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PROX-REGULARITY APPROACH TO GENERALIZED EQUATIONS

AND IMAGE PROJECTION

Samir Adly1,a, Florent Nacry2 and Lionel Thibault3

Abstract. In this paper, we first investigate the prox-regularity behaviour of solution mappings to

generalized equations. This study is realized through a nonconvex uniform Robinson−Ursescu type

theorem. Then, we derive new significant results for the preservation of prox-regularity under various

and usual set operations. The role and applications of prox-regularity of solution sets of generalized

equations are illustrated with dynamical systems with constraints.

1. Introduction

1.1. Context of the paper

In his famous paper “Curvature measures” [15] Federer defined a closed subset S in R
n to be positively reached

if reach(S) > 0, where reach(S) is the supremum of all reals r > 0 such that any x ∈ R
n with dist(x, S) < r

has a unique nearest point in S. For a positively reached set in R
n and for Sr := {x ∈ R

n : dist(x, S) ≤ r}, it
is shown in [15] that the Lebesgue measure of Sr is a polynomial of degree n for 0 ≤ r < reach(S). This was a
remarkable extension to positively reached sets of Steiner polynomial formula previously known only for convex
sets or C2 submanifolds. The approach used in [15] required a “Principal Kinematic Formula”, and this was one
of the motivations which led Federer to establish what is known as “Coarea Formula”. This has been proved
by Federer in Theorem 3.1 in page 9 in [15]. The term “Coarea Formula” has been coined by Federer in the
page 241 of his book [16]. In a very large recent survey [40], one can find many summarized results on various
aspects of positively reached sets related either to differential geometry or to geometric measure theory.

In the context of (infinite dimensional) Hilbert space H the concept of r-prox-regularity for a closed subset
S in H has been defined via the variational notion of proximal normal and it has been proved that S is
r-prox-regular (r ∈]0,+∞]) if and only if the metric projection is single-valued and continuous on the set
{x ∈ H : dist(x, S) < r}. So, a closed convex subset in H is evidently r-prox-regular with r = +∞; further, in
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finite dimensional Euclidean space it is clear that a set is prox-regular if and only if it is positively reached. The
prox-regularity also appears in the literature under different names (weakly convex sets, proximally smooth sets)
and it is well established that it plays an important role in many aspects in both pure and applied mathematics
(see, e.g., [1, 9, 10, 12, 15, 24, 36, 40] and the references therein).

Under the prox-regularity of the moving subset C(t) ⊂ H, t ∈ [0, T ], the fundamental dynamical differential
evolution system (known as “Perturbed Moreau’s Sweeping Process”)

N(C(t);u(t)) + f(t, u(t)) ∋ 0 with u(0) = u0 ∈ C(0), (1.1)

is known to admit, under natural Lipschitz assumptions on C(·) and f(t, ·) for example, one and only one
solution (see, e.g., [1, 12] and references therein). This is an important extension to the prox-regular context of
a previous result with convex sets C(t). The above dynamical system with prox-regular sets has been recently
used by Maury and Venel [24] and Maury [25] for the modeling of crowd motion (in both discrete and continuous
dynamics). More precisely, the problem considers N persons in a room, identified to planar balls with radius
r > 0 and center xi, i = 1, 2, . . . , N . Overlapping between persons being not allowed, the vector position
x = (x1, x2, . . . , xN ) ∈ R

2N is required to belong to the feasible set of configurations S = {x ∈ R
2N :

‖xi−xj‖− 2r ≥ 0, ∀i 6= j}, which is showed to be prox-regular while it is nonconvex (see [24] for more details).
The authors involved in [24] the dynamical system (1.1) with the above prox-regular set S as C(t).

It is also worth pointing out that a strong link with Von Neumann alternating projection algorithm and
prox-regularity exists since several authors have studied such algorithms in the framework of prox-regular sets
see for example, [22] and references therein. Other domains where prox-regularity is required will be presented
in the next section. The class of prox-regular sets is much larger than the class of nonempty closed convex
sets and shares with it many nice properties, as the differentiability of squared distance function in some
enlargement of the set. However, unlike the convexity property, prox-regularity is not preserved by set operations
(as intersection) and this leads to find conditions ensuring such a property [2, 12, 42, 43].

The present paper is devoted to the study of prox-regularity of the set of solutions of various generalized
equations in the form F (x) ∋ 0 in Hilbert space H, that is, the set {x ∈ H : F (x) ∋ 0}, where F is a
multimapping from H into another Hilbert space. This will be seen to contain the intersection as a particular
case.

1.2. Contributions of the paper

In fact, we are interested in the prox-regularity of the solution set of generalized equations in the form

F1(x) + F2(x) ∋ 0, (1.2)

where F1, F2 : H ⇒ H′ are two multimappings between Hilbert spaces. Our aim is to develop sufficient verifiable
conditions guaranteeing the prox-regularity of the solution set (F1+F2)

−1(0); our main result in this direction is
Theorem 6.5. The key of our approach is a suitable extension of the famous Robinson−Ursescu Theorem [35,41],
which asserts for two Banach spaces X and Y , a multimapping M : X ⇒ Y with a closed convex graph
is metrically regular at x for y ∈ M(X) if and only if y ∈ int M(X). Over the years, many researchers
have weakened the convexity assumption in Robinson−Ursescu theorem (see, e.g., [17, 18, 44, 47]). Our result
is concerned with the class of normally ω(·)-regular sets, a new class which encompasses prox-regular sets
in the Hilbert setting and (σ, δ)-subsmooth sets [44] in a general Banach space. From the prox-regularity of
(F1 + F2)

−1(0), we derive new significant results for the study of generalized equations, inverse and direct
images, intersections and constrained sets. Other general results are obtained for the case of the projection
along a linear space of prox-regular sets.

1.3. Organization of the paper

The paper is organized as follows. We begin in Section 2 with an application of Theorem 6.5 to a selection
principle for a nonsmooth dynamical system whose constraint is the set of solutions of a generalized equation.
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Section 3 is devoted on one hand to the notation and the necessary preliminaries needed in the rest of paper.
In Section 4, we recall basic facts concerning prox-regularity and we introduce the new concept of normal ω(·)-
regularity. In Section 5, we first provide properties and counterexamples for multimappings with prox-regular
graphs. Then, we give, as our first main result, a Robinson−Ursescu type theorem for multimappings with
normally ω(·)-regular graphs. In Section 6, we focus on the prox-regularity of the solution set of generalized
equations and we prove Theorem 6.5 on prox-regularity of generalized equations in the form F1(x) +F2(x) ∋ 0,
the second main result of the paper. In Section 7, we develop new results for the preservation of prox-regularity
under set operations and we provide an example (see Exp. 7.12) of a prox-regular set whose image under a
coordinate projector is not prox-regular.

2. Application to nonsmooth dynamics

We start with an application of Theorem 6.5 to nonsmooth dynamical systems. Consider a generalized
equation in the form

F (x) ∋ 0 x ∈ H, (2.1)

where F : H ⇒ H′ is a multimapping between two Hilbert spaces, and denote by S := {x ∈ H : F (x) ∋
0} = F−1(0) its set of solutions. Generally, (2.1) admits infinitely many solutions. In such a case, a challenging
fundamental question arises: How to select or construct a solution which is the unique one for which certain
basic properties are required? When S = F−1(0) is convex and closed, one principle for selecting such a solution
is to require that it minimizes the squared norm function 1

2‖ · ‖2 among all the solutions: of course, such a
solution exists and is unique according to the convexity and closedness property of S, and it is nothing else the
solution of minimal norm. Under the convexity (and closedness) of S, several other principles are also known:
The dynamical selection principle is one of the most efficient. Given a smooth convex function g : H → R (whose
derivative is locally Lipschitz continuous) and a point x0 ∈ S, the principle associates the dynamical system







−dx

dt
(t) ∈ ∇g(x(t)) +N

(

F−1(0);x(t)
)

a.e. t ∈ [0,+∞[

x(0) = x0

(2.2)

which is known to possess a unique (locally absolutely continuous) solution x(·). Further, it is also known that
the solution x(·) of (2.2) converges at +∞, say limt→+∞ x(t) =: x∞, which furnishes a selected solution of (2.1).

