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Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence
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A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius correc-
tions and parallel magnetic field fluctuations is derived from the model of Brizard (Phys. Fluids B
4, 1213 (1992)). It assumes low βe, where βe indicates the ratio between the equilibrium electron
pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits
an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical
Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave tur-
bulence, from magnetohydrodynamics (MHD) to sub-de scales (where de holds for the electron skin
depth). Magnetic energy spectra are phenomenologically determined within energy and generalized
cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical
equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion
range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for
example by reconnection processes.

PACS numbers: 94.05.-a, 52.30-q, 52.30.Ex, 52.65.Kj, 52.35.Bj, 47.10.Df 52.35.Ra, 52.35.Vd

I. INTRODUCTION

The turbulent dynamics of collisionless magnetized
plasmas involves a large range of spatial and tempo-
ral scales, which interact with each other, even when
widely separated. As an example, the global evolution
of a shear flow (e.g. in the context of the solar wind-
magnetosphere interaction) depends on the local recon-
nection events whose speed has been shown to play a
major role [1]. This multi-scale character can become a
real obstacle in three-dimensional numerical simulations,
thus motivating the search for simple fluid or gyrofluid
models containing the necessary physical ingredients but
focusing on some specific aspects. In this paper, we are
concerned with Alfvenic turbulence which is a main ele-
ment of the dynamics of the solar wind, a medium often
viewed as a natural laboratory for collisionless plasma
turbulence, thanks to the high-quality of in situ data ob-
tained by Earth orbiting spacecrafts. Special attention
will be paid to the turbulence properties in the sub-ion
range, a topic which is still actively debated [2–8]. A
study of this regime needs a model capable of describ-
ing a wide domain of scales, from those associated with
the classical MHD Alfvén wave cascade (thus larger than
the ion inertial length di) to those at which collisionless
magnetic reconnection typically takes place, i.e. a frac-
tion of the electron inertial length de. The model should
be able to properly reproduce the linear properties of ki-
netic Alfvén waves (KAWs), and should thus retain the
parallel magnetic field fluctuation Bz. It should further-
more be valid for a large range of values of the ion to
electron equilibrium temperature ratio τ = T0i/T0e, and
thus include a description of ion finite Larmor radius
(FLR) corrections. To keep the model simple enough,
electron FLR corrections should be excluded, thus limit-
ing the considered scales to those larger than the electron

Larmor radius ρe. Retaining scales of order de, while ex-
cluding those approaching ρe, thus limits the model to
small enough values of the electron beta parameter βe.
As we shall see, βe will typically be assumed of the order
of δ = (me/mi)

1/2 where me and mi stand for the mass
of the electrons and the ions (here taken to be protons),
respectively. A small βe regime, although observed in
the solar wind near the Earth [9], is more often encoun-
tered closer to the Sun or in the solar corona. Neverthe-
less, studying the nonlinear phenomena predicted by this
model should shed light on the dynamics in more gen-
eral situations. It should also be desirable to focus the
description on the minimum number of fields necessary
to describe KAWs, thus excluding the coupling to other
waves (such as fast and slow magnetosonic ones), as long
as the latter are not driven by the KAW dynamics. Fi-
nally, it is important to require that the resulting model
could be cast in Hamiltonian form so that, in the absence
of explicit energy sinks, necessary in a turbulent frame-
work, no unphysical dissipation takes place, that could
otherwise, for instance, alter the triggering of magnetic
reconnection.

Many reduced fluid and/or gyrofluid models already
exist to describe magnetic reconnection and/or Alfvénic
turbulence. The simplest fluid model to describe KAWs,
which is limited to sub-ion scales and discards electron
inertia, is a two-field system derived in Ref. [10] and stud-
ied in Ref. [11]. Fluid models including Bz and electron
inertia have also been derived, but are limited to specific
ranges of τ . Indeed, a fluid computation of ion FLR cor-
rections restricts the considered scales to be either much
larger than the ion Larmor radius ρi (for which a pertur-
bative approach is possible) or much smaller than ρi, a
case where the ion velocity is negligible. When concen-
trating on scales of the order of the sonic Larmor radius
ρs, defined as ρs = ρi/

√
2τ , these regimes correspond to a

value of τ either much smaller or much larger than unity,
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respectively. The case of negligible τ was addressed in
two dimensions in Refs. [12, 13] and extended to three
dimensions in Ref. [14]. The case where τ is small but
not totally negligible (or finite, provided the considered
scales are assumed larger than ρi) was addressed in Ref.
[15], but in this case electron inertia was neglected. The
cases τ ' 1 or τ � 1 were studied in Ref. [16], in a situa-
tion where electron inertia and FLRs were retained. The
latter case τ � 1 was also addressed in Ref. [17] (note
that electron FLRs are neglected in this reference). A
review of reduced fluid models that can be derived from
a gyrokinetic approach can be found in Ref. [10].

The more general case of finite τ can only be addressed
using a gyrofluid approach. In this framework, a simple
model for Alfvénic turbulence was obtained in Ref. [18],
neglecting electron inertia and parallel magnetic fluctua-
tions. Many gyrofluid models with electron inertia have
been derived and studied in the context of collisionless
reconnection, after the pioneering work of Ref. [19]. Nev-
ertheless, almost none of them includes the parallel mag-
netic fluctuations Bz.

The first aim of this paper is to apply an asymptotic
ordering, starting from the general model (hereafter re-
ferred to as parent model) given in Ref. [20], in order
to derive a reduced gyrofluid model satisfying the re-
quirements mentioned above. The adopted asymptotic
ordering leads to neglecting the coupling to the parallel
ion velocity ui, and thus to the slow magnetosonic modes
(actually damped by Landau resonance). The final model
is a two-field model and possesses a noncanonical Hamil-
tonian structure.

Another aim of this paper is to use this two-field
gyrofluid model to study phenomenologically critically-
balanced KAW turbulence at scales ranging from MHD
to sub-de scales, paying a special attention to the trans-
verse magnetic energy spectra in the energy or the gen-
eralized cross-helicity cascade, and to the direct or in-
verse character of these cascades. Such Kolmogorov-like
phenomenology dismisses the possible effect of coherent
structures such as current sheets which form as the re-
sult of the turbulent MHD cascade and which, in some
instances, can be destabilized by magnetic reconnection.
Recent two-dimensional hybrid-kinetic simulations [21]
suggest that, in the non-collisional regime, this process is
fast enough to compete with the wave mode interactions,
in a way that could affect the cascade at scales compa-
rable to the ion inertial length di, typical of the current
sheet width. In a small βi plasma, where βi = τβe, this
scale is significantly larger than ρs, and the spectral break
can indeed take place at di, as suggested by other recent
two-dimensional hybrid simulations [22]. The above gy-
rofluid model can provide an efficient tool to address this
issue.

The paper is organized as follows. The derivation of
the reduced gyrofluid model is presented in Section II.
Its application to a phenomenological study of critically-
balanced KAW turbulence is performed in Sect. III. Sec-
tion IV presents a short summary together with a few

comments. In Appendix A, the parent gyrofluid model
is presented. In Appendix B, an alternative derivation of
the electron equations which a priori ensures the Hamil-
tonian structure of the model is presented.

II. A GYROFLUID MODEL FOR ALFVÉN
WAVES

A. The characteristic scales

Before presenting the derivation of the model, it is use-
ful to order the various relevant scales estimated in a ho-
mogeneous equilibrium state characterized by a density
n0, isotropic ion and electron temperatures T0i and T0e,
and subject to a strong ambient magnetic field of am-
plitude B0 along the z-direction. In terms of the sonic
Larmor radius ρs = cs/Ωi, where cs =

√
T0e/mi is the

sound speed and Ωi = eB0/(mic) the ion gyrofrequency,
one has

di =

√
2

βe
ρs, de =

√
2

βe
δρs,

ρi =
√

2τρs, ρe =
√

2δρs, (1)

where βe = 8πn0T0e/B
2
0 , δ2 = me/mi and τ = T0i/T0e.

We have here defined the particle Larmor radii (r =
i for the ions, r = e for the electrons) by ρr =
vth r/Ωr, where the particle thermal velocities are given
by vth r = (2Tr/mr)

1/2 , the cyclotron frequencies by
Ωr = eB0/(mrc) and the inertial lengths by dr = vA/Ωr
where vA = B0/(4πn0mi)

1/2 = cs
√

2/βe is the Alfvén
velocity. The relative magnitude of the characteristic
scales is also examplified for various values of βe and τ
in the top label of Figs. 2 to 4.

