIT-MP140,141,
which has also been designed for massively parallel cal-
culations142; and a version of NWChem143.
FMO belongs to a wider class of fragment-based meth-
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ods, such as the molecular tailoring approach144. FMO,
molecular tailoring and other related approaches have
been reviewed in detail elsewhere, along with a number of
example applications132,145–147. Here we highlight a few
examples for large systems. Aside from DFT, FMO may
also be used for HF and MP2 calculations; for example,
the GAMESS implementation has been benchmarked for
water clusters containing around 12,000 atoms at the
MP2 level of theory148. FMO has also been used for
geometry optimizations of large systems, for example
the prostanglandin synthase in complex with ibuprofen,
containing around 20,000 atoms, was optimized using
B3LYP and restricted HF (RHF) for different domains
of the system149. Another example application is the
study of the influenza virus hemagglutinin, where QM
calculations of up to 24,000 atoms150,151 have been per-
formed using FMO-MP2 in combination with the polar-
izable continuum model (PCM)152,153. More than 20,000
atoms were also included in a RHF simulation of the pho-
tosynthetic reaction center of rhodopseudomonas viridis,
which required around 1400 fragments154. While less
common, FMO can also be applied to solids, surfaces
and nanomaterials. For example a new fragmentation
scheme for fractioned bonds was developed and applied
to the adsorption of toluene and phenol on zeolite155; Si
nanowires have also been studied using FMO156. FMO
may also be used for excited calculations, for example
in combination with TDDFT, which has been tested for
solid state quinacridone157.

q. DFTB
The Density Functional Tight-Binding approach was first
notably applied in carbon-based systems. The idea was,
at the first-order, to use a frozen density from atoms.
DFTB, at the second order, has been extended in order
to include a Self-Consistent Charge (SCC) correction158,
accounting for valence electron density redistribution due
to the interatomic interactions. A third-order DFTB3159

was also developed which has introduced an additional
term with coupling between charges. Parameters for
the whole periodic table are available160. A confinement
potential was used to tighten the Kohn-Sham orbitals.
The solution conformations of biologically mono- and di-
α-D-arabinofuranosides were investigated161 by means
of molecular dynamics using dispersion-corrected self-
consistent DFTB and compared to the results from the
AMBER ff99SB force field162 with the GLYCAM (ver-
sion 04f) parameter set for carbohydrates163,164 as well
as to NMR experiments. There are also some extensive
tests on hydroxide water clusters and aqueous hydroxide
solutions165.

r. FMO-DFTB
Recently, the fragment molecular orbital approach has
been combined with DFTB166, with the aim being to
reduce the cost of DFTB to a few seconds, in order to
perform MD simulations. The accuracy of FMO-DFTB
is very close to that of DFTB, while excellent speedups
have also been achieved: for an MD simulation of 768
atoms of water, the speedup compared to DFTB was

shown to be more than 100167. It has been used to opti-
mize an 11,000 atom nanoflake of cellulose Iβ159, as well
as for MD simulations of liquid hydrogen halides contain-
ing 2000 atoms167, for which the speedup was an order of
magnitude greater than the above example. FMO-DFTB
could therefore be a very promising approach of QM-MD
of large systems.

D. HPC concepts/performance

The effort for the development of the above mentioned
computer codes has also contributed to another improve-
ment in the community: the ability to exploit high perfor-
mance computing (HPC) resources. This has become a
very important aspect with the advent of petaflop super-
computers. New science can be done on these machines
only if the code developers are able to profit from such
large scale supercomputers. However, the development
of accelerated methods for large systems is not meant
to replace the exploitation of powerful HPC platforms,
rather the two go hand in hand: in order to execute cal-
culations for systems as large as the range for which they
are designed, LS-DFT codes require large computing re-
sources; and parallel compute clusters are most efficiently
exploited if they are used to treat large problem sizes,
rather than to compensate for the cubic scaling of stan-
dard DFT codes.
In the ideal case, for a method which exhibits both per-