Going beyond the convexity of F−1(0) and of the smooth function g, we will show that the prox-regularity
of the set S = F−1(0) will allow us to obtain the existence and uniqueness of a trajectory of (2.2), for a given
initial point x0. We will also show (under a Palais-Smale condition) that this trajectory converges to a point
x∞ ∈ S = F−1(0) that satisfies, through the normal cone N(F−1(0); ·), the following principle selection

0 ∈ ∇g(x∞) +N(F−1(0);x∞), (2.3)

which can be regarded as the first order optimality condition of the following constrained optimization problem

{

Minimize g(x)

subject to the constraint 0 ∈ F (x).

For the particular choice of g = 1
2‖·‖2 and when F−1(0) is a nonempty r-prox-regular set with d(0, F−1(0)) < r,

the point x∞ is equal to PF−1(0)(0) (the unique metric projection of 0 onto F−1(0)), that is, it corresponds
to the element of minimal norm of F−1(0) (known also in the literature as the lazy selector); this is the
aforementioned minimal norm solution.
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In order to state the nonconvex result concerning (2.2) and (2.3), it will be convenient for us to say that the
function g : H → R satisfies the generalized Palais-Smale condition relative to a uniformly prox-regular subset
C of H whenever each sequence (xn)n∈N of C such that

sup
n∈N

g(xn) < +∞ and d(0,∇g(xn) +N(C;xn)) → 0as n→ +∞ (2.4)

has a convergent subsequence in H.

Proposition 2.1. Let H,H′ be Hilbert spaces, F : H ⇒ H′ be a multimapping. Let g : H → R be a C1,1

function bounded from below. Assume that:

(i) F−1(0) is uniformly prox-regular, which is the case under the assumptions of Theorem 6.5 with F1 ≡ 0 and
F2 = F ;

(ii) the mapping g satisfies the generalized Palais-Smale condition (2.4) relative to F−1(0).

Then, for each x0 ∈ F−1(0), there exists a unique locally absolutely continuous solution x : [0,+∞[→ F−1(0)
of the dynamical system







−dx

dt
(t) ∈ ∇g(x(t)) +N(F−1(0);x(t)) a.e. t ∈ [0,+∞[

x(0) = x0.

(2.5)

Further, the set
⋂

T≥0

cl(x([T,+∞[)) is nonempty and for any x∞ ∈ ⋂

T≥0

cl(x([T,+∞[)), one has

lim
t→+∞

g(x(t)) = g(x∞) = inf
t≥0

g(x(t)) (2.6)

as well as the first order optimality condition

0 ∈ ∇g(x∞) +N(F−1(0);x∞). (2.7)

A basic selected solution for (2.1) is then obtained.

Proof. Set S := F−1(0) (as above) and h := g + ψS , where ψS denotes the indicator function of S (in the
sense of variational analysis, i.e., ψS(x) = 0 if x ∈ S and ψS(x) = +∞ if x ∈ H \ S). Obviously, note that h
is bounded from below and proper. Combining the uniform prox-regularity of S with the fact that g is a C1,1

function, it can be easily checked that h is primal lower nice (see [30] for the definition) at each point of S.
Fix any x0 ∈ S. Applying ([23], Thm. 3.2), there is one and only one locally absolutely continuous mapping
x : [0,+∞[→ F−1(0) satisfying







−dx

dt
(t) ∈ ∂Ch(x(t)) a.e. t ∈ [0,+∞[

x(0) = x0.

By the sum rule of the Clarke subdifferential ∂Ch (keeping in mind that g is C1,1), the latter inclusion means
that, for almost every t ∈ [0,+∞[,

−dx

dt
(t) ∈ ∇g(x(t)) +N(S;x(t)).

Given x∞ ∈ ⋂

T≥0

cl(x([T,+∞[)), it remains to invoke ([23], Prop. 4.5) to obtain that it satisfies both (2.6)

and (2.7). �
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It is worth pointing out that an adaptation of the catching-up algorithm introduced by Moreau gives a way
to construct explicitly the unique solution x : [0,+∞[→ H of (2.5), that is, proceed to a time discretization
(ti)i∈I of [0,+∞[ and set

{

xn0 := x0

xni+1 := projS
[

xni − (tni+1 − tni )∇g(xni )
]

for all i ∈ I.

Thanks to the prox-regularity of S = F−1(0), the above scheme is well defined for suitable time discretiza-
tions (ti)i∈I .

Lur’e dynamical system in the next example is a basic situation for application of Proposition 2.1.

Example 2.2. Given two integers m,n ≥ 1, two matrices A ∈ R
n×n, B ∈ R

m×n with A symmetric and B
surjective, a vector x0 ∈ R

n and a multimapping F : Rm ⇒ R
n, one can consider with S := F−1(0) ⊂ R

m,
the problem of finding a locally absolutely continuous mapping x : [0,+∞[→ R

n satisfying the following Lur’e
dynamical system

(L)































dx

dt
(t) = Ax(t)−BTλ(t) a.e. t ∈ [0,+∞[

y(t) = Bx(t) for all t ≥ 0

λ(t) ∈ N(S; y(t)) for all t ≥ 0

x(0) = x0.

Lur’e dynamical systems are of great interest for the modeling of many problems in nonlinear control theory. It
consists of a linear differential system combined with a static multivalued nonlinearity λ ∈ N(F−1(0); y).
Assume that:

(i) F−1(0) is uniformly prox-regular;

(ii) The mapping g : Rn → R
n defined by

g(x) :=
1

2
〈−Ax, x〉 for all x ∈ R

n

is bounded from below and satisfied the Palais-Smale condition relative to B−1(S).

Let x(·) be a solution of (L). It is readily seen that for almost every t ∈ [0,+∞[,

dx

dt
(t) ∈ Ax(t)−BTN(S;Bx(t)). (2.8)

Since B has rank m, we can apply ([36], Exercise 10.7), to get that for all x ∈ R
m,

∂C(ψB−1(S))(x) = BT∂CψS(Bx) = BTN(S;Bx),

where (as above) ψS denotes the indicator function of the set S.
Consequently, (2.8) is equivalent to

dx

dt
(t) ∈ Ax(t)−N(B−1(S);x(t)) a.e. t ∈ [0,+∞[. (2.9)

We observe that (2.9) can be rewritten as (2.5), that is,

−dx

dt
(t) ∈ ∇g(x(t)) +N(B−1(S);x(t)) a.e. t ∈ [0,+∞[.
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From ([2], Thm. 6.4), we know (keeping in mind that B is surjective) that B−1(S) is uniformly prox-regular.
By virtue of Proposition 2.1, there is x ∈ R

n such that x(t) → x as t → +∞ and satisfying the first order
optimality condition

0 ∈ ∇g(x) +N(B−1(S);x)

for the constrained optimization problem







Minimize
1

2
〈Ax, x〉

subject to the constraint Bx ∈ S.

3. Notation and preliminaries

In the whole paper, all vector spaces are real vector spaces, R+ := [0,+∞[ is the set of nonnegative reals, N
is the set of positive integers (i.e., n = 1, . . .). We use the classical convention inf ∅ = +∞. For a nonempty set
E and m ∈ N, we denote by ∆Em the diagonal of Em, i.e.,

∆Em := {(x, . . . , x) : x ∈ E} ⊂ Em.

Throughout the rest of the paper, (X, ‖·‖) is a Banach space, X∗ its topological dual and 〈·, ·〉 the associated
pairing. For x ∈ X and r ∈]0,+∞[ one denotes by B(x, r) (resp., B[x, r]) the open (resp., closed) ball of X
centered at x ∈ X with radius r ∈]0,+∞[. It will be convenient to denote by UX and BX the open and closed
unit balls of X respectively, that is, UX := B(0, 1) and BX := B[0, 1].

Let S be a nonempty subset of X. This set is said to be closed near x ∈ S whenever there is a neighborhood
V of x such that S ∩ V is closed in V with respect to the induced topology on V . The distance function from
S is defined by

dS(x) :=: d(x, S) := inf
y∈S

‖x− y‖ for all x ∈ X.