The model to be derived should cover a spectral range
which includes both scales large compared to di (typ-
ical of the width of the generated current sheets) and
scales comparable to de (typical of collisionless recon-
nection processes). The considered scales will also be
assumed to remain large compared to ρe. This in par-

ticular implies the condition that ρe/de = β
1/2
e be small

enough.

It is convenient to take the sonic Larmor radius ρs, the
sound speed cs and the inverse ion gyrofrequency Ω−1

i as
length, velocity and time units, and to use nondimen-
sional variables, as defined in Appendix A. The magni-
tude of the electric potential ϕ is controlled by the pa-
rameter ε � 1, as ϕ = O(ε). We assume that at scale
ρs, ∂t = O(ε) and ∇⊥ ∼ O(1). We denote by A‖ the
parallel component of the magnetic potential, by Ne and
Ue the gyrocenter electron and parallel velocity respec-
tively, and by Bz the longitudinal magnetic field fluctu-
ations. The magnetic field thus reads to leading order
B = ∇A‖ × ẑ +Bz ẑ.
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B. Derivation of the model

We consider as starting point the gyrofluid system
(A3)-(A14) originating from Ref. [20], which allows con-
sidering all the values of the ion-to-electron temperature
ratio. It is one of the rare gyrofluid models that accounts
for parallel magnetic perturbations (a crucial ingredient
to describe KAWs) and permits considering a higher βe
regime. Other low-βe gyrofluid models, such as those of
Refs. [23, 24], adopt different closures for the gyroaver-
aging operators, compared to Ref. [20], which are more
precise at scales close to the ion gyroradius. It however
turns out that these gyroaveraging operators only affect
the evolution of ion quantities (gyrocenter density, par-
allel velocity and temperatures) which do not enter the
final two-field model derived in the present paper. The
ion FLR corrections present in the gyrokinetic Poisson
equation and in Ampere’s law, on the other hand, take
the same form in all these models.

The two-field model we derive here allows one to focus
on Alfvén wave dynamics, neglecting the coupling with
slow magnetosonic waves. It retains corrections associ-
ated with electron inertia as well as an electron FLR con-
tribution which becomes relevant when the temperature
ratio τ is larger than 1/βe. As shown below, the large
τ case is obtained by choosing a scaling where τ ∼ 1/δ,
but the resulting equations remain valid for even larger
values of τ .

Considering the KAW dynamics for the assumed val-
ues of βe, Landau damping is efficient enough to homoge-
nize electron temperatures along the magnetic field lines.
When neglecting dissipation phenomena, assuming fully
isothermal electrons is in fact a good approximation (see
also Ref. [25] and the simulations of Ref. [26]). The
first step in the derivation of the two-field model from
the parent model (A3)-(A14) thus consists in assuming
an isothermal closure for the electron fluid. We denote
with T‖r = P‖r−Nr and T⊥r = P⊥r−Nr the parallel and
perpendicular gyrocenter temperatures of the species r.
In terms of gyrocenter moments, the electron isothermal
assumption, as deduced from Eqs. (3.68a)-(3.69b) of Ref.
[25], corresponds to imposing T‖e = 0 and T⊥e = −Bz.
These two relations will then replace the evolution equa-
tions (A6) and (A7) of the parent model. A further as-
sumption is that of a non-relativistic Alfvén speed (i.e.
vA � c), which allows us to neglect the first term on
the left-hand side of Eq. (A12), thus turning Poisson’s
equation into a quasi-neutrality relation.

The derivation then proceeeds by considering two ex-
pansion parameters

δ � 1, ε� 1, (2)

and introducing two scalings, denoted as scaling I and
scaling II. Asymptotic reductions of the parent model
according to the two scalings is carried out in the fol-
lowing way. We first consider scaling I, which is given
by

βe = O(δ), τ ∼ ∇⊥ = O(1), (3)

Ue ∼ Q⊥e = O
( ε

δ1/2

)
, A‖ ∼ ∂z = O(δ1/2ε), (4)

∂t ∼ Ne ∼ ϕ ∼ Ni ∼ T⊥i ∼ T‖i = O(ε), (5)

Bz ∼ Ui ∼ Q⊥i ∼ Q‖i ∼ R‖⊥i ∼ R⊥⊥i = O(δε). (6)

We impose such scaling to the parent equations (A3),
(A5), (A8)-(A14) and retain leading order terms in ε and
δ, as well as first-order corrections in δ, in each equation.
The resulting system reads

∂Ne
∂t

+ [ϕ,Ne]− [Bz, Ne] +∇‖Ue = 0, (7)

∂

∂t
(δ2Ue −A‖) + [ϕ, δ2Ue −A‖] +∇‖(Ne +Bz)−

∂ϕ

∂z
= 0,

(8)

∂Ni
∂t

+ [eτ∆sϕ,Ni] + τ [∆se
τ∆sϕ, T⊥i]

+ τ [eτ∆sBz, P⊥i] + τ2[∆se
τ∆sBz, T⊥i] = 0, (9)

∂P‖i

∂t
+ [eτ∆sϕ, P‖i] + τ [∆se

τ∆sϕ, T⊥i]

+ τ [eτ∆sBz, P‖i + T⊥i]

+ τ2[∆se
τ∆sBz, T⊥i] = 0, (10)

∂P⊥i
∂t

+ [(1 + τ∆s)e
τ∆sϕ, P⊥i]

+ τ [∆s(2 + τ∆s)e
τ∆sϕ, T⊥i]

+ τ [(2 + τ∆s)e
τ∆sBz, 2P⊥i −Ni]

+ τ2[∆s(3 + τ∆s)e
τ∆sBz, T⊥i] = 0, (11)

0 = Ne + (1− Γ̃0 + Γ̃1)Bz − eτ∆sNi

− τ∆se
τ∆sT⊥i −

(Γ̃0 − 1)

τ
ϕ, (12)

∆⊥A‖ =
βe
2
Ue, (13)

Bz = −βe
2

(P⊥e − ϕ+ 2Bz + τeτ∆sP⊥i + τ2∆se
τ∆sT⊥i

+ (Γ̃0 − Γ̃1)ϕ+ 2τ(Γ̃0 − Γ̃1)Bz). (14)

Here, [f, g] = (∂xf∂yg − ∂yf∂xg) denotes the canonical

bracket of two scalar functions f and g. Furthermore, Γ̃n
denotes the (non-local) operator Γn(−τ∆⊥) associated
with the Fourier multiplyer Γn(τk2

⊥), defined by Γn(x) =
In(x)e−x where In is the modified Bessel function of first
type of order n. The parallel gradient operator ∇‖, on
the other hand, is defined by

∇‖f = −[A‖, f ] +
∂f

∂z
, (15)

for a function f . We remark that, as a consequence of
the scaling, Ui gets decoupled from the system. Conse-
quently, we do not include its evolution equation in the
system. On the other hand, we observe that we can take
Ni = T‖i = T⊥i = 0 as solutions for Eqs. (9), (10) and
(11), and replace such solutions in the remaining equa-
tions.
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An analogous asymptotic reduction is then carried out
based on scaling II, which reads

βe = O(δ), τ = O(1/δ), ∇⊥ = O(1), (16)

Ue ∼ Q⊥e = O
( ε

δ1/2

)
, ∂t ∼ ϕ = O(ε), (17)

A‖ ∼ ∂z = O(δ1/2ε), (18)

Ne ∼ Bz ∼ Ni ∼ T⊥i ∼ T‖i ∼ Ui ∼ Q⊥i ∼ Q‖i (19)

∼ R‖⊥i ∼ R⊥⊥i = O(δε). (20)

Scaling II accounts for corrections relevant for large τ but
requires smaller electron gyrocenter density fluctuations.