fect linear scaling with respect to the number of atoms
and ideal parallel scaling with respect to the number of
computing cores, the time taken for a single point cal-
culation should remain constant if the ratio of atoms to
cores remains constant, that is, a so-called weak scaling
curve would be flat. This allows for the definition of the
concept of CPU minutes per atom and, correspondingly,
memory per atom. Since both the time and memory re-
quirements for a small system running on a few cores
would be approximately the same as a large system run-
ning on many cores, this value for a particular code is
a function of the system, which depends on the dimen-
sionality of the material, the atomic species and various
user-defined quantities, such as the grid spacing and the
localization radii beyond which localized basis functions
are truncated.
In other terms, we might say that the values of per-

atom computing resources for a given code are function-
als of the input parameters of the code and of the comput-
ing architecture employed. However, even though they
cannot be predicted beforehand and have to be evalu-
ated, it is interesting to compare values of CPU minutes
and memory per atom between different systems. This
is especially useful because such a viewpoint provides a
quantitative method for estimating the cost of a large
simulation based on a small representative calculation,
i.e. a smaller but equivalent simulation domain running
on the same computing architecture. For example, when
one has a fixed number of cores available, one could esti-
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mate the total run time for a large calculation using the
CPUminutes per atom value obtained from the small cal-
culation. Alternatively, in the case where one has many
cores but limited memory availability, one could use the
memory per atom value from the small calculation to de-
termine the minimum number of cores needed to fit the
large problem in memory. Although in practice one might
not achieve perfect parallel scaling, the validity of these
quantities has been demonstrated in the context of the
BigDFT code, where it has been tested for DNA frag-
ments and water droplets25. A similar concept was also
demonstrated in the context of coupled cluster theory123.
It is however fundamental that all these performance

achievements come together with the robustness of the
approach, or more precisely its implementation. It is
easy to imagine that QM methods become technically
very complicated at large scale, with a multiplication of
the input variables and troubleshooting techniques which
are typical of the algorithm employed. Code developers
have to provide robust and reliable algorithms for non-
specialists (failsafe mode), even at the cost of lower per-
formance.

III. LARGE-SCALE QM APPLICATIONS

As already mentioned, first principle calculations are a
priori the most accurate approach to any atomistic sim-
ulation. Unfortunately an exact analytical or computa-
tional solution to the fundamental quantum mechanical
equations is only possible for a few, rare cases at present;
for all other systems one either has to introduce approx-
imations, solve the equations numerically, or both. Due
to these approximations there might thus even be situ-
ations where an empirical approach, which is tuned for
one particular property, might yield more precise results
than a first principles calculation. One particular, but
important example is water, where traditional ab initio
approaches like DFT do not come as close to the experi-
mental values (see, for instance, Ref. 168 and references
therein) as empirical force fields169,170. On the other
hand such empirical approaches will only work for sys-
tems which are very similar to the ones which were used
for the tuning and will in general fail for systems which
are distinct, making the simulation of unknown mate-
rials tricky. In addition, traditional force fields do not
in general allow for bond breaking and forming, which
is however abundant in chemical reactions. This is in
strong contrast to ab initio approaches, which are less
biased and are thus expected to yield the correct tenden-
cies over a much larger range of systems.
Moreover there are situations where a first principles

description is not only desirable, but essential. Obviously
this is the case when quantities are needed which are not
accessible with classical force field approaches. For in-
stance, a major shortcoming of classical approaches is
that they cannot provide direct insights into electronic
charge rearrangements. This is however necessary if one

wants to analyze charge transfers, which play an impor-
tant role for instance in biology. Since such electronic
charge transfers can occur over a large distance and over
a long time frame, such simulations would quickly go be-
yond the scope of pure ab initio calculations. A possible
solution is to let the system evolve according to a classi-
cal approach, which is orders of magnitudes faster, and
only analyze certain snapshots or averages on a QM level.
An example is the work of Livshitz et al.171, which inves-
tigates the charge transfer properties of DNA molecules
adsorbed onto a mica surface, or the work of Lech et
al.172 which investigates the electron-hole transfer in var-
ious stacking geometries of nuclear acids. With respect to
DNA, ab initio calculations have also been used to inves-
tigate the molecular interactions of nucleic acid bases173

and to study the impact of ion polarization174. A nice
overview over the various approaches for DNA can be
found in Ref. 175.