For another subset S′ of X, the gap between S and S′ is the extended real

gap(S, S′) := inf
(x,y)∈S×S′

‖x− y‖ .

For any x ∈ X, one defines the (possibly empty) set of all nearest points of x in S by

ProjS(x) := {y ∈ S : d(x, S) = ‖x− y‖}.

When ProjS(x) contains one and only one point ȳ, we will denote by PS(x) or projS(x) the unique element,
that is, PS(x) := ȳ.

For the subset S of X, σ(S, ·) stands for its support function, i.e.,

σ(S;x⋆) := sup
x∈S

〈x⋆, x〉 for all x⋆ ∈ X⋆.

Before defining the concepts of prox-regularity and ω(·)-regularity for sets, we need diverse notions of varia-
tional analysis.

The Clarke tangent cone of the subset S of X at x ∈ S, denoted by TC(S;x), is the set of h ∈ X such that,
for every sequence (xn)n∈N of S with xn → x and for every sequence (tn)n∈N of positive reals with tn → 0, there
exists a sequence (hn)n∈N of X with hn → h satisfying

xn + tnhn ∈ S for all n ∈ N.
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This set is obviously a cone containing zero and it is known to be closed and convex. The polar cone of TC(S;x)
is the Clarke normal cone NC(S;x) of S at x, that is,

NC(S;x) :=
{

x⋆ ∈ X⋆ : 〈x⋆, h〉 ≤ 0, ∀h ∈ TC(S;x)
}

.

If x /∈ S, by convention TC(S;x) and NC(S;x) are empty.

Consider now a nonempty open set U of X and an extended real-valued function f : U → R ∪ {−∞,+∞}.
The Clarke subdifferential ∂Cf(x) of f at x ∈ U is defined by

∂Cf(x) :=
{

x⋆ ∈ X⋆ : (x⋆,−1) ∈ NC (epif ; (x, f(x)))
}

,

where X × R is endowed with the usual product structure and epi f is the epigraph of f , that is,

epi f := {(x′, r) ∈ X × R : x′ ∈ U, f(x′) ≤ r}.

If f is not finite at x, we see that ∂Cf(x) = ∅. When f is Lipschitz near x ∈ U (in particular finite at x), one
defines its Clarke directional derivative at x in the direction h ∈ X by

fo(x;h) := lim sup
t↓0,x′→x

t−1
(

f(x′ + th)− f(x′)
)

.

Recall that under such a Lipschitz hypothesis, one has

fo(x;h) = max {〈x⋆, h〉 : x⋆ ∈ ∂Cf(x)} for all h ∈ X,

that is, fo(x; ·) is the support function of ∂Cf(x).
For x ∈ S, one defines NF (S;x), the Fréchet normal cone of S at x by

NF (S;x) :=

{

x⋆ ∈ X⋆ : lim sup
S∋x′→x

〈x⋆, x′ − x〉
‖x′ − x‖ ≤ 0

}

·

For any x ∈ X \ S, one sets again NF (S;x) = ∅. Then, the Fréchet subdifferential ∂F f(x) of f at a point x in
the open set U is defined by

∂F f(x) :=
{

x⋆ ∈ X⋆ : (x⋆,−1) ∈ NF (epif ; (x, f(x)))
}

,

so ∂F f(x) = ∅ whenever f is not finite at x. If |f(x)| < +∞, one can show that for any x⋆ ∈ X⋆, x⋆ ∈ ∂F f(x)
if and only if for any real ε > 0, there exists a real η > 0 such that

〈x⋆, x′ − x〉 ≤ f(x′)− f(x) + ε ‖x′ − x‖ for all x′ ∈ B(x, η).

For the Fréchet and Clarke subdifferentials of dS at x ∈ S one has

∂F dS(x) = NF (S;x) ∩ BX⋆ and ∂CdS(x) ⊂ NC(S;x) ∩ BX⋆ . (3.1)

Let F : X ⇒ Y be a multimapping from X to another Banach space Y , (x, y) ∈ gph F :=
{(x, y) ∈ X × Y : y ∈ F (x)}. One says that F is metrically regular at x for y (or around (x, y)) whenever
there exist a real γ ≥ 0 and neighborhoods U and V of x and y respectively such that

d(x, F−1(y)) ≤ γd(y, F (x)) for all (x, y) ∈ U × V. (3.2)

The modulus of metric regularity reg[F ](x | y) of F at x for y is defined as the infimum of all γ ∈ [0,+∞[ for
which there are neighborhoods U and V of x and y such that the latter inequality is fulfilled.

For more details, we refer the reader to the books [11, 13, 26, 36].
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4. Prox-regularity and ω(·)-normal regularity concepts

In this section, H is a Hilbert space, S is a nonempty subset of H and r is an extended real of ]0,+∞]. We
will use the classical convention 1

r
= 0 whenever r = +∞ and we denote by Ur(S) the open r-enlargement of

the set S, that is,

Ur(S) := {x ∈ H : dS(x) < r}.

The set S is said [31] to be r-prox-regular (or uniformly prox-regular with constant r) whenever it is closed
in H and for any x ∈ S and any nonzero v ∈ H such that x ∈ ProjS(x + v), one has x ∈ ProjS(x + t v

‖v‖ ) for
every non-negative real t ≤ r. A closed subset S in H is known to be r-prox-regular if and only if the mapping
PS : Ur(S) → H is well defined and norm-to-norm continuous. Obviously, S is r′-prox-regular for any r′ ∈]0, r]
whenever it is r-prox-regular. It is well-known (see, e.g., [12]) that the set S is r-prox-regular if and only if for
all x, x′ ∈ S, for all v ∈ NC(S;x) (or NF (S;x)),

〈v, x′ − x〉 ≤ ‖v‖
2r

‖x′ − x‖2 , (4.1)

or equivalently (4.1) holds true for any x, x′ ∈ S with NC(S;x) 6= {0} and v ∈ NC(S;x).

For x ∈ S, one says that S is prox-regular at x whenever it is closed near x and there is a neighborhood U of
x such that PS : U → H is well defined and norm-to-norm continuous on U . If S is nonempty and closed, one
says that it is prox-regular whenever it is prox-regular at any of its points. It has been proved that

NF (S;x) = NC(S;x),

whenever S is prox-regular at x ∈ S. So, in such a case, we set

N(S;x) := NF (S;x) = NC(S;x).

An important characterization of prox-regularity says that the set S is r-prox-regular if and only if (4.1)
holds only for all x, x′ ∈ S satisfying ‖x− x′‖ < 2r. More precisely:

Proposition 4.1. Let H be a Hilbert space, S be a nonempty closed subset of H and s, t be two extended
reals in ]0,+∞]. The set S is min {s, t}-prox-regular whenever for all x, x′ ∈ S with ‖x− x′‖ < 2t and for all
v ∈ NF (S;x) ∩ BH (resp., NC(S;x) ∩ BH), 〈v, x′ − x〉 ≤ 1

2s ‖x′ − x‖2.

In addition to prox-regular sets, the analysis in the next sections will involve the new class of normally
ω(·)-regular sets.

Definition 4.2. Let X be a Banach space, S be a subset of X, ω : R+ → R+ be a function with ω(0) = 0,
V be a nonempty open subset of X. One says that S is normally ω(·)-regular relative to V whenever for all
x, x′ ∈ S ∩ V , for all x⋆ ∈ NC(S;x),

〈x⋆, x′ − x〉 ≤ ‖x⋆‖ω(‖x′ − x‖).

From (4.1), we see that a nonempty closed subset S of a Hilbert space H is r-prox-regular for some extended
real r ∈]0,+∞] if and only if it is normally ω(·)-regular relative to H with ω : R+ → R+ defined by

ω(t) =
t2

2r
for all t ∈ R+.

There are many normally ω(·)-regular sets which are not prox-regular.
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Figure 1. A normally ω(·)-regular set non-prox-regular.