The asymptotically reduced system based on scaling II
reads

∂Ne
∂t

+ [ϕ,Ne] +∇‖Ue = 0, (21)

∂

∂t
(δ2Ue −A‖) + [ϕ, δ2Ue −A‖] +∇‖(Ne +Bz)

− ∂ϕ

∂z
= 0, (22)

∂Ni
∂t

+
∂Ui
∂z

= 0, (23)

∂Ui
∂t

+ τ [Bz, Q⊥i ] + τ
∂P‖i

∂z
= 0, (24)

∂P‖i

∂t
+ τ [Bz, R‖⊥i ] +∇‖Q‖i + 3

∂Ui
∂z

= 0, (25)

∂P⊥i
∂t

+ 2τ [Bz, R⊥⊥i ] +∇‖Q⊥i +
∂Ui
∂z

= 0, (26)

0 = Ne − 2δ2∆sϕ+Bz +
ϕ

τ
, (27)

∆⊥A‖ =
βe
2
Ue, (28)

Bz = −βe
2

(P⊥e − ϕ+ 2Bz). (29)

Note that, due to the large τ assumption, the ion gy-
roaveraged terms are subdominant in this scaling (we re-
mark that, in the parent model, gyroaverage operators
acting on the heat fluxes and energy-weighted pressure
tensors are not taken into account). We can then take
Ni = Ui = T‖i = T⊥i = Q‖i = Q⊥i = R‖⊥i = R⊥⊥i = 0
as solutions for Eqs. (23), (24), (25) and (26).

The final gyrofluid model is obtained by retaining all
the terms in the reduced models resulting from the two
scalings, as well as one correction of order δ2 correspond-
ing to the term −δ2[Bz, Ue] which originates from Eq.
(A5). This term, as will be seen a posteriori, allows the
final system to be cast in Hamiltonian form. By means
of this procedure, one is finally led to the following two-
field model in the form of a continuity equation for the
electron gyrocenter density, coupled to Ohm’s law

∂tNe + [ϕ,Ne]− [Bz, Ne] +
2

βe
∇‖∆⊥A‖ = 0 (30)

∂t(1−
2δ2

βe
∆⊥)A‖ − [ϕ,

2δ2

βe
∆⊥A‖] + [Bz,

2δ2

βe
∆⊥A‖]

+∇‖(ϕ−Ne −Bz) = 0 (31)

with (
2

βe
+ (1 + 2τ)(Γ̃0 − Γ̃1)

)
Bz =(

1− (
Γ̃0 − 1

τ
)− Γ̃0 + Γ̃1

)
ϕ (32)

Ne =

(
(
Γ̃0 − 1

τ
) + δ2∆⊥

)
ϕ

−(1− Γ̃0 + Γ̃1)Bz, (33)

deriving from Ampère’s law and quasi-neutrality, respec-
tively.

In Eq. (31), the term [Bz,
2δ2

βe
∆⊥A‖] is sub-dominant

in both scalings I and II but, as mentioned above, it has
been retained for it allows for a Hamiltonian formulation
of the model in terms of a Lie-Poisson structure for the
2D limit, extended to 3D according to the procedure dis-
cussed in Ref. [14]. Interestingly the system conserves
the energy, shown below to be given by Eq. (44), even
in the absence of this term. We remark that, as shown
in Appendix B, the model and its Hamiltonian struc-
ture can also be derived from a drift-kinetic equation,
by prescribing the relations (32)-(33) and applying the
procedure described in Ref. [27].

We also note that the second term on the right-hand
side of the relation (33), which is proportional to δ2, cor-
responds to the above mentioned electron FLR correc-
tion, which is relevant when βi ∼ 1.
We note that when neglecting electron inertia, i.e. the
δ2 contributions, and introducing the ion and electron
particle number densities ni and ne, expression (33) for
Ne gives

ni = ne = Ne +Bz =
Γ̃0 − 1

τ
ϕ+ (Γ̃0 − Γ̃1)Bz, (34)

consistent with Eq. (B1) of Ref. [28], originating
from the low-frequency linear kinetic theory taken in
the regime of adiabatic ions (with the present scalings,
ζi = ω/(kzvthi)� 1 and thus R(ζi)� 1, where R is the
plasma response function).

Substituting the expressions for Ne and Bz given by
Eqs. (32) and (33) into Eqs. (30)-(31), the resulting
model only involves the electric and magnetic potentials
ϕ and A‖.

C. Fluid limiting regimes

In the limit τ � 1, where Ne = ∆⊥ϕ and Bz =

− βe/2
1+βe/2

∆⊥ϕ, and at large scales where electron iner-

tia can be neglected, one recovers Eqs. (3.2)-(3.3) and
(3.10)-(3.12) of Ref. [25] (under the same assumptions
mentioned at the beginning of the present Section). In
this limit, it is possible to consider a finite value of βe.
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If, on the other hand, electron inertia is kept into ac-
count, and βe is taken small enough so as to neglect Bz
contributions, Eqs. (30)-(31) lead to the two-field model
of Refs. [19, 29] consisting of the following ion vorticity
equation and Ohm’s law:

∂t∆⊥ϕ+ [ϕ,∆⊥ϕ] +
2

βe
∇‖∆⊥A‖ = 0 (35)

∂t(1−
2δ2

βe
∆⊥)A‖ − [ϕ,

2δ2

βe
∆⊥A‖]

+∇‖(ϕ−∆⊥ϕ) = 0. (36)

It also corresponds to the ”low- β case” of the two-fluid
model of Ref. [30], when restricted to 2D and when the
electron pressure gradient in Ohm’s law, usually referred
to as parallel electron compressibility (term ∇‖∆ϕ in Eq.
(36)), is not retained.

When βi ∼ 1, one has (taking the limit τ � 1) Bz =
βe
2 ϕ and Ne = −βe2 (1 + 2

βi
− 2δ2

βe
∆⊥)ϕ. After neglecting

subdominant corrections proportional to βe, the system
reduces to

∂t(1 +
2

βi
− 2δ2

βe
∆⊥)ϕ− [ϕ,

2δ2

βe
∆⊥ϕ]

− 4

β2
e

∇‖∆⊥A‖ = 0 (37)

∂t(1−
2δ2

βe
∆⊥)A‖ − [ϕ,

2δ2

βe
∆⊥A‖]

+∇‖ϕ = 0, (38)

which identifies with the isothermal system (5.9)-(5.10)
of Ref. [16] taken for large values of τ when electron
FLR corrections are neglected (see also Ref. [17]). This
system, when restricted to 2D, in fact corresponds to the
2D electron MHD (EMHD) equations.

D. Hamiltonian structure

Similarly to many other reduced fluid and gyrofluid
models (see Ref. [31] for a recent review), the system
(30)-(31), as above mentioned, possesses a noncanoni-
cal Hamiltonian structure. In order to show this point,
we first observe that the system (30)-(31) can be formu-
lated as an infinite-dimensional dynamical system with
the fields Ne and Ae ≡ (1− 2δ2∆⊥/βe)A‖ as dynamical
variables. Indeed, upon introducing the following posi-
tive definite operators

L1 =
2

βe
+ (1 + 2τ)(Γ̃0 − Γ̃1) (39)

L2 = 1 +
1− Γ̃0

τ
− Γ̃0 + Γ̃1 (40)

L3 =
1− Γ̃0

τ
− δ2∆⊥ (41)

L4 = 1− Γ̃0 + Γ̃1, (42)

one can write Bz = M1ϕ, with M1 = L−1
1 L2, and

ϕ = −M−1
2 Ne, where M2 = (L3 + L4L

−1
1 L2) is positive

definite, as numerically seen on its Fourier transform.
Also, A‖ = (1 − 2δ2∆⊥/βe)

−1Ae. Thus, Bz, ϕ and A‖
can be expressed in terms of the dynamical variables Ne
and Ae.

Proving that the system possesses a Hamiltonian struc-
ture amounts to show that, given any observable F of the
system, i.e. a functional of Ne and Ae, its evolution can
be cast in the form [32]

∂F

∂t
= {F,H}, (43)

where H is an observable corresponding to the Hamilto-
nian functional and { , } is a Poisson bracket.

For the system (30)-(31), the Hamiltonian is given by
the conserved functional

H =
1

2

∫ ( 2

βe
|∇⊥A‖|2 +

4δ2

β2
e

|∆⊥A‖|2

− Ne(ϕ−Ne −Bz)
)
d3x, (44)

whereas the Poisson bracket reads

{F,G} =

∫ (
(Ne([FNe , GNe ] + δ2[FAe , GAe ])

+Ae([FNe , GAe ] + [FAe , GNe ])

+FNe∂zGAe + FAe∂zGNe) d
3x, (45)

for two observables F and G, subscripts on functionals
denoting functional derivatives.