The volume of an atom is also an example of such an
intrinsic QM quantity, which is most straightforwardly
defined using its charge distribution, but can not be ac-
cessed directly using force fields; consequently other mod-
els must be adopted176. Another case where first princi-
ples calculations are needed is the determination of pho-
tophysical and spectroscopic properties. These calcula-
tions do not only require the determination of the ground
state, but also also of excited states, which is not possible
with classical approaches based on empirical force fields.
This application is also very demanding from the point
of view of the QM method, since popular approaches like
HF or DFT are ground state theories and therefore usu-
ally give rather poor results for excited states. A popular
solution to this problem is to use TDDFT for the calcu-
lation of the excitations88.

Highly accurate QM methods are also required in the
determination of small energy differences, for instance,
the calculation of activation energy barriers in chemical
reactions. The problem is that, in particular for biolog-
ical systems, the reaction is often catalyzed by an envi-
ronment which can be much larger than the actual active
site, making a fully ab initio treatment impossible. How-
ever, if there is no charge transfer between the active
site and its environment, it is possible to use so-called
QM/MM schemes, where only the active site is treated
on a highly accurate ab initio level and the environment
is handled using force fields. As an example, such an ap-
proach was used, among others, to investigate catalysts
for the Kemp eliminase177, and QM calculations in gen-
eral are an important ingredient for the computational
design of enzymes178.

Obviously such a QM/MM strategy raises the ques-
tion of how the coupling between QM and MM regions
can be done; see Ref. 179 for an interesting review on the
subject. Typically one distinguishes between three dif-
ferent setups, namely mechanical embedding, electronic
embedding and polarized embedding180–182. In the first
case, the interaction between the QM and MM region is
treated in the same way as the interaction within the MM
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region itself; in the second case, the MM environment is
incorporated into the QM Hamiltonian, thus leading to
a polarization of the electronic charge density; and in
the third case, the MM environment is also polarized by
the QM charge distribution. The second method is the
most popular one, and the coupling between QM and
MM region can for instance be done using a multipole
representation which is fitted to the exact electrostatic
potential183.

Unfortunately electronic embedding is known to ex-
hibit the shortcoming of “overpolarization” at the bound-
ary between the QM and MM region182,184, in particular
if covalent bonds are cut. This overpolarization problem
is due to the fact that for the electrons of the MM atoms
the Pauli repulsion is not accounted for, resulting in an
incorrect description of the short range interaction at the
QM/MM interface. In particular, positive atoms on the
MM side might act as traps for QM electrons, leading
to an excessive polarization. However there exist several
approaches to address this issue, for instance the use of a
delocalized charge distribution for the MM atoms185–187,
and indeed it can be shown that a careful implementa-
tion allows the correct description of polarization effects
within a QM/MM approach188. Another, more straight-
forward solution to this problem is to increase the size of
the QM region, keeping the problematic boundary far-
ther away from the active site. Since in this way the QM
region easily contains hundreds or thousands of atoms,
the use of a linear-scaling algorithm for the QM part is
indispensable. In a onetep application by Zuehlsdorff
et al.189 they even found that an explicit inclusion of the
solvent into the QM region was required to get a reliable
description.