Example 4.3. Let f : R → R ∪ {+∞} be the function defined by

f(x) :=

{

−x 5
3 if x ≥ 0

+∞ otherwise

and set S := epi f . The set S is not uniformly prox-regular but it is normally ω(·)-regular for some function
ω : R+ → R+ (see, e.g., [29]) defined by

ω(t) := αt for all t ∈ R+,

with α ∈ R+.

Our developement below will involve multimappings with normally ω(·)-regular graphs. The following result
provides sufficient conditions to ensure the normal ω(·)-regularity of gphM , for a multimapping M given as a
sum of a mapping and a set.

Theorem 4.4. Let X,Y be Banach spaces, ω : R+ → R+ be a nondecreasing function with ω(0) = 0, S be a
normally ω(·)-regular subset of Y , G : X → Y be a mapping, and M(·) = G(·) + S. Assume that:

(i) the mapping G is differentiable on X and there exists a real γ ≥ 0 such that

‖DG(x)−DG(y)‖ ≤ γ ‖x− y‖ for all x, y ∈ X;

(ii) there exists a real K ≥ 0 such that

‖y −G(x)− (y′ −G(x′))‖ ≤ K ‖(x, y)− (x′, y′)‖ for all ∈ (x, y), (x′, y′) ∈ gphM.

Then, the set gphM is normally ρ(·)-regular where ρ : R+ → R+ is defined by

ρ(t) := ω(Kt) +
γt2

2
for all t ∈ R+.

Proof. Fix any (x, y), (x′, y′) ∈ gphM . It is well-known (and not difficult to check) that

NC(gphM ; (x, y)) = {(−DG(x)⋆(y⋆), y⋆) : y⋆ ∈ N(S; y −G(x))} ,
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where DG(x)⋆ denotes the adjoint operator of DG(x). Let (u⋆, v⋆) ∈ NC(gphM ; (x, y)). Thanks to the latter
equality, we have v⋆ ∈ N(S; y −G(x)) and u⋆ = −DG(x)⋆(v⋆), and hence

〈(u⋆, v⋆), (x′, y′)− (x, y)〉 = 〈−v⋆, DG(x)(x′ − x)〉+ 〈v⋆, y′ − y〉 . (4.2)

It is readily seen that

〈v⋆, y′ − y〉 = 〈v⋆, (y′ −G(x′))− (y −G(x))〉+ 〈v⋆, G(x′)−G(x)〉 . (4.3)

Thanks to (i), we also have

〈−v⋆, DG(x)(x′ − x)〉 =
〈

v⋆,

∫ 1

0

(DG(x+ τ(x′ − x))−DG(x))(x′ − x)dτ

〉

+ 〈−v⋆, G(x′)−G(x)〉 . (4.4)

From (4.3) and the fact that S is ω(·)-normally regular, we deduce

〈v⋆, y′ − y〉 ≤ ‖v⋆‖ω(‖(y′ −G(x′))− (y −G(x))‖) + 〈v⋆, G(x′)−G(x)〉 . (4.5)

Combining (4.2), (4.5), (4.4), (i) and (ii) we obtain

〈(u⋆, v⋆), (x′, y′)− (x, y)〉

≤ ‖v⋆‖ω(‖(y′ −G(x′))− (y −G(x))‖) +
〈

v⋆,

∫ 1

0

(DG(x+ τ(x′ − x))−DG(x))(x′ − x)dτ

〉

≤‖v⋆‖ω
(

K ‖(x′, y′)− (x, y)‖
)

+ ‖v⋆‖ ‖x′ − x‖2
∫ 1

0

γτdτ.

≤‖(u⋆, v⋆)‖
(

ω(K ‖(x′, y′)− (x, y)‖) + γ

2
‖(x′, y)′ − (x, y)‖2

)

.

As a consequence, the set gphM is ρ(·)-normally regular. �

The latter theorem in the setting of prox-regular sets is of great interest.

Corollary 4.5. Let H,H′ be Hilbert spaces, S be an r-prox-regular subset of H′ for some extended real r ∈
]0,+∞], G : H → H′ be a mapping, andM(·) = G(·)+S. Assume that the conditions (i) and (ii) in Theorem 4.4
are satisfied. Then, the set gphM is 1

K2

r
+γ

-prox-regular.

Remark 4.6. With S = {0}, the latter corollary says in particular that a differentiable mapping f : H → H′

from a Hilbert space H to a Hilbert space H′ with γ-Lipschitz continuous derivative for some real γ ≥ 0 has a
1
γ
-prox-regular graph. It is worth pointing out that this can also be seen as a consequence of ([2], Thm. 3.3).

5. Metric regularity via prox-regularity/normal ω(·)-regularity
Let M : X ⇒ Y be a multimapping between two Banach spaces with closed graph and let (x, y) ∈ gphM .

Recall thatM is said to be graph-convex whenever gphM is convex. It is well-known (and not difficult to prove)
that M is graph-convex if and only if for all x, y ∈ X, for all λ ∈]0, 1[,

λM(x) + (1− λ)M(y) ⊂M(λx+ (1− λ)y).

For such a multimapping M , Robinson [35] and Ursescu [41] proved independently in 1975–1976 that M is
metrically regular at x for y if and only if y ∈ CoreM(X), where

CoreM(X) = {y ∈ Y : ∀y′ ∈ Y, ∃r > 0, y + ty′ ∈M(X), ∀t ∈ [−r, r]} .
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This result can be viewed as an extension of the classical Banach open mapping theorem. More precisely,
whenever y ∈ CoreM(X), there is some real c > 0 such that

d(x,M−1(y)) ≤ (c− ‖y − y‖)−1(1 + ‖x− x‖)d(y,M(x)) for all x ∈ X, y ∈ B(y, c).

For the extension of such an inequality to more general multimappings, under a point-based open condition
y + βUY ⊂ M(x + αBX), the class of paraconvex multimappings is a first appropriate one (see, e.g., [17, 18]).
Recall thatM is said to be (γ, C)-paraconvex ([37]) for a real γ > 0 and a real C ≥ 0 whenever for all x1, x2 ∈ X,
for all t ∈ [0, 1],

tM(x1) + (1− t)M(x2) ⊂M(tx1 + (1− t)x2) + Cmin(t, 1− t) ‖x1 − x2‖γ BY .

In [17], Huang and Li established that if M−1 is paraconvex, then M is metrically regular at x for y whenever
y + βUY ⊂M(x+ αBX) for some reals α, β ∈]0,+∞[. In fact, under the latter inclusion, from ([17], Thm. 2.2)
we have the following estimate for any η, η′ ∈]0,+∞[ with η + η′ = β,

d(x,M−1(y)) ≤ η−1(α+ Cηγ + ‖x− x‖)d(y,M(x))

for all x ∈ X and for all y ∈ y + η′UY , where γ, C ∈]0,+∞[ are such that M−1 is (γ, C)-paraconvex. We also
refer to Jourani ([18]) for another previous result of this type.

In [47], Zheng and Ng showed that prox-regularity is also a suitable class for extension of Robinson−Ursescu
theorem. For X and Y Hilbert spaces and gphM (r, δ)-prox-regular at (x, y) for some reals r, δ > 0, that is

〈(x⋆, y⋆), (u, v)− (x, y)〉 ≤ 1

2r
‖(u, v)− (x, y)‖2 ,

for all (u, v), (x, y) ∈ gphM ∩ (B(x, δ)×B(y, δ)), for all (x⋆, y⋆) ∈ NC(gphM ; (x, y))∩ (BX ×BY ), they proved
that M is metrically regular at x for y whenever

y + βUY ⊂M(x+ αUX)

for some reals α ∈]0, δ3 [, β ∈]0, δ[ satisfying β > 4α2+β2

2r .
More recently, X.Y. Zheng and Q.H. He developed a Robinson−Ursescu type theorem type for multimappings

with (σ, δ)-subsmooth graph. The (σ, δ)-subsmoothness of sets which is a quantified version of subsmooth sets
introduced by Aussel, Daniilidis and Thibault [5] is defined as follows.

Definition 5.1 ([44]). Let X be a Banach space, S be a subset of X, x ∈ S, σ, δ ∈]0,+∞[. One says that S is
(σ, δ)-subsmooth at x if for all x, x′ ∈ S ∩B(x, δ), for all x⋆ ∈ NC(S;x),

〈x⋆, x′ − x〉 ≤ σ ‖x⋆‖ ‖x′ − x‖ .