The Poisson bracket (45) corresponds, up to the nor-
malization, to the Poisson bracket for the model of Ref.
[19], when the latter is reduced to a two-field model by
setting the ion density fluctuations proportional to vor-
ticity.

E. Invariants

As is common with noncanonical Hamiltonian systems
[32], the Poisson bracket (45) possesses Casimir invari-
ants, corresponding to

C± =

∫
G±d

3x, (46)

where G± = Ae±δNe are referred to as normal fields [33].
In terms of these fields, the system (30)-(31) rewrites in
the form

∂tG± + [ϕ±, G±] + ∂z

(
ϕ± ∓

1

δ
G±

)
= 0, (47)

where ϕ± = ϕ−Bz ± 1
δA‖.

In the 2D limit with translational symmetry along z,
the Poisson bracket, in terms of the variables G±, takes
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the form of a direct product and the system possesses
two infinite families of Casimir invariants given by

C± =

∫
C±(G±)d2x, (48)

with C± arbitrary functions. In particular, one has the
quadratic invariants

∫
d2xG2

± which, in the limit of neg-
ligible electron inertia, lead to the classical conservation
of the variance of the magnetic potential

∫
d2xA2

‖ of 2D

MHD. In 2D, Eqs. (47) take the form of advection equa-
tions for the Lagrangian invariants G± transported by
the incompressible velocity fields v± = ẑ × ∇ϕ±. Such
Lagrangian invariants and velocity fields generalize those
of the model of Ref. [34].

We observe that the system admits also a further con-
served quantity (which is not a Casimir invariant) corre-
sponding to the generalized cross-helicity

HC =
1

2

∫
Ne

(
1− 2δ2

βe
∆⊥

)
A‖d

3x. (49)

This expression is similar to the invariant given by Eq.
(33) of [14] where Ne identifies with the ion vorticity
∆⊥ϕ, and under the assumption of negligible parallel
bulk velocity. It also rewrites

HC =
1

8

∫
(G2

+ −G2
−)d3x. (50)

At large scales, where Ne = ∆⊥ϕ and Ae = A‖, one

has HC = −(1/2)
∫
∇A‖·∇ϕd3x = (1/2)

∫
B⊥·u⊥d3x,

which is the usual MHD cross-helicity, with u⊥ = ẑ×∇ϕ
indicating the perpendicular velocity (corresponding, at
leading order, to the E×B drift).

III. PHENOMENOLOGY OF
CRITICALLY-BALANCED KAW TURBULENCE

In this section, we use the two-field gyrofluid model to
phenomenologically characterize the energy and/or cross-
helicity cascades which develop in strong KAW turbu-
lence. The aim is to predict the transverse magnetic
energy spectrum, commonly measured by satellite mis-
sions in the solar wind, together with the direct or inverse
character of the cascades in the different spectral ranges
delimited by the plasma characteristic scales.

A. Linear theory

At the linear level, using a hat to indicate Fourier
transform of fields and Fourier symbols of operators, one
has the phase velocity vph given by the dispersion relation

v2
ph ≡

(
ω

kz

)2

=
2

βe

k2
⊥

1 +
2δ2k2⊥
βe

1− M̂1 + M̂2

M̂2

, (51)

FIG. 1. Phase velocity of KAWs vph versus k⊥ for βe = 0.002,
τ = 100 (red), βe = 0.01, τ = 0.5 (black) and βe = 0.05,
τ = 0.001 (blue). The vertical dotted lines refer to the inverse
ion Larmor radius ρ−1

i for the three values of τ , with the same
color code as for vph. Transition between MHD and sub-ion
scales occurs at the smallest of the two scales ρi and ρs (which
corresponds to k⊥ = 1). The orange straight line indicates
the k−1

⊥ asymptotic behavior in the large τ limit.

where 1 − M̂1 + M̂2 is strictly positive for all k⊥. The
associated eigenmodes obey

Â =
βe
2
vph

M̂2

k2
⊥
ϕ̂. (52)

A graph of vph(k⊥) is displayed in Fig. 1 for the cases
βe = 0.002, τ = 100 (red), βe = 0.01, τ = 0.5 (black) and
βe = 0.05, τ = 0.001 (blue). An important difference
that appears at large τ , in addition to the shift of the
dispersive zone towards smaller k⊥ (due to the fact that

ρi is larger than ρs, here by a factor
√

200), is that at
sub-de scales, vph does not stay constant but decreases

as k⊥ increases (asymptotically like k−1
⊥ in the large τ

limit), as in the full kinetic theory [16]. In the absence of
the δ2 term in L3, vph would be constant at small scales.

Interestingly, when assuming relation (52) in formula
(44) for the energy H, the sum of the first two terms of
H equals that of the last three ones.

The magnetic compressibility χ = |B̂z|2/|B̂⊥|2 associ-
ated with the Alfvén eigenmode is then given by

χ =
2

βe

(
1 +

2δ2k2
⊥

βe

)
M̂2

1

(1− M̂1 + M̂2)M̂2

. (53)

Small τ limit (τ ∼ β
1
2
e ): In this regime, M̂1 ∼ βek

2
⊥/2

and is thus negligible (and so is Bz). On the other hand,
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M̂2 = (1 − Γ0)/τ + O(δ2) ≈ k2
⊥(1 − 3τk2

⊥/4), leading to
the dispersion relation(

ω

kz

)2

=
2

βe

1

1 +
2δ2k2⊥
βe

(1 + k2
⊥ +

3

4
τk2
⊥). (54)

B. Absolute equilibria

The invariants can be rewritten as

H =
1

2

∫ [
(1− M̂1 + M̂2)M̂2|ϕ̂|2

+
2k2
⊥

βe

(
1 +

2δ2k2
⊥

βe

)
|Â‖|2

)]
d2k⊥dkz (55)

HC = −1

2

∫ [
M̂2

(
1 +

2δ2k2
⊥

β2
e

)
(ϕ̂RÂ‖R + ϕ̂IÂ‖I)

]
d2k⊥dkz (56)

with ϕ̂ = ϕ̂R+iϕ̂I and Â‖ = Â‖R+iÂ‖I , when separating
real and imaginary parts.

Based on the existence of such quadratic invariants, a
classical tool for predicting the direction of turbulent cas-
cades is provided by the behavior of the spectral density
of the corresponding invariants in the regime of abso-
lute equilibrium. Albeit turbulence is intrinsically a non-
equilibrium regime and a turbulent spectrum strongly
differs from an equilibrium spectrum, the increasing or
decreasing variation of the latter in the considered spec-
tral range can be viewed as reflecting the direction of the
turbulent transfer and thus the direct or inverse charac-
ter of the cascade. An early application of this approach
to incompressible MHD is found in Ref. [35].

In order to apply equilibrium statistical mechanics to
the system consisting in a finite number of Fourier modes
obtained by spectral truncation of the fields A‖ and ϕ
governed by Eqs. (30) and (33), one first easily checks
that the solution satisfies the Liouville’s theorem condi-
tions in the form∑

k

∂

∂ϕ̂Rk

(
∂ϕ̂Rk

∂t

)
+

∂

∂ϕ̂Ik

(
∂ϕ̂Ik
∂t

)
= 0 (57)

∑
k

∂

∂Â‖Rk

(
∂Â‖Rk

∂t

)
+

∂

∂Â‖Ik

(
∂Â‖Ik

∂t

)
= 0. (58)

The density in phase space of the canonical equilib-
rium ensembles for the system (30)-(31), truncated in
Fourier space, is given by ρ = Z−1 exp(−λH − µHC) =
Z−1 exp(−Mijx

ixj/2), where Z is the partition function.
The matrix M is defined as

M =

f 0 h 0
0 f 0 h
h 0 g 0
0 h 0 g

 ,
where f = λ(1−M̂1+M̂2)M̂2, g = λ

2k2⊥
βe

(
1 +

2δ2k2⊥
βe

)
and

h = µ
2 M̂2

(
1 +

2δ2k2⊥
β2
e

)
. Here, λ and µ denote numerical

constants prescribed by the values of the total energy and
generalized cross-helicity. The symbols xi , with i=1, ..,

4, refer to ϕ̂R, ϕ̂I , Â‖R and Â‖I . The matrix M should
be positive definite, which corresponds to the conditions
f + g > 0 and fg − h2 > 0, aimed at ensuring positive
eigenvalues. One easily checks that the former condition
requires λ > 0. The inverse matrix easily writes

M−1 =
1

∆

 g 0 −h 0
0 g 0 −h
−h 0 f 0
0 −h 0 f

 ,
with ∆ = fg − h2. Without dissipation, the statistical
equilibrium has an energy spectral density

Ek ∼
1

λ
2πk⊥(fEϕk + gE

A‖
k ) (59)

and a generalized cross-helicity spectral density

Hk ∼
1

µ
4πk⊥hE

ϕA‖
k , (60)

where Eϕk = g/∆, E
A‖
k = f/∆ and E

ϕA‖
k = −h/∆.