In another recent work employing onetep, Lever et
al.62 used this LS-DFT code to investigate the transition
states in enzyme-catalyzed reactions. The same reaction
has already been investigated earlier with a QM/MM
approach employing for the QM part highly accurate
quantum chemistry methods such as MP2, LMP2, and
LCCSD(T0)190. Even though the development of re-
duced scaling algorithms191–197 made their use somewhat
affordable also for larger systems, the cost of these meth-
ods is still very high. On the other hand they have the
advantage that they yield very accurate estimates for
activation barriers, in contrast to DFT, which in gen-
eral tends to underestimate these values. Indeed another
study by Mlýnský et al. demonstrated the need for us-
ing appropriate methods for the QM treatment within
a QM/MM approach. Whereas all methods (quantum
chemistry, DFT and semi-empirical) gave similar reac-
tion barriers, the reaction pathways were considerably
different for the semi-empirical calculations198. Recent
developments also allow the embedding of a small region
which is treated by quantum chemistry methods within a
larger region which is treated by DFT, and both regions
can then also be used within a QM/MM approach199,200.

Instead of falling back to expensive quantum chemistry
methods it is also possible to improve the accuracy of

DFT calculations in a cheap way by including dispersion
corrections. A study by Lonsdale et al. found that this
considerably improved the values of the calculated energy
barriers201. Generally speaking, it is recommendable to
include such dispersion corrections in any large scale QM
calculation, as they add only a small overhead, but may
improve the physical description considerably.

The QM/MM philosophy is also useful to calculate, for
a given subsystem, quantities which are intrinsically only
possible with an ab initio approach, but influenced by a
surrounding which does not require a strict first princi-
ples treatment. For instance, excitation energies and the
absorption spectrum of DNA were calculated by Spata
et al.202 using an electrostatic embedding QM/MM ap-
proach and by Gattuso et al.203 using a QM/MM ap-
proach based on the Local Self Consistent Field (LSCF)
method204. Also heavy atoms like actinides can be con-
sidered in this scheme205.

Additionally, as QM/MM calculations try to couple
various levels of theory, see e.g. Ref. 206, it might be
necessary in some cases to manually adjust some force
field parameters, as for instance done by Pentikäinen et
al. for the QM/MM simulation nucleic acid bases207, and
to carefully check the compatibility of the chosen meth-
ods208. For some applications it might even be the case
that a “traditional” QM/MM approach (i.e. involving
two levels of description) is not sufficient in order to cover
the entire length scale. Thus one might have to use addi-
tional levels of coarse graining and abstraction, together
with a coupling between them, as has for instance been
done by Lonsdale et al.209

To summarize, QM/MM approaches seem to give, at
least qualitatively, very useful results, and the main
source of error is rather due to a lack of physical correct-
ness in the QM model than in the QM/MM partitioning.

The calculation of the partial density of states is an-
other example intrinsically requiring a QM treatment,
which we will demonstrate for the system depicted in
Fig. 3, showing a small fragment of DNA in a water-Na
solution consisting in total of 15, 613 atoms. The deter-
mination of the electronic structure is only possible us-
ing a QM method, but the influence of the environment
on the DNA can also be modelled with a less expensive
classical approach. In Fig. 4, we compare the outcome of
a full QM calculation with a static QM/MM approach,
where all the solvent except for a small shell around the
DNA has been replaced by a multipole expansion up to
quadrupoles, leaving in total only 1877 atoms in the QM
region. Both calculations were done with BigDFT, and
the multipoles were calculated as a post-processing of the
full QM calculation. As can be seen from the plot, the
two curves are virtually identical, but the QM/MM ap-
proach had to treat about 8 times fewer atoms on a QM
level and was thus computationally considerably cheaper.

Another field of application for QM methods is the
parametrization of force fields. Many of the widely used
force fields are fitted to reproduce experimental data
of a certain test set of structures. However the out-
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FIG. 3. Visualization210 of a DNA fragment containing 11
base pairs, surrounded by a solvent of water and Na ions
(giving in total 15,613 atoms), with periodic boundary con-
ditions.
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FIG. 4. Partial density of states for the DNA within the sys-
tem depicted in Fig. 3. The red curve was generated treating
the entire system on a QM level, whereas the green curve only
treated the DNA plus a shell of 4 Å on a QM level, with the
remaining solvent atoms replaced by a multipole expansion.
In order to allow for a better comparison, the QM/MM curve
was shifted such that its HOMO energy coincides with the
one of the full QM approach.