Note that a closed set S ⊂ X which is (σ, δ)-subsmooth at x ∈ S with σ, δ ∈]0,+∞[, is obviously normally
ω(·)-regular relative to B(x, δ) for ω : R+ → R+ defined by

ω(t) = σt for all t ∈ R+.

For a multimapping M between the Banach spaces X and Y , the metric regularity at x for y is obtained
in [44] with α, β ∈]0, δ[ satisfying

1

σ
− 1 >

2α

β
,

for any (σ, δ) ∈]0, 1[×]0,+∞[ such that gphM is (σ, δ)-subsmooth at (x, y).

11



Figure 2. The graph of M .

In order to establish our results concerned with uniform prox-regularity of sets, we need to develop a verifiable
sufficient condition ensuring a kind of uniform metric regularity. Given a multimapping M : X ⇒ Y and a set
Q ⊂ gphM , we want to find some real γ ≥ 0 such that for any (x, y) ∈ Q,

d(x,M−1(y)) ≤ γd(y,M(x)), (5.1)

for all (x, y) near (x, y). We therefore need to require a uniform point-based condition as well as the uniform
prox-regularity of gph M . This leads to give first some generalities about multimappings with prox-regular
graph.

It is worth pointing out that the graph convexity of M is equivalent to the graph convexity of M−1

(resp., −M). The following result, which states that a similar preservation still holds for the prox-regularity,
will be needed in the developement below. We omit the proof since it can be established in a straightforward
way.

Proposition 5.2. Let H, H′ be Hilbert spaces, M : H ⇒ H′ be a multimapping, r ∈]0,+∞] be an extended
real. Then, gphM is r-prox-regular if and only if gphM−1 (resp., gph(−M)) is r-prox-regular.

It is also known and easy to see that the property of graph-convexity of M entails that M(C) :=
⋃

x∈C

M(x)

is convex for any convex set C ⊂ X (in particular kerM := M−1(0) is convex) as well as DomM := {x ∈ X :
M(x) 6= ∅}). The aim of Examples 5.3 and 7.13 below is to show that such preservations fail for a multimapping
with prox-regular graph.

Example 5.3. Set R = 1
2 . Consider for each n ∈ N, the closed ball Dn of R2 with radius r = 1

4 (independent
of n) with (0, 1

2n−1 ) and (0, 1
2n ) on its boundary and whose abscissa of its center is nonpositive. As in [2, 6], we

define

Q =

{

(x, y) ∈ R
2 : x ≥ 0, x2 +

(

y − 1

2

)2

≤ R2

}

\
⋃

n∈N

intDn.

The set Q is uniformly prox-regular. The multimapping M : R ⇒ R with gphM := Q has an image

M(0) = {0, 1} ∪
{

1

2n
: n ∈ N

}

not (uniformly) prox-regular. On the other hand, according to Proposition 5.2, with N := M−1 the set gphN
is uniformly prox-regular and N−1(0) =M(0) is not uniformly prox-regular.

To obtain prox-regularity thickness in the results below, we will need to quantify the modulus of such a
metric regularity, i.e., to give an estimate of the real γ in (5.1). Our theorem requires the existence of three
reals α, β, ρ > 0 such that the uniform openness condition

y + βUY ⊂M(x+ αBX) for all (x, y) ∈ Q
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holds as well as the inequality

β >
3α

ρ
+

(

1 +
1

ρ

)

ω





√

4α2 +

(

β − α

ρ

)2


 ·

Fix three reals α, β, ρ > 0. First, let us look at the case when gphM is r-prox-regular for some r ∈]0,+∞[,
i.e., gphM is normally ω(·)-regular relative to X × Y (here X and Y are assumed to be Hilbert spaces) with
ω : R+ → R+ defined by

ω(t) =
t2

2r
for all t ∈ R+.

If α <
r

2
and |β − r| <

√
r2 − 4α2, then we have

4α2 + β2

2r
< β,

hence there is a real ρ > 0 such that

β >
3α

ρ
+

1

2r

(

1 +
1

ρ

)

[

4α2 +

(

β − α

ρ

)2
]

·

Now, assume that gphM is (σ, δ)-subsmooth at (x, y) ∈ gphM for any reals σ ∈]0, 1[ and δ ∈]0,+∞[, i.e.,
gphM is normally ω(·)-regular relative to B((x, y), δ) with ω : R+ → R+ defined by

ω(t) = σt for all t ∈ R+.

If α < β
2σ

√
1− σ2, then we have

σ
√

4α2 + β2 < β.

Thus, one can find a real ρ > 0 such that

β >
3α

ρ
+ σ

(

1 +
1

ρ

)

√

4α2 +

(

β − α

ρ

)2

·

Now, we can state the theorem on metric regularity of multimappings with normally ω(·)-regular graph. It
is an adaptation of ideas of Zheng and Ng ([47]).

Theorem 5.4. Let X,Y be Banach spaces, M : X ⇒ Y be a multimapping with closed graph, Q be a nonempty
subset of gphM , ω : R+ → R+ an upper semicontinuous nondecreasing function with ω(0) = 0. Assume that:

(i) there exist α, β, ρ ∈]0,+∞[ with

β >
3α

ρ
+

(

1 +
1

ρ

)

ω





√

4α2 +

(

β − α

ρ

)2




such that for all (x, y) ∈ Q,

y + βUY ⊂M(x+ αBX);

(ii) the set gphM is normally ω(·)-regular relative to
⋃

(a,b)∈Q

B((a, b),
√

α2 + β2).
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Then, there exists a real γ ∈
[

0, ρ[ such that for every (x, y) ∈ Q, there exists a real δ > 0 satisfying for all
x ∈ B(x, δ), for all y ∈ B(y, δ),

d(x,M−1(y)) ≤ γd(y,M(x)).

In particular, one has sup
(x,y)∈Q

Reg[M ](x | y) ≤ ρ.

Proof. Set V =
⋃

(a,b)∈Q

B((a, b),
√

α2 + β2). By contradiction, assume that for each γ ∈ [0, ρ[, there is (x, y) ∈ Q

such that for each real δ > 0, there are x ∈ B(x, δ), y ∈ B(y, δ) satisfying

d(x,M−1(y)) > γd(y,M(x)).

Let (εn)n∈N be a nonincreasing sequence of ]0, ρ[ with εn ↓ 0. For each n ∈ N, set

θn =
1

ρ− εn

(

α+
1

n

)

+
1

n
·

Obviously, (θn)n∈N is a nonincreasing sequence which satisfies θn → α
ρ
. Since we have β > α

ρ
, there is n0 ∈ N

such that for all integer n ≥ n0,

θn < β.

Choose N ∈ N with N ≥ n0 such that for all integer n ≥ N ,

(

α+
2

n

)2

+ θ2n < α2 + β2. (5.2)

Fix any integer n ≥ N . There are (xn, yn) ∈ Q, xn ∈ X, yn ∈ Y with

‖xn − xn‖ < min

{

β,
1

ρ− εn
,
1

n

}

and ‖yn − yn‖ < min

{

β,
1

ρ− εn
,
1

n

}

(5.3)

and

d(xn,M
−1(yn)) > (ρ− εn)d(yn,M(xn)).

According to ([46], Lem. 3.1), there is (un, vn) ∈ gphM such that

‖un − xn‖ < d(xn,M
−1(yn)), (5.4)

0 < ‖vn − yn‖ <
d(xn,M

−1(yn))

ρ− εn
(5.5)

and

(0, 0) ∈ {0} × J(vn − yn) +
1

ρ− εn
(BX⋆ × εnBY ⋆) +NC(gphM ; (un, vn)),

where J = ∂(‖·‖) is the subdifferential in the sense of convex analysis of ‖·‖. Since vn − yn 6= 0, there is some
z⋆n ∈ Y ⋆ such that

‖z⋆n‖ = 1 and 〈z⋆n, vn − yn〉 = ‖vn − yn‖ (5.6)

and there is some (x⋆n, y
⋆
n) ∈ NC(gphM ; (un, vn)) satisfying

(x⋆n, y
⋆
n) ∈ (0,−z⋆n) +

1

ρ− εn
(BX⋆ × εnBY ⋆).
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It follows that

‖x⋆n‖ ≤ 1

ρ− εn
(5.7)

and

y⋆n ∈ −z⋆n +
εn

ρ− εn
BY ⋆ . (5.8)

Since (xn, yn) ∈ Q, we can apply our assumption to obtain

B(yn, β) ⊂M(B[xn, α]). (5.9)

Using (5.3), we know that yn ∈ B(yn, β), so there is zn ∈ B[xn, α] such that

yn ∈M(zn).