The cascade directions are forward or backward, de-
pending on whether the absolute equilibrium spectra are
respectively growing or decreasing in the wavenumber
ranges of interest. The energy spectrum rewrites

Ek ∼
4π

λ

k⊥

1− µ2

4λ2
1
v2ph

. (61)

Positivity condition prescribes constraints on the
wavenumber domain where this formula applies. The
condition |µ|/λ . 2 min(vph) (where min(vph) =

√
8/βe

for small τ but is smaller for larger values of τ), ensures
that the energy spectrum is defined for all wavenumbers.
For larger values of |µ|/λ, there is a lower bound in k⊥
and possibly also an upper bound, for which Ek > 0.
As vph is bounded from above, it might happen that the
energy is never positive. A more detailed study would
require an explicit calculation of the constant λ and µ.
Nevertheless, in all the cases where it is defined, the en-
ergy is found to be a growing function of k⊥ (except
possibly near the lower k⊥ bound where it has a singular
behavior), whatever the values of βe and τ , indicating
a forward cascade. The generalized cross-helicity spec-
trum, on the other hand, rewrites

Hk ∼ −
4π

µ

k⊥
4λ2

µ2 v2
ph − 1

. (62)

We thus have the relation Hk = −µEk/(4λv2
ph). In the

same wavenumber ranges where the energy is positive,
its absolute value is a growing quantity both at MHD
and sub-de scales. However, in the intermediate (sub-ρs
or sub-ρi) range, where ω/kz ∼ k⊥, it is a decreasing
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function of k⊥, indicating an inverse cascade. Note that
when the −7/3 power law of the turbulent transverse
magnetic energy spectrum is not well developed (see next
Section), the range of the generalized cross-helicity in-
verse cascade is also very limited. Similar results show-
ing an inverse (or direct) cross-helicity cascade in the
Hall (respectively sub-electronic) range are obtained in
Ref. [36] based on absolute equilibrium arguments in
extended MHD (XMHD).

C. Turbulent spectra

1. Energy cascade

We here discuss the turbulent state in the presence
of a small amount of dissipation at small scales (lead-
ing to a finite flux of energy), focusing on the case of a
critically balanced KAW cascade (with equal amount of
positively and negatively propagating waves). Following
the discussion of Section 7 in Ref. [16], the magnetic
spectrum is easily obtained by imposing a constant en-
ergy flux, estimated by the ratio of the spectral energy
density at a given scale by the nonlinear transfer time at
this scale. In the strong wave (critically-balanced) tur-
bulence regime, this energy transfer time reduces to the
nonlinear timescale. Let us mention at this point that
the estimates of the nonlinear times and the relation be-
tween the fields are identical to those of the purely non-
linear regime that occurs for example in two dimensions.
To estimate these quantities, it is first necessary to re-
late the Fourier components of the electric and magnetic
potentials. This is achieved by assuming the linear rela-
tionship, characteristic of Alfvén modes, provided by Eq.
(52). After inserting this relation into the energy H, one
finds that the total 3D spectral energy density reads

E3D
k =

2

βe
k2
⊥

(
1 +

2δ2k2
⊥

βe

)
|Âk|2. (63)

Due to the quasi-2D character of the dynamics, it is con-
venient to deal with the 2D energy spectrum

E2D
k =

2

βe
k2
⊥

(
1 +

2δ2k2
⊥

βe

)
|Âk⊥ |2, (64)

where we used the notation

|Âk⊥ |2 =

∫
|Âk|2dkz (65)

and assume statistical isotropy in the transverse plane.
Similar definitions are used for the other relevant fields,
namely the electrostatic potential ϕ and the transverse
magnetic field B⊥.

The nonlinear timescale is estimated from Eq. (31)
which, after discarding the Bz terms (smaller by a factor
βe) and the ∂z terms, can be rewritten as

∂tAe + [ϕ,Ae]− [A‖,M2ϕ] = 0. (66)

Assuming locality of the nonlinear interactions in Fourier
space, the typical frequencies at wavenumber k⊥ associ-
ated with the two nonlinear terms of the above equa-
tion take the form τ−1

NL1(k⊥) ∼ k2
⊥|ϕ̂k⊥ | and τ−1

NL2(k⊥) ∼
k2
⊥M̂2|ϕ̂k⊥ |/(1 + 2δ2k2

⊥/βe) respectively. As usual in the
turbulence statistical theory (see e.g. Ref. [37]), the
global nonlinear frequency of the system can be estimated
by a linear combination of these two frequencies. Taking
equal weights leads to the estimate

τ−1
NL(k⊥) ∼ 2

βe
k4
⊥

1 +
M̂2

1 +
2δ2k2⊥
βe

 1

M̂2vph
|Âk⊥ |. (67)

In two-dimensions, when assuming isotropy, the trans-

verse magnetic energy spectral density |B̂⊥(k⊥)|2 ∼
k2
⊥|Âk⊥ |2 is related to the transverse magnetic energy

spectrum by EB⊥(k⊥) ∼ k−1
⊥ |B̂⊥(k⊥)|2, the energy flux

ε writes

ε ∼ 4

β2
e

(
1 +

2δ2k2
⊥

βe
+ M̂2

)
1

M̂2vph
k3
⊥|B̂⊥(k⊥)|3, (68)

and thus, assuming a constant energy flux, one gets

EB⊥(k⊥) ∼ ε2/3β4/3
e k−3

⊥

 vphM̂2

1 +
2δ2k2⊥
βe

+ M̂2

2/3

. (69)

All the regimes of KAW energy cascade can be recov-
ered from Eq. (69).

• MHD range
At scales large compared to ρs and ρi, one has vph ∼

(2/βe)
1/2, M̂2 = k2

⊥ and k � 1. One thus immediately

finds EB(k) ∼ ε2/3k
−5/3
⊥ .

• Sub-ρi range
When

√
βe/2/δ ≥ k⊥ & (2τ)−1/2 and τ ≥ 1 (i.e. for

scales smaller than the ion gyroradius (assumed larger
than ρs), for which Γ0 ≈ 0 and Γ1 ≈ 0, and large enough

for electron inertia to be negligible), one has M̂2 ∼ 1/τ +
βe(1+τ)/(2τ) ∼ constant and vph ∼ k⊥, so that EB(k) ∼
ε2/3k

−7/3
⊥ .

• Sub-ρs range
When, on the other hand, τ ≤ 1, for scales inter-

mediate between ρs and de, characterized by k⊥ � 1

and 2δ2k2
⊥/βe � 1, one finds M̂2 ∼ k2

⊥ and vph ∼
(2/βe)

1/2k⊥, so that again EB⊥(k⊥) ∼ ε2/3k
−7/3
⊥ . It

is however to be noted that in this case, the smallest
nonlinear time scale is not the stretching time τNL1 but
rather τNL2, associated with the electron pressure term
in Ohm’s law.

• Sub-de range
When βe is small enough, it is possible to observe a

third power law at scales smaller that the electron inertial
length (but still larger than the electron Larmor radius).
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− When τ � 1, the −7/3 power-law zone is almost
inexistent. It is replaced by a smooth transition between
the −5/3 power-law and a steeper zone where vph ∼ cst,

M̂2 ∼ k2
⊥ and thus where EB(k) ∼ ε2/3k−3

⊥ .

− If τ is taken larger than unity, vph ∼ k−1
⊥ and M̂2 ∼

k2
⊥, leading to EB⊥(k⊥) ∼ ε2/3k

−11/3
⊥ .