come of this fitting procedure is not necessarily trans-
ferable to other compounds211. A more severe prob-
lem is the lack of applicability to different physicochem-
ical conditions, such as pressure or temperature. This
approach might thus lead to bad results when these
force fields are applied to systems or conditions which
are considerably different than the ones used for the
parametrization. A possible solution is to parametrize
a force field using results from ab initio calculations,
which widens the range of possible applications. For in-
stance, certain versions of the AMBER force field have
been parametrized using atomic charges derived from ab-

initio calculations, as for instance those described by
Weiner et al.212, Cornell et al.213 or Wang et al.214; for

the last two, charges derived from the restrained elec-
trostatic potential (RESP) approach215 have been used.
Ab initio results were also included—among experimen-
tal results—into the parametrization of the CHARMM22
force field216. There have also been attempts to develop
force fields which determine the optimal set of parame-
ters in an automatic way, using ab initio results as target
data217. A logical continuation of this line uses statistical
learning and big data analytics as envisioned in the Eu-
ropean project NOMAD218 which has the goal of using
these techniques on top of a large computational material
database.
Finally we also highlight the advantages of large scale

QM simulations. Sometimes one is interested in atomistic
characteristics averaged over a large number of samples,
in this way generating the macroscopic behavior. An
example is the dipole moment of liquid water, which is
a macroscopic observable with a microscopic origin. In
order to calculate it accurately it is not sufficient to sim-
ply compute the dipole moment of one water molecule in
vacuum. Instead one has to take into account the polar-
ization effects generated by the other surrounding water
molecules. Due to thermal fluctuations each molecule
will however yield a different value, and the macroscopic
observable result (keeping in mind that this can only be
determined indirectly and is thus itself subject to fluctu-
ations) can therefore only be obtained by averaging over
all molecules, thereby requiring a truly large scale first
principles simulation. The outcome of such a simulation,
carried out using the MM code POLARIS(MD)219 and
the QM code BigDFT is shown in Fig. 5. Here we plot
the dispersion of the molecular dipole moments, calcu-
lated based on atomic monopoles (i.e. atomic charges and
dipoles) of a water droplet consisting of 600 molecules at
ambient conditions and taking 50 snapshots of an MD
simulation. As can be seen, there is a wide dispersion
of the molecular dipole moments, which however yield a
mean value in line with other theoretical and experimen-
tal studies220.

IV. MULTISCALE LINKED TOGETHER: AN
EXAMPLE

The above presented studies, linking together differ-
ent models and length scales, are of course only a small
set of representatives of the ongoing works in the litera-
ture. The need for a connection of models in the common
scale regimes is not only related to the QuantumMechan-
ical/semiclassical regime. Such multi-method schemes
can be applied also to larger length scales, up to sizes
of interest for actual industrial applications. There is
therefore a direct implication of large-scale QM methods
on present-day technological challenges.
As an illustrative example we present the European

project H2020 EXTMOS. The objective of this project is
to build a model simulating organic light emitting diodes
(OLEDs) in order to calculate their efficiency, where the
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FIG. 5. Dispersion of the molecular dipole moment of wa-
ter molecules within a droplet of 1800 atoms, with statistics
taken over 50 snapshots of an MD simulation. The dipole is
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these were obtained from a) a classical simulation using PO-
LARIS(MD), b) a DFT simulation using BigDFT, and c) a
combined QM/MM approach.
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FIG. 6. Organic light-emitting diodes (OLED) device config-
uration illustrating the target goal of the EXTMOS project:
simulating the full device from the molecular composition of
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only inputs are the organic molecule components. In the
OLED realization process, acceptor and donor molecules,
together with some dopant molecules, are mixed in a thin
film; see Fig. 6. It can be easily imagined that the inves-
tigation of such a process requires a multi-scale approach
with a coupling between different description levels. We
will briefly describe them here.
s. Phase organisations Calculating the morphology