In particular, we have

zn ∈M−1(yn) ∩B[xn, α].

Keeping in mind (5.3), the latter inclusion entails

d(xn,M
−1(yn)) ≤ ‖xn − zn‖ ≤ ‖xn − xn‖+ ‖xn − zn‖ ≤ 1

n
+ α. (5.10)

From (5.4), (5.3) and the latter inequality, it ensues that

‖un − xn‖ ≤ ‖un − xn‖+ ‖xn − xn‖ < d(xn,M
−1(yn)) +

1

n
≤ 2

n
+ α. (5.11)

Using (5.4), (5.5) and (5.10), we obtain

‖vn − yn‖ ≤ ‖vn − yn‖+ ‖yn − yn‖ <
d(xn,M

−1(yn))

ρ− εn
+

1

n

≤
1
n
+ α

ρ− εn
+

1

n
= θn. (5.12)

Set

ζn = (β − θn)
vn − yn

‖vn − yn‖
·

Thanks to the definition of ζn, the choice of n and the inequality (5.12), we can check that

vn − ζn ∈ B(yn, β).

From the above inclusion and the inclusion (5.9), we get

vn − ζn ∈M(B[xn, α]).

Let wn ∈ B[xn, α] be such that

vn − ζn ∈M(wn).

By (5.11), let us observe that

‖wn − un‖ ≤ ‖wn − xn‖+ ‖xn − un‖ < 2α+
2

n
·
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Endow X × Y with the 2-norm. We can see that

‖(wn, vn − ζn)− (xn, yn)‖2 = ‖wn − xn‖2 + ‖vn − ζn − yn‖2

< α2 + β2.

According to (5.2), (5.11) and (5.12), we get

‖(un, vn)− (xn, yn)‖2 = ‖un − xn‖2 + ‖vn − yn‖2

≤
(

α+
2

n

)2

+ θ2n

< α2 + β2.

In particular, we have the inclusions
(wn, vn − ζn), (un, vn) ∈ V.

Further, from the normal ω(·)-regularity of gphM relative to V , we have

〈(x⋆n, y⋆n), (wn, vn − ζn)− (un, vn)〉 ≤ ‖(x⋆n, y⋆n)‖ω(‖(wn, vn − ζn)− (un, vn)‖),
and from (5.7) along with (5.8), it can be easily checked that

‖(x⋆n, y⋆n)‖ ≤ ‖x⋆n‖+ ‖y⋆n‖ ≤ 1 +
1 + εn
ρ− εn

·

Hence, it follows

〈x⋆n, wn − un〉 ≤ 〈y⋆n, ζn〉+
(

1 +
1 + εn
ρ− εn

)

ω (‖(wn − un,−ζn)‖) . (5.13)

From (5.7) again we also have

〈x⋆n, wn − un〉 ≥ −‖x⋆n‖ ‖wn − un‖

≥ − 1

ρ− εn

(

2α+
2

n

)

·

Note by (5.8), (5.6) and the definition of ζn that there is b⋆n ∈ BY ⋆ such that

〈y⋆n, ζn〉 =
〈

−z⋆n +
εn

ρ− εn
b⋆n, ζn

〉

≤ θn − β +
εn

ρ− εn
(β − θn).

Note also that (thanks to the nondecreasing property of ω)

ω (‖(wn − un,−ζn)‖) ≤ ω





[

(

2α+
2

n

)2

+ (β − θn)
2

]
1
2



 .

Coming back to (5.13), we deduce

− 1

ρ− εn

(

2α+
2

n

)

≤ −β + θn +
εn

ρ− εn
(β − θn) +

(

1 +
1 + εn
ρ− εn

)

ω





[

(

2α+
2

n

)2

+ (β − θn)
2

]
1
2



 ·

Passing to the lim sup and using the upper semicontinuity of ω, we get

−2α

ρ
≤ −β +

α

ρ
+

(

1 +
1

ρ

)

ω





(

4α2 +

(

β − α

ρ

)2
)

1
2





and this cannot hold true. �
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6. Prox-regularity of the solution mappings to generalized equations

Given a Hilbert space H, a time interval [0, T ] with T > 0, an r-prox-regular moving set C : [0, T ] ⇒ H for
some r ∈]0,+∞] and an initial condition u0 ∈ C(T0), one can consider the problem of finding all the absolutely
continuous mappings u : [0, T ] → H satisfying

(P)



















−u̇(t) ∈ N(C(t);u(t)) a.e. t ∈ [0, T ],

u(t) ∈ C(t) for all t ∈ [0, T ],

u(0) = u0.

Such a differential inclusion has been introduced and extensively developped by Moreau [27] in the early 70s
in the convex setting (that is, r = +∞). For a closed convex set C(t) moving in an absolutely continuous way,
Moreau shows that (P) is well posed, in the sense of existence and uniqueness of a solution. The so-called
Moreau sweeping process is known to play a crucial role in many applications of mathematics as, for example,
in the study of crowd motion ([24]). Removing the convexity assumption on C(·) has been and still remains a
very well-active area of research involving suitable classes of sets adapted to this kind of problem, for instance:
prox-regular sets, subsmooth sets and α-far sets (see, e.g., [19]). It has been well-recognized that (uniform)
prox-regularity is the general condition to go beyond the convexity and under which the problem (P) has a
unique solution (see, e.g., [12] and the references therein). It is then of a great interest to develop general results
of preservation for prox-regular sets. A first step has been achieved in that direction in [2] (see also Vial [43]
and Venel [42]) with the case of a moving set described by finitely many inequality/equality constraints,

C(t) := {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0, gm+1(t, x) = 0, . . . , gm+n(t, x) = 0} , (6.1)

where g1, . . . , gm+n are real-valued functions defined on H. In order to get other shapes of prox-regular sets, one
can naturally consider the case where the moving set C(t) is the solution set of a time-dependent generalized
equation, that is,

C(t) := {x ∈ H : 0 ∈ f(t, x) + F (t, x)} , (6.2)

where f : [0, T ] × H → H is a mapping and F : [0, T ] × H ⇒ H is a multimapping. It is worth pointing out
that with f = (g1, . . . , gm+n) and F (x, t) = R

m
− × {0Rn} the set given by (6.2) is reduced to (6.1). The term

generalized equation, introduced by Robinson in the autonomous case in [32, 33], refers to the fact that (6.2)
reduces to the ordinary equation f(t, x) = 0 whenever F ≡ 0. An important class of generalized equations is
given by the variational inequalities, the case where F (·) = N(C; ·) for some closed convex subset C of X, i.e.,

f(x) +N(C;x) ∋ 0.

It is well established that the concept of generalized equations has a fundamental role in analysis and it possesses
many applications in mathematical programming, complementarity problems, economics; for more details, we
refer the reader to [13,34] and the references therein. Note that sweeping process with moving set C(t) in (6.2)
provides, in addition to Section 2, another area of applications of prox-regularity of solution set of generalized
equations.

Given two multimappings F1, F2 : H ⇒ H′ between Hilbert spaces, our aim in this section is to provide
sufficient conditions to ensure the prox-regularity of the set

S = (F1 + F2)
−1(0) = {x ∈ H : 0 ∈ F1(x) + F2(x)} . (6.3)

Let us first observe that whenever one of the multimappings involved is single-valued, say F1 := f , S is the
solution set of the generalized equation

f(x) + F (x) ∋ 0,
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where F := F2. The particular case when one of the multimappings involved is constant is also of interest.
Indeed, if F1 ≡ B for B ⊂ H′ and F := −F2, it can be easily checked that

S = F−1(B) := {x ∈ H : F (x) ∩B 6= ∅} .