− Note that for a small range of parameters where
βe � 1 and τ = O(1), a regime where one can have vph ∼
constant and M̂2 ∼ constant, one recovers a spectrum of

the form EB⊥(k⊥) ∼ ε2/3k
−13/3
⊥ , as mentioned in Ref.

[16].

2. Generalized cross-helicity cascade

We here derive the expected transverse magnetic en-
ergy spectrum associated with a generalized cross-helicity
cascade. Proceeding as in the case of the energy cascade,
we first write the 3D spectral density (taken positive)

H3D
k =

1

βevph
(1 +

2δ2k2

βe
)k2
⊥|Âk|2. (70)

Keeping the same estimate for the transfer time, and
assuming a constant generalized cross-helicity flux rate
η, we obtain the magnetic spectrum in the generalized
cross-helicity cascade

EB⊥(k⊥) ∼ η2/3β4/3
e k−3

⊥

 v2
phM̂2

1 +
2δ2k2⊥
βe

+ M̂2

2/3

. (71)

Going through the same estimates in the various
wavenumber domains as for the energy cascade, we now
see that the magnetic spectrum in the generalized cross-
helicity cascade obeys a −5/3 power law from the MHD
range to the electron scale. At scales smaller that de,
we differently find that for τ � 1 the spectrum is pro-
portional to k−3

⊥ , while it is otherwise proportional to

k
−13/3
⊥ . It is of interest to remark that this latter scal-

ing is somewhat similar to the MH+ spectrum of Ref.
[38] associated to the magnetic spectrum of the magne-
tosonic cyclotron branch in the so-called H-generalized
helicity cascade computed on exact solutions of an ex-
tended MHD model (with the caveat that in Ref. [38] a
singularity appears at the de scale).

Examples of transverse spectra are displayed for the
parameters βe = 0.002, τ = 100 (Fig. 2), βe = 0.01,
τ = 0.5 (Fig. 3) and βe = 0.05, τ = 0.001 (Fig. 4). They
concern both the absolute equilibria (long dashed lines)
energy (black) and generalized cross-helicity (red) and
turbulent magnetic spectra (solid lines) associated with
the energy (black) and generalized cross-helicity cascades
(red). The generalized cross-helicity inverse cascade asso-
ciated with the decreasing absolute equilibrium spectrum
in sub-ion range, is conspicuous in the case of large τ , but
less pronounced for τ of order unity.

FIG. 2. Turbulent magnetic spectra (solid lines) in energy
(black) and generalized cross-helicity (red) cascades, together
with absolute equilibrium energy (black long dashed lines)
and generalized cross-helicity (red long dashed lines) spectra
for βe = 0.002, τ = 100. Straight orange lines refer to the
slopes of the various power-law inertial ranges: −5/3 in the
MHD range, −7/3 in the sub-ion Larmor radius range and
−11/3 (for the energy cascade) or −13/3 (for the cross-helicity
cascade) in the sub-de range. The blue solid vertical line refers
to ρ−1

s , the brown and blue long-dashed (respectively dotted)
vertical lines to the inverse ion and electron inertial lengths
(respectively Larmor radii) d−1

i and d−1
e (respectively ρ−1

i and
ρ−1
e ).

IV. CONCLUSION

In this paper, a new reduced model, given by Eqs.
(37)-(38), has been derived for low-βe plasmas. It is a
two-field gyrofluid model, valid for any τ , which retains
both electron inertia and Bz fluctuations, in addition to
ion FLR contributions. It is used to present a compre-
hensive phenomenological description of the Alfvén wave
magnetic energy spectrum from the MHD scales to scales
smaller than de (while larger than ρe). Assuming the ex-
istence of energy or generalized cross-helicity cascades
leads to the prediction of the magnetic energy spectrum
when neglecting possible intermittency effects originating
from the presence of coherent structures. The magnetic
energy spectra observed in the solar wind at the sub-ion
scales are usually steeper than the predicted −7/3 expo-
nent. In addition they turn out to be non-universal, cov-
ering a range (−3.5,−2.1), with a most probable value
close to −2.8 [6]. Intermittency [11], Landau damping
[39] and possible other effects not included in the present
model could contribute to the observed behavior.
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FIG. 3. Same as for Fig. 2 for βe = 0.01, τ = 0.5. No sub-ion
power-law range is visible. Both for the energy and cross-
helicity cascades, the magnetic spectrum displays a −13/3
sub-de power-law range.

FIG. 4. Same as for Fig. 2 for βe = 0.05, τ = 0.001. A
−7/3 power-law turbulent magnetic spectrum in the energy
cascade is visible for k⊥ > 1, while, both for the energy and
cross-helicity cascades, the magnetic spectrum displays a −3
sub-de power-law range.

The existence of the cascades needs to be confirmed by
numerical simulations of the gyrofluid equations supple-
mented by dissipation and energy and/or cross-helicity
injection. In particular, the inverse cross-helicity cascade
is expected to occur only when the system is driven at
a scale close to de, in a way that mostly injects cross-
helicity rather than energy. In fact, Eq. (50) shows
that a non-zero cross-helicity corresponds to an imbal-
anced regime where either G+ or G− dominates. It is
interesting to note that the evidence of an inverse cross-
helicity cascade in numerical simulations of imbalanced
EMHD turbulence was reported in Refs. [40, 41]. Ana-
lytic considerations on the role of cross-helicity in weak
reduced EMHD turbulence can also be found in Ref. [42].
An imbalanced energy injection could possibly originate
from magnetic reconnection that takes place at the elec-
tronic scales. This scenario was recently considered in
Ref. [43] on the basis of 2D hybrid PIC and Vlasov sim-
ulations where the development of a sub-ion magnetic
energy spectrum occurs in relation with the reconnec-
tion instability, before the direct energy cascade reaches
this scale.

In the framework of the two-field gyrofluid model, the

transition scale between the k
−5/3
⊥ and the k

−7/3
⊥ ranges

occurs at the largest of the two scales ρi and ρs. When τ
is small, this is easily shown, as can be found for example
in appendix E.4 of Ref. [10]. Differently for τ ∼ 1 and
small βe, a spectral transition is observed to take place
at scale di, both in the solar wind [9] and in hybrid-PIC
simulations [22]. The question arises whether a similar
transition could also be observed in numerical simula-
tions of reduced models, induced by the presence of cur-
rent sheets and the occurence of reconnection processes,
or if more physical effects have to be taken into account.

Note that while the magnetic energy spectrum displays

a k
−7/3
⊥ below the transition scale given by the largest

of the characteristic scales ρi and ρs, when βe is small,
the perpendicular electric field spectrum behaves in this

range like k
−1/3
⊥ when the transition takes place at ρi and

like k
−13/3
⊥ when it occurs at ρe.

The two-field gyrofluid model derived in this paper
could be extended to account for electron Landau damp-
ing, a crucial ingredient at small βe, with either a
Landau-fluid formulation, as suggested in Ref. [16], or
with the coupling with a drift-kinetic equation. In the
latter case, it could provide an interesting generalization
of the model presented in Ref. [44], by taking into ac-
count the parallel magnetic field fluctuations and thus
permitting larger values of βe.

At sub-de scales, a new regime is uncovered in the case
of cold ions (small τ), where the magnetic energy den-
sity scales like k−3

⊥ . Compressibility here plays a central
role, which explains the difference with the cases τ ∼ 1

where the spectrum scales like k
−13/3
⊥ or τ � 1 (a quasi-

incompressible limit) where it scales like k
−11/3
⊥ . Scales

smaller than ρe are not considered in this paper, as they
require a full description of the electron FLR effects. In
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this regime, the spectrum is observed to be even steeper
[45], possibly associated with a phase-space entropy cas-
cade [10].

Appendix A: Parent gyrofluid model

We consider the gyrofluid equations for the evolution
of the dimensional gyrocenter moments Ñe,i, Ũe,i, P̃‖e,i,

P̃⊥e,i, Q̃‖e,i, Q̃⊥e,i, R̃‖⊥e,i and R̃⊥⊥e,i corresponding to
the fluctuations of gyrocenter density, parallel velocity,
parallel and perpendicular pressure, parallel and perpen-
dicular heat flux, and of the parallel/parallel and par-
allel/perpendicular components of the energy weighted
pressure tensor respectively, with the subscript e and i re-
ferring to electrons and ions. Similarly to what is done in
Ref. [25], we define the following non-dimensional quan-
tities :

t = Ωit̃, x =
x̃

ρs
, y =

ỹ

ρs
, z =

z̃

ρs
,

k⊥ = k̃⊥ρs, kz = k̃zρs,

Nα =
Ñα
n0

, Uα =
Ũα
cs
, P‖α =

P̃‖α
n0Tα

, P⊥α =
P̃‖α
n0Tα

,

Q‖α =
Q̃‖α

n0Tαcs
, Q⊥α =

Q̃⊥α
n0Tαcs

,

Rxα = mα
R̃xα
n0T 2

α

, R
(⊥)
⊥α = mα

R̃
(⊥)
⊥α

n0T 2
α

,

ϕ =
eϕ̃

Te
, A‖ =

Ã‖

B0ρs
, Bz =

B̃z
B0

.