of the organic film is the first step, which is done by
means of molecular mechanics or molecular dynamics at
room temperature using an appropriate polarizable force
field221 (PFF). These PFFs are fitted with a charge anal-
ysis coming from DFT in order to reproduce the electro-

static potential. This step is crucial especially when con-
sidering different dopant molecules in the process. Sys-
tems of a few hundred atoms are simulated in QM, cal-
culating the atomic forces and electrostatic potential215

which are compared with those coming from PFFs. As
soon as the PFF is fitted, morphologies of the organic
film can be calculated and correct statistics of many
thousands of atoms with their atomic positions can be
easily generated even at different temperatures. Since
the device will only operate within a limited temperature
range—in particular only within one phase—the PFF pa-
rameters should be transferable without notable loss of
accuracy.
t. Determination of the electronic properties As

soon as atomic configurations are determined, quantities
of interest for the electronic properties of the molecules
need to be extracted. Other QM methods coming from
many-body perturbation theory (MBPT) such as GW222

and Bethe-Salpeter methods223 can be used to calculate
the intrinsic properties of the organic molecules224,225.
The challenge is to use such methods within an environ-
ment, modelled by adequate electrostatic degrees of free-
dom to describe the morphology of the organic film226.
u. Hopping integrals The previous step permits the

calculation of the charge transfer of a few organic
molecules in a given embedding environment. Since con-
figurational statistics are important to represent correctly
an organic film, constrained DFT227 is well suited to un-
derstanding the influence of the environmental degrees of
freedom228 as well as to impose the correct charge trans-
fer and to calculate the statistic of hopping and site inte-
grals229 over an ensemble of molecules from the morphol-
ogy (see Fig.7 for an illustration). Here again, another
important quantity is the dispersion of the results pro-
vided by the morphologies. The QM fragment approach
is well suited to calculate a set of hundreds of molecules
in different orientations and environments.
v. Towards Device Simulation The hopping and site

integral parameters are finally used to calculate the effi-
ciency230 of the organic film using a Kinetic Monte Carlo
method to predict charge and exciton transport processes
through a random walk simulation. Transport parame-
ters and device characteristics are deduced from the tra-
jectories. Finally these parameters are included in a drift
diffusion simulation in order to simulate larger region
sizes and determine a circuit model.
In this example, the role of QM is important to de-

termine correctly the film morphology and also the elec-
tronic properties. Nevertheless, QM needs to be used
in collaboration with complementary methods: force
fields for tractable molecular dynamics and kinetic Monte
Carlo methods to deal with larger systems.

V. CONCLUSION AND OUTLOOK

Advanced atomistic simulation techniques of many dif-
ferent flavors have found widespread applicability during
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FIG. 7. Plot showing the HOMOs of two neighboring
molecules calculated using a fragment approach. Their near-
est neighbors extracted from a large disordered host-guest
morphology are also depicted. Using this setup, one can cal-
culate transfer integrals which take into account the environ-
ment229.

the past years. Out of this plethora, we have seen the
features of some QM codes that are now able to deal
with systems with many thousands of atoms. Most of
these techniques were invented more than a decade ago,
however the approach to large-scale QM calculations is
changing in the present day. We might even say that we
are entering a “second era” of DFT and, more generally,
of QM methods in computational science.

On the one hand, the large research effort within the
Quantum Chemistry and materials science communities
is still ongoing with a focus on small scale systems, try-
ing to achieve very high accuracy (e.g. novel exchange-
correlation functionals, MBPT methods) and to improve
the precision and reliability of the various codes and ap-
proaches231. However, as this ongoing work concentrates
on small scale systems, the QM methods which are nowa-
days able to arrive at large scales rely on slightly more
mature approaches and are thus forcibly less accurate
than state-of-the-art QM methods. In other words, the
fact that we have nowadays the ability to efficiently treat
big systems does not mean that all problems at lower
scale are solved.