We start with the following example which shows that even for F1 ≡ 0 or F1 the Clarke subdifferential of a
smooth function, the set S given by (6.3) may fail to be prox-regular.

Example 6.1. Let us define F : R2 ⇒ R
2, f : R2 → R by

F (x, y) = {(0, 0)} and f(x, y) = xy for all (x, y) ∈ R
2.

The set S =
{

(x, y) ∈ R
2 : 0 ∈ f(x, y) + F (x, y)

}

= R× {0} ∪ {0} × R is clearly not prox-regular at (0, 0).
Another bad situation is provided by the function g : R → R defined, as in [2], by

g(x) :=







x6
(

1− cos

(

1

x

))

if x 6= 0

0 if x = 0.

It is straightforward to check that g is C2 on R with g′(0) = 0. For each x ∈ R, set

h(x) :=

∫ x

0

g(t)dt

and observe that

{x ∈ R : 0 ∈ ∂Ch(x)} = {x ∈ R : g(x) = 0} = {0} ∪
{

1

2kπ
: k ∈ Z

}

is not prox-regular at 0.

Given a Banach space X and two functions f, g : X → R finite at x ∈ X, it is readily seen that ∂F f(x) ⊂
∂F g(x) whenever f(x) = g(x) and f ≤ g near x. This and the first equality of (3.1) justify the following result.

Proposition 6.2. Let X, Y be Banach spaces, F1, F2 : X ⇒ Y be two multimappings, S =
{x ∈ X : 0 ∈ F1(x) + F2(x)}, (x, y) ∈ gph F1 ∩ gph(−F2). Assume that there exist a real γ ≥ 0, a real δ > 0
such that for all (x, y) ∈ B(x, δ)×B(y, δ),

d(x, S) ≤ γ
(

d((x, y), gph F1) + d((x, y), gph(−F2)
)

. (6.4)

Then, one has
∂F dS(x)× {0} ⊂ γ(∂Cdgph F1(x, y) + ∂Cdgph(−F2)(x, y)),

in particular

NF (S;x) ∩ BX⋆ × {0} ⊂ NC(gph F1; (x, y)) ∩ γB(X×Y )⋆ +NC(gph(−F2); (x, y)) ∩ γB(X×Y )⋆ .

In order to provide an openness sufficient condition ensuring (6.4), the following lemma is needed.

Lemma 6.3. Let X,Y be Banach spaces, F1, F2 : X ⇒ Y be multimappings. Let MF1,F2 be the multimapping
defined by

MF1,F2
: X × Y ⇒ (X × Y )2

(x, y) 7−→ − ((x, y), (x, y)) + gph F1 × gph F2.

The following hold:

(a) If gphM1, gphM2 are normally ω(·)-regular for some nondecreasing function ω(·) : R+ → R+ with ω(0) = 0,
then the set gphMF1,F2

is 2ω
(

(1 +
√
2) ·

)

-normally-regular.
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If in addition,

ω(r)2 + ω(s)2 ≤ ω(
√

r2 + s2)2 for all r, s ∈ R+, (6.5)

then the set gphMF1,F2
is in fact ω

(

(1 +
√
2) ·

)

-normally-regular.
(b) If X and Y are Hilbert spaces and gph F1, gph F2 are r-prox-regular for some r ∈]0,+∞[, then the set

gphMF1,F2
is r

(1+
√
2)2

-prox-regular.

Proof.

(a) Assume that gphM1, gphM2 are normally ω(·)-regular for some nondecreasing function ω(·) : R+ → R+.
Set Z := X × Y . Consider the continuous linear mapping A : Z → Z2 defined by

A(x, y) = −((x, y), (x, y)) for all (x, y) ∈ Z.

It is not difficult to check that ‖A‖ ≤
√
2. Let us define ϕ : Z × Z2 → Z2 by

ϕ((u, v), w) = w −A(u, v) for all (u, v, w) ∈ Z3.

One observes that ϕ is a continuous linear mapping with

‖ϕ‖ ≤ 1 + ‖A‖ ≤ 1 +
√
2.

On the other hand, it is not difficult to check that gphF1 × gphF2 is a normally 2ω(·)-regular subset of Z2

(resp., normally ω(·)-regular of Z2 if (6.5) holds true). According to Theorem 4.4, gphMF1,F2
is a normally

2ω
(

(1 +
√
2) ·

)

-regular subset of Z2 (resp., normally ω
(

(1 +
√
2) ·

)

-regular of Z2 if (6.5) holds true).
(b) It is a direct consequence of (a) with the function ω : R+ → R+ defined by

ω(t) :=
t2

2r
for all t ∈ R+,

which obviously satisfies (6.5). �

Thanks to the above result, we can apply Theorem 5.4 to the multimapping MF1,F2
.

Proposition 6.4. Let X,Y be Banach spaces, F1, F2 : X ⇒ Y be multimappings, S =
{x ∈ X : 0 ∈ F1(x) + F2(x)}. Consider the following assumptions (a) and (b).

(a) There exists an upper semicontinuous nondecreasing function ω : R+ → R+ with

ω(0) = 0 and ω(r)2 + ω(s)2 ≤ ω
(

√

r2 + s2
)2

for all r, s ∈]0,+∞[,

and such that:

(i) gph F1 and gph F2 are normally ω(·)-regular subsets;
(ii) for ρ(·) := ω

(

(1 +
√
2) ·

)

, there exist α, β, s ∈]0,+∞[ with

β >
3α

s
+

(

1 +
1

s

)

ρ

(
√

4α2 +
(

β − α

s

)2
)

,

and satisfying that for all (x, y) ∈ gph F1 ∩ gph(−F2),

βU(X×Y )2 ⊂ −
{(

(x, y), (x, y)
)

: (x, y) ∈ (x, y) + αBX×Y

}

+ gph F1 × gph(−F2). (6.6)
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(b) The spaces X and Y are Hilbert and there exists a real r ∈]0,+∞] such that:
(i) gph F1 and gph F2 are r-prox-regular subsets of X × Y ;
(ii) there exist α, β, s ∈]0,+∞[ with

β >
3α

s
+

(1 +
√
2)2

2r

(

1 +
1

s

)[

4α2 +
(

β − α

s

)2
]

(6.7)

and satisfying (6.6).
Under either (a) or (b), for each (x, y) ∈ gph F1 ∩ gph(−F2), there exists a real δ > 0 such that for all

x ∈ B(x, δ) and for all y ∈ B(y, δ),

d(x, S) ≤ 2s [d((x, y), gph F1) + d((x, y), gph(−F2))] .

Proof. It suffices to show the result under (a). So, assume that (a) holds true. Endow Z := X × Y with the
2-norm. For any subset A ⊂ Z2, let us denote d1(·, A) the distance function from A associated to the 1-norm
on Z2. Put M =MF1,F2 , where

MF1,F2 : Z ⇒ Z2

(x, y) 7−→ − ((x, y), (x, y)) + gph F1 × gph(−F2).

Thanks to (i) of (a) and Lemma 6.3, we know that gphM is ρ(·)-normally regular. Set

Q = {(x, y, 0, . . . , 0) : (x, y) ∈ gph F1 ∩ gph(−F2)} ⊂ gphM.

Fix any (x, y) ∈ (gph F1) ∩ gph(−F2). Combining (ii) of (a) and Theorem 5.4, we know that there is a real
δ0 > 0 such that for all (x, y) ∈ B((x, y), δ0),

d((x, y),M−1(0, . . . , 0)) ≤ sd((0, . . . 0),M(x, y)).

Note that
M−1(0, . . . , 0) = gph F1 ∩ gph(−F2) ⊂ S × Y. (6.8)

It is not difficult to check that for all (x, y) ∈ Z,

d((0, . . . , 0),M(x, y)) = d((x, y, x, y), gph F1 × gph(−F2))

≤
√
2d1((x, y, x, y), gph F1 × gph(−F2))

=
√
2[d((x, y), gph F1) + d((x, y), gph(−F2))]

In a similar way, we have for all (x, y) ∈ Z,

d((x, y),M−1(0, . . . , 0)) = d((x, y), gph F1 ∩ gph(−F2))

≥ 1√
2
inf {‖x− x′‖+ ‖y − y′‖ : (x′, y′) ∈ gph F1 ∩ gph(−F2)}

≥ 1√
2
inf {‖x− x′‖+ ‖y − y′‖ : (x′, y′) ∈ S × Y }

=
1√
2
[inf {‖x− x′‖ : x′ ∈ S}+ inf {‖y − y′‖ : y′ ∈ Y }]

=
1√
2
d(x, S),

where the second inequality is due to the inclusion (6.8). As a consequence, we obtain for all x ∈ B(x, δ), for
all y ∈ B(y, δ),

d(x, S) ≤ 2s [d((x, y), gph F1) + d((x, y), gph(−F2))] .

�
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With the above results at hand, we can prove the main theorem of this section:

Theorem 6.5. Let X,Y be Banach spaces, F1, F2 : X ⇒ Y be multimappings such that S =
{x ∈ H : 0 ∈ F1(x) + F2(x)} is nonempty and closed.

(A) Assume that (a) in Proposition 6.4 is satisfied and that there exist a selection σ : S → H′ of (−F1) ∩ F2

and a real L ≥ 0 satisfying for all x, x′ ∈ S,

‖σ(x)− σ(x′)‖ ≤ L ‖x− x′‖ .

Then, the set S is 4sω((1 + L2)
1
2 ·)-normally regular.

(B) Assume that (b) in Proposition 6.4 is satisfied and that there exists a selection σ : S → H′ of (−F1) ∩ F2

such that there exist ρ ∈]0,+∞] and a real L ≥ 0 satisfying for all x, x′ ∈ S with ‖x− x′‖ < 2ρ,

‖σ(x)− σ(x′)‖ ≤ L ‖x− x′‖ .

Then, the set S is min{ρ, r
4s(1+L2)}-prox-regular.

Proof. Let us show (A) (resp., (B)). Fix any x, x′ ∈ S (resp., x, x′ ∈ S with ‖x− x′‖ < 2ρ) and x⋆ ∈ NF (S;x)∩
BX⋆ . We have σ(x) ∈ F2(x) ∩ (−F1(x)) and σ(x

′) ∈ F2(x
′) ∩ (−F1(x

′)), in particular

(x,−σ(x)), (x′,−σ(x′)) ∈ gph F1 ∩ gph(−F2).

Combining Proposition 6.4 and Proposition 6.2, we get

(NF (S;x) ∩ BX⋆)× {0} ⊂ N(gph F1; (x,−σ(x))) ∩ 2sB(X×Y )⋆ +N(gph(−F2); (x,−σ(x))) ∩ 2sB(X×Y )⋆ .

From the latter inclusion, there are (u⋆1, v
⋆
1) ∈ N(gph F1; (x,−σ(x))) ∩ 2sB(X×Y )⋆ and (u⋆2, v

⋆
2) ∈

N(gph (−F2); (x,−σ(x))) ∩ 2sB(X×Y )⋆ such that

(x⋆, 0) = (u⋆1, v
⋆
1) + (u⋆2, v

⋆
2).

Then, we can write

〈x⋆, x′ − x〉 = 〈(x⋆, 0), (x′,−σ(x′))− (x,−σ(x))〉
= 〈(u⋆1, v⋆1), (x′,−σ(x′))− (x,−σ(x))〉+ 〈(u⋆2, v⋆2), (x′,−σ(x′))− (x,−σ(x))〉 .

Thanks to (A) (resp., (B)), the latter equality entails

〈x⋆, x′ − x〉 ≤ 4sω(‖(x′,−σ(x′))− (x,−σ(x))‖)
≤ 4sω

(

(1 + L2)
1
2 ‖x′ − x‖

)

(resp.,

〈x⋆, x′ − x〉 ≤ 2s

r

(

‖x′ − x‖2 + L2 ‖x′ − x‖2
)

=
2s(1 + L2)

r
‖x′ − x‖2 .

As a consequence, the set S is 4sω
(

(1 + L2)
1
2 ·
)

-normally regular (resp., min{ρ, r
4s(1+L2)}-prox-regular). �

Remark 6.6. Let M(x) := (−F1(x)) ∩ F2(x) and S = {x ∈ X : 0 ∈ F1(x) + F2(x)}.
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− One of the most important (and simple) case where M(·) admits a Lipschitz selection over S is furnished
with F1 as a single-valued Lipschitz mapping.

− If DimY < +∞, according to ([4], Thm. 9.4.3), we know that (−F1)∩F2 has a Lipschitz continuous selection
whenever the two following conditions hold:
(a) F1, F2 are nonempty closed convex valued;
(b) M := (−F1) ∩ F2 is Lipschitz.
A particular case where M(·) is Lipschitz is obtained (see, [20], Prop. 1.22) with a Lipschitz multimapping
F2 over S and with F1(x) := B[z(x), ρ(x)] provided that the mappings z(·), ρ(·) are Lipschitz over S and
there is a real 0 ≤ δ < 1 satisfying

B[z(x), δρ(x)] ∩ (−F2(x)) 6= ∅ for all x ∈ S.

− Let us mention that the concept of strong metric regularity (see, e.g., [13] and the references therein) which is
a stronger version of metric regularity in the sense of the definition in (3.2) is linked with Lipschitz selections.
Indeed, it is known (see [13]) that, for a multimapping M : X ⇒ Y between Banach spaces X and Y which
is strongly metrically regular at x for y where (x, y) ∈ gphM , one can find a Lipschitz selection of M−1(·)
defined near y.

The case where one of the two multimappings involved in the latter theorem is single-valued leads to the
following result.

Corollary 6.7. Let H,H′ be Hilbert spaces, f : H → H′ be a mapping and F : H ⇒ H′ be a multimapping
such that the set S = {x ∈ H : 0 ∈ f(x) + F (x)} is nonempty. Assume that:

(i) gph F is r-prox-regular for some extended real r ∈]0,+∞];
(ii) the mapping f is differentiable on H with Df : H → H′ γ-Lipschitz on H for some real γ ≥ 0 and there

exist an extended real ρ ∈]0,+∞] and a real L ≥ 0 such that for all x, y ∈ S, with ‖x− y‖ < 2ρ,

‖f(x)− f(y)‖ ≤ L ‖x− y‖ ;

(iii) there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all x ∈ S,

βU(H×H′)2 ⊂ −{
(

(x, y), (x, y)
)

: (x, y) ∈ (x,−f(x)) + αBH×H′}+ gph F × gph(−f).

Then, the set S is r′-prox-regular with r′ = min{ρ, min{r, 1
γ
}

4s(L2+1)}.
Proof. Thanks to the continuity of f and the fact that gphM is closed, it is clear that S is closed. Let us define
F1, F2 : H ⇒ H′ by

F1(x) = F (x) and F2(x) = {f(x)} for all x ∈ H.
According to Theorem 4.4 or Remark 4.6, gph F2 is 1

γ
-prox-regular. It remains to apply Theorem 6.5 with the

selection σ = f|S : S → H′ of −F1 ∩ F2. �

7. Preservation of the prox-regularity under various set operations

This section is devoted to provide new results for the stability of prox-regularity under set operations, namely,
inverse image, direct image and intersection. We also give sufficient conditions ensuring the prox-regularity of
set constraints. For another previous developments on that topic, we refer the reader to [1, 2, 12, 42, 43].

Let F : H ⇒ H′ be a multimapping between Hilbert spaces and let B be a uniform prox-regular subset of
H′. Keeping in mind Example 5.3, we know that

F−1(B) := {x ∈ H : F (x) ∩B 6= ∅}

fails in general to be prox-regular even supposing that F has its graph uniformly prox-regular. Nevertheless, we
have the following result as a consequence of Theorem 6.5.
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 Proposition 7.1. Let H, H′ be Hilbert spaces, F : H ⇒ H′ be a multimapping, and B be a subset of H′ such that the 

set
F−1(B) = {x ∈ H : F (