(A1)

The equations read

∂Ne
∂t

+ [eδ
2∆sϕ,Ne] + δ2[∆se

δ2∆sϕ, P⊥e −Ne] (A2)

− [eδ
2∆sA‖, Ue]− [eδ

2∆sBz, P⊥e]

− δ2[∆se
δ2∆sBz, P⊥e −Ne] +

∂Ue
∂z

= 0, (A3)

∂

∂t

(
δ2Ue − eδ

2∆sA‖

)
+ δ2[eδ

2∆sϕ,Ue]− [eδ
2∆sA‖, P‖e]

− δ2[∆se
δ2∆sA‖, P⊥e −Ne]− δ2[eδ

2∆sBz, Ue] (A4)

− δ2[Bz, Q⊥e]− Γ0(δ2∆ϕ
s , δ

2∆A
s )[ϕ,A‖]

+ (Γ0(δ2∆B
s , δ

2∆A
s ) + δ2∆sΓ1(δ2∆B

s , δ
2∆A

s ))[Bz, A‖]

+
∂

∂z

(
P‖e − eδ

2∆sϕ+ eδ
2∆sBz

)
= 0, (A5)

∂P‖e

∂t
+ [eδ

2∆sϕ, P‖e] + δ2[∆se
δ2∆sϕ, P⊥e −Ne]− [A‖, Q‖e]

− 3[eδ
2∆sA‖, Ue]− [eδ

2∆sBz, P‖e + P⊥e −Ne]

− δ2[∆se
δ2∆sBz, P⊥e −Ne]− [Bz, R‖⊥e]

+
∂

∂z

(
Q‖e + 3Ue

)
= 0, (A6)

∂P⊥e
∂t

+ [(1 + δ2∆s)e
δ2∆sϕ, P⊥e]

+ δ2[∆s(2 + δ2∆s)e
δ2∆sϕ, P⊥e −Ne]− [eδ

2∆sA‖, Ue]

− [A‖, Q⊥e]− [(2 + δ2∆s)e
δ2∆sBz, 2P⊥e −Ne]

− δ2[∆s(3 + δ2∆s)e
δ2∆sBz, P⊥e −Ne]

− 2[Bz, R⊥⊥e] +
∂

∂z
(Ue +Q⊥e) = 0, (A7)

∂Ni
∂t

+ [eτ∆sϕ,Ni] + τ [∆se
τ∆sϕ, P⊥i −Ni]− [eτ∆sA‖, Ui]

+ τ [eτ∆sBz, P⊥i] + τ2[∆se
τ∆sBz, P⊥i −Ni] +

∂Ui
∂z

= 0,

(A8)

∂

∂t

(
Ui + eτ∆sA‖

)
+ [eτ∆sϕ,Ui]− τ [eτ∆sA‖, P‖i]

− τ2[∆se
τ∆sA‖, P⊥i −Ni] + τ [eτ∆sBz, Ui] + τ [Bz, Q⊥i]

+ Γ0(τ∆ϕ
s , τ∆A

s )[ϕ,A‖]

+ τ(Γ0(τ∆B
s , τ∆A

s ) + τ∆sΓ1(τ∆B
s , τ∆A

s ))[Bz, A‖]

+
∂

∂z

(
τP‖i + eτ∆sϕ+ τeτ∆sBz

)
= 0, (A9)

∂P‖i

∂t
+ [eτ∆sϕ, P‖i] + τ [∆se

τ∆sϕ, P⊥i −Ni]− [A‖, Q‖i]

− 3[eτ∆sA‖, Ui] + τ [eτ∆sBz, P‖i + P⊥i −Ni]
+ τ2[∆se

τ∆sBz, P⊥i −Ni] + τ [Bz, R‖⊥i]

+
∂

∂z

(
Q‖i + 3Ui

)
= 0, (A10)

∂P⊥i
∂t

+ [(1 + τ∆s)e
τ∆sϕ, P⊥i]

+ τ [∆s(2 + τ∆s)e
τ∆sϕ, P⊥i −Ni]

− [eτ∆sA‖, Ui]− [A‖, Q⊥i]

+ τ [(2 + τ∆s)e
τ∆sBz, 2P⊥i −Ni]

+ τ2[∆s(3 + τ∆s)e
τ∆sBz, P⊥i −Ni]

+ 2τ [Bz, R⊥⊥i] +
∂

∂z
(Ui +Q⊥i) = 0, (A11)

together with Poisson’s equations and parallel and per-
pendicular Ampère’s laws, which respectively read

v2
A

c2
∆⊥ϕ = eδ

2∆sNe + δ2∆se
δ2∆s(P⊥e −Ne)

− (I0(2δ2∆s)e
2δ2∆s − 1)ϕ

+ (I0(2δ2∆s)− I1(2δ2∆s))e
2δ2∆sBz

− eτ∆sNi − τ∆se
τ∆s(P⊥i −Ni)− (I0(2τ∆s)e

2τ∆s − 1)
ϕ

τ

− (I0(2τ∆s)− I1(2τ∆s))e
2τ∆sBz, (A12)

∆⊥A‖ =
βe
2

(eδ
2∆sUe − eτ∆sUi), (A13)
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and

Bz = −βe
2

(
eδ

2∆sP⊥e + δ2∆se
δ2∆s(P⊥e −Ne)

−(I0(2δ2∆s)− I1(2δ2∆s))e
2δ2∆sϕ

+2(I0(2δ2∆s)− I1(2δ2∆s))e
2δ2∆sBz

+τeτ∆sP⊥i + τ2∆se
τ∆s(P⊥i −Ni)

+(I0(2τ∆s)− I1(2τ∆s))e
2τ∆sϕ

+2τ(I0(2τ∆s)− I1(2τ∆s))e
2τ∆sBz

)
.

(A14)

The operators Γ0 and Γ1 and ∆s are defined as
Γ0(z, z′) = I0(zz′) exp(z+z′), Γ1(z, z′) = I1(zz′) exp(z+
z′) and ∆s = 1

2∆⊥, with I0 and I1 indicating the mod-
ified Bessel function of the first kind of order zero and
one, respectively.

The set of gyrofluid equations (A3)-(A14) was derived
in Ref. [20], although with a different normalization and
with the combination I0 + I1 instead of I0 − I1 in Eqs.
(A12) and (A14). In Eqs. (A3)-(A14), we corrected a
few typographical errors that were present in the corre-
sponding equations of Ref. [25] (where they had no effect
in the considered asymptotics).

Appendix B: Derivation of the two-field evolution
equations from the electron drift-kinetic equation

via a Hamiltonian closure

In this Section we show that the evolution equations
(30) and (31) can be obtained from an electron drift-
kinetic equation by applying a closure relation which
guarantees a Hamiltonian structure in the resulting
model.

Because the application of the scalings I and II of
Sec. II B eventually leads to neglecting electron FLR
corrections in the evolution equations, in this alternative
derivation we start from an electron drift-kinetic equa-
tion, which already assumes k⊥ρe � 1 and thus neglects
electron FLR corrections. The drift-kinetic equation un-
der consideration, corresponding to Eq. (B1) below, can
be obtained, for instance, from Ref. [20], upon neglect-
ing electron finite Larmor radius corrections and back-
ground inhomogeneities. On the other hand, we assume
that electron and ion FLR corrections are included in the
equations relating electromagnetic perturbations to the
perturbations of the gyrofluid moments. Therefore, we
assume Eqs. (28), (32) and (33) to be valid.