On the other hand, we have seen a considerable effort
of the community to enlarge the accessible length scales
of QM simulations. These developments did not aim at
developing new approaches to solve the fundamental QM
equations, but rather tried to translate existing concepts
into new domains. We have seen that this transition was
driven by various aspects.

The first important point is related to the reliability
of a calculation. One might raise the question whether
a QM treatment is still appropriate above “traditional”
length scales: as already stated, a calculation which is
more complex is not necessarily more accurate. But a

QM approach is definitely less biased, leading therefore
to considerably less arbitrariness. This is in strong con-
trast to established approaches such as force fields, where
the output of a calculation depends strongly on the input
of the calculation, for instance the chosen parametriza-
tion. When possible, it is helpful and important to use
QM approaches also for large systems, in order to get
unbiased insights into the effects of realistic experimen-
tal conditions on the values of interest, thereby yielding
a deeper understanding of fundamental descriptions and
trends. It is therefore important to have the possibility
to extend already established QM models to large sizes,
in order to have an idea of the effects of such realistic con-
ditions. This leads to a statistical approach to large-scale
calculations.

These considerations come at hand with the obvious
observation that we have to abandon the QM treatment
above a given length scale where a quantum description
will be unnecessary. We used on purpose “unnecessary”
instead of “impossible” or “not affordable”; at large scale,
a QM calculation is justified only if there is the need to
perform it. There will be no point in obtaining, with a
QM treatment, results that could have been obtained
with a more compact description like Force Fields or
Coarse Grained Models, unless these need to be validated
first. This means that we have to provide strategies to
couple the QM description with the modelling methods
above this maximum length scale. In other terms, we
must be able to provide, eventually, a reduction of the
complexity of the description, implying that a good QM
method at large scale has to provide different levels of
theory and precision that can be linked to mesoscopic
scales (e.g. atomic charges, Hamiltonian matrix elements,
basis set multipoles, second principles232). We have pre-
sented in Sec. IV one example where such a multi-method
approach, completed with a modern QM treatment for
the electronic excitations, can lead to results with poten-
tial technological implications.

This is also important in those cases where the QM
level of theory alone is not able to correctly describe
the properties of the system and must be complemented
with other approaches. Thus, the large-scale QM meth-
ods described above are important to “bridge” the length
scale gap with non-QM methods; only if we can perform
QM and post-QM approaches for systems with the same
size, are we able to see if the trends—if not the actual
quantities—are similar, in this way validating the respec-
tive levels of theory.

A fundamental aspect for this task is the systematicity

of the investigation. The ability to refine coarse-grained
results at a QM level would help at least to identify if
a refinement of the description might provide different
trends. With respect to this task, the diversity of avail-
able QM approaches is thus essential.

The approach to large-scale QM calculations is not
a mere question of a “good software”; rather, it repre-
sents an opportunity to work in connection with differ-
ent sensibilities. This will help in establishing a cross-
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disciplinary community, working at large scales and con-
necting together researchers with different sensibilities
working with different computational methods and know-
how. This point will be beneficial in both directions. Spe-
cialists of QM methods will learn to deal with the typi-
cal problems related to simulations at the million atom
scale, taking advantage of the large experience acquired
through the well established classical approaches over the
past decades. For people with a background in classi-
cal approaches, tight collaborations with the electronic
structure community will offer access to quantities and
descriptions that are out of reach without the sensibility
and experience of researchers working in QM methods.

Due to all these reasons the field of large scale QM cal-
culations might attract much attention during the forth-
coming years. The topic presents big challenges, but of-

fers even greater opportunities.
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M. Schütz, S. Thiel, W. Thiel, and H.-J. Werner,
Angewandte Chemie International Edition 45, 6856 (2006).
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Kamp, A. J. Mulholland, and M. Otyepka,
Journal of Chemical Theory and Computation 10, 1608 (2014).

199 F. R. Manby, M. Stella, J. D.
Goodpaster, and T. F. Miller,
Journal of Chemical Theory and Computation 8, 2564 (2012).