We consider, as starting point, the following electron
drift-kinetic equation, in the so-called δf approximation,
in dimensional form (we indicate with a tilde dimensional

quantities and, in particular, [̃f, g] = ∂x̃f∂ỹg−∂ỹf∂x̃g in-
dicates the canonical Poisson bracket between two func-
tions f and g, in dimensional form) :

∂g̃e

∂t̃
+

c

B0

[̃
ϕ̃− ṽ

c
Ã‖ −

µ̃e
e
B̃z , g̃e

]

+ ṽ
∂

∂z̃

(
g̃e −

e

T0e

(
ϕ̃− ṽ

c
Ã‖ −

µ̃e
e
B̃z

)
F̃eqe

)
= 0.

(B1)

In Eq. (B1) g̃e = f̃e − (e/T0e)(ṽ/c)F̃eqeÃ‖, where f̃e is
the perturbation of the electron gyrocenter distribution
function around a homogeneous equilibrium Maxwellian
distribution

F̃eqe(ṽ, µ̃e) = n0

(
me

2πT0e

)3/2

exp

(
−meṽ

2

2T0e
− µ̃eB0

T0e

)
,

(B2)
where ṽ is the velocity coordinate along the guide field
and µ̃e is the electron magnetic moment. Upon introduc-
ing the electron gyrocenter density and parallel velocity
fluctuations as

Ñe =

∫
dW̃ f̃e, Ũe =

1

n0

∫
dW̃ ṽf̃e, (B3)

where dW̃ = (2πB0/me)dµ̃edṽ is the volume element in
velocity space, Eq. (B1) is complemented by the follow-
ing relations:

eϕ̃

T0e
= −M−1

2

Ñe
n0
, ∆̃⊥

Ã‖

B0ρs
=
βe
2

Ũe
cs
,

B̃z
B0

= M1
eϕ̃

T0e
. (B4)

Equations (B4) are those introduced in Sec. II D in di-
mensional form. By means of the relations (B3), from
Eqs. (B4) one can express perturbations of electromag-
netic potentials as well as of the parallel magnetic field
in terms of the perturbation of the distribution function
f̃e (and thus in terms of g̃e). The system (B1)-(B4) pos-
sesses a noncanonical Hamiltonian structure with Hamil-
tonian

H =
1

2

∫
d3x̃dW̃

(
T0e

g̃2
e

F̃eqe
− e

(
ϕ̃− ṽ

c
Ã‖ −

µ̃e
e
B̃z

)
g̃e

)
(B5)

and Poisson bracket

{F,G} =

∫
d3x̃dW̃

(
c

eB0
g̃ẽ[Fg̃e , Gg̃e ]− ṽ

F̃eqe
T0e

Fg̃e
∂

∂z̃
Gg̃e

)
.

(B6)
From Eq. (B1) one can obtain the following two equa-
tions governing the evolution of the moments of order
zero and one, with respect to the coordinate ṽ of the
generalized perturbed distribution function g̃e:

∂Ñe

∂t̃
+

c

B0

[̃
(1−M1) ϕ̃, Ñe

]
− n0

B0
[̃Ã‖, Ũe] + n0

∂Ũe
∂z̃

= 0,

(B7)

∂

∂t

(
meŨe −

e

c
Ã‖

)
+

c

B0

[̃
(1−M1)ϕ̃,meŨe −

e

c
Ã‖

]
− 1

B0

[̃
Ã‖, T̃‖e + Te0

Ñe
n0

]
− mec

n0T0eB0
[̃M1ϕ̃, Q̃⊥e ]
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+
∂

∂z̃

(
T̃‖e + T0e

Ñe
n0
− e (1−M1) ϕ̃

)
= 0, (B8)

where we also made use of the relation T̃⊥e =

−(T0e/B0)B̃z. We consider then the system resulting
from Eqs. (B7)-(B8) upon neglecting the perpendicular

heat flux, i.e. setting Q̃⊥e = 0. Introducing the field

φ̃ = (1 − M1)ϕ̃ = −(1 − M1)M−1
2 (T0e/e)(Ñe/n0), the

resulting system can be written as

∂g0

∂t̃
+

c

B0
[̃φ̃, g0]− vth e

B0

√
2

[Ã‖, g1]

+
vth e√

2

∂

∂z̃

(
g1 +

vth e√
2

eÃ‖

T0ec

)
= 0, (B9)

∂g1

∂t̃
+

c

B0
[̃φ̃, g1]− vth e

B0
[̃Ã‖, g2]

− vth e√
2B0

[̃Ã‖, g0] +
vth e√

2

∂

∂z̃

(
√

2g2 + g0 −
eφ̃

T0e

)
= 0,

(B10)

where

g0 =
Ñe
n0
, g1 =

√
2
Ũe
vth e

−
√

2
e

mevth ec
Ã‖,

g2 =
T̃‖e√
2T0e

(B11)

are the first three moments of the generalized perturbed
distribution function g̃e with respect to the Hermite poly-
nomials in the variable

√
2ṽ/vth e.

Because the field φ̃ = −(1 −M1)M−1
2 (T0e/e)(Ñe/n0)

depends on Ñe/n0 = g0 by means of an operator which is
linear, symmetric and independent on the v coordinate,
Eqs. (B9) and (B10) fall in the framework of the theory
on Hamiltonian closures described in Ref. [27] (compare
Eqs. (B9)-(B10) with Eqs. (27) and (28) of Ref. [27]
keeping in mind that, in Ref. [27], the constant vth e is

defined as vth e =
√
T0e/me and consequently differs by

a factor
√

2 with respect to the constant vth e used in the
present paper).

According to the results of Ref. [27], the system (B9)-
(B10), complemented by the relations (B4), is Hamil-
tonian if it is closed by imposing a relation g2 = αg1,
with constant α. In particular, if we impose g2 = 0
(which corresponds to the isothermal closure for the par-
allel temperature), the system is Hamiltonian and, when
written in terms of dimensionless variables according to
Eqs. (A1), it corresponds namely to the two-field gy-
rofluid model (30)-(31), complemented by the relations
(32) and (33).

This Hamiltonian derivation automatically takes
into account the additional subdominant term
[Bz, (2δ

2/βe)∆⊥A‖], which had to be added a pos-
teriori in the derivation presented in Sec. II B.

According to the prescription of Ref. [27], the Hamil-
tonian functional of the two-field model is obtained by
replacing, in the Hamiltonian (B5) of the parent drift-
kinetic model, the following truncated expansion for g̃e:

g̃e = F̃eqe

(
Ñe
n0

+
√

2
ṽ

vth e

(
√

2
Ũe
vth e

−
√

2
e

mevth ec
Ã‖

))
.

(B12)
In terms of the appropriate dimensionless variables, this
yields the Hamiltonian (44). Concerning the Poisson
bracket, we remark first that the system (B9)-(B10),
closed by the relation g2 = 0, can be written as

∂gm

∂t̃
+

c

B0
[̃φ̃, gm]− vth e√

2B0

[Ã‖,Wmngn] +
vth e√

2

∂

∂z̃
Wmngn

− δm1
vth e√

2

∂

∂z̃

eφ̃

T0e
+ δm0

v2
th e

2

∂

∂z̃

eÃ‖

cT0e
, m = 0, 1,

(B13)

where sum over repeated indices is understood and where
the matrix W , with elements Wmn, is given by

W =

(
0 1
1 0

)
. (B14)

Following Ref. [27], it is then convenient to introduce the

variables Gi =
∑1
j=0 U

T
ijgj , for i = 0, 1, where UT is the

transpose of the orthogonal matrix U that diagonalizes
the matrix W . In the case of the present model we obtain

G0 =
g0√

2
+

g1√
2
, (B15)

G1 =
g0√

2
− g1√

2
. (B16)

Note that G0 = −G−/(
√

2δ) and G1 = G+/(
√

2δ), where
G± are the normal fields introduced in Sec. II E.

In terms of the variables G0,1, the Poisson bracket is
given, according to Ref. [27], by

{F,G} =

1∑
i=0

( √
2c

eB0n0

∫
d3x̃Gĩ[FGi , GGi ]

− vth e√
2T0en0

λi

∫
d3x̃ FGi

∂

∂z̃
GGi

)
, (B17)

where λ0 = 1 and λ1 = −1 are the eigenvalues of the
matrix W .

By mapping the Poisson bracket (B17) to the variables
Ne and Ae, with the appropriate normalization, one can
retrieve the Poisson bracket (45).
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