200 S. J. Bennie, M. W. van der Kamp, R. C. R. Penni-
fold, M. Stella, F. R. Manby, and A. J. Mulholland,
Journal of Chemical Theory and Computation 12, 2689 (2016).

201 R. Lonsdale, J. N. Harvey, and A. J. Mulholland,
Journal of Chemical Theory and Computation 8, 4637 (2012).

http://dx.doi.org/10.1021/jz1016894
http://dx.doi.org/10.1021/ja105051e
http://dx.doi.org/10.1021/jp1068895
http://dx.doi.org/ 10.1002/jcc.20406
http://dx.doi.org/http://dx.doi.org/10.1063/1.474671
http://dx.doi.org/10.1109/SC.2005.28
http://dx.doi.org/10.1021/jp805435n
http://dx.doi.org/http://dx.doi.org/10.1016/j.cplett.2009.06.072
http://dx.doi.org/ 10.1021/jp804943m
http://dx.doi.org/10.1016/j.cplett.2015.07.022
http://dx.doi.org/ 10.1021/ct4004959
http://dx.doi.org/10.1021/ct200789w
http://dx.doi.org/ 10.1002/prot.21123
http://arxiv.org/abs/0605018
http://dx.doi.org/10.1021/j100011a061
http://dx.doi.org/10.1002/jcc.20290
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1021/jp400953a
http://dx.doi.org/10.1021/ct500489d
http://dx.doi.org/ 10.1021/ct500489d
http://dx.doi.org/ 10.1063/1.4917171
http://dx.doi.org/10.1039/c1cp22168j
http://dx.doi.org/10.1038/nnano.2014.246
http://dx.doi.org/10.1021/jp404788t
http://dx.doi.org/10.1002/bip.10048
http://dx.doi.org/ 10.1021/ct4009969
http://dx.doi.org/10.1016/j.sbi.2015.11.011
http://dx.doi.org/ 10.1103/PhysRevE.93.032415
http://dx.doi.org/10.1002/pro.462
http://dx.doi.org/10.1002/anie.201204077
http://dx.doi.org/10.1002/wcms.1175
http://dx.doi.org/10.1021/jp9536514
http://dx.doi.org/10.1007/s00214-006-0143-z
http://dx.doi.org/10.1002/anie.200802019
http://dx.doi.org/10.1016/S0009-2614(02)00343-3
http://dx.doi.org/10.1002/cphc.200900538
http://dx.doi.org/ 10.1063/1.479049
http://dx.doi.org/ 10.1063/1.1520134
http://dx.doi.org/10.1063/1.2064907
http://dx.doi.org/10.1098/rsif.2008.0243.focus
http://dx.doi.org/10.1021/acs.jctc.5b01014
http://dx.doi.org/10.1002/anie.200602711
http://dx.doi.org/ 10.1063/1.1321295
http://dx.doi.org/10.1063/1.1323265
http://dx.doi.org/10.1063/1.1470497
http://dx.doi.org/10.1016/S0009-2614(00)00066-X
http://dx.doi.org/10.1063/1.1564816
http://dx.doi.org/10.1021/ct401015e
http://dx.doi.org/10.1021/ct300544e
http://dx.doi.org/10.1021/acs.jctc.6b00285
http://dx.doi.org/10.1021/ct300329h


18

202 V. A. Spata and S. Matsika,
Journal of Physical Chemistry A 118, 12021 (2014).

203 H. Gattuso, X. Assfeld, and A. Monari,
Theoretical Chemistry Accounts 134, 1 (2015).

204 A. Monari, J.-L. Rivail, and X. Assfeld,
Accounts of Chemical Research 46, 596 (2013).

205 A. S. P. Gomes, C. R. Jacob, F. Real, L. Visscher, and
V. Vallet, Phys. Chem. Chem. Phys. 15, 15153 (2013).

206 C. Houriez, N. Ferr?, M. Masella, and D. Siri,
The Journal of Chemical Physics 128, 244504 (2008), http://dx.doi.org/10.1063/1.2939121.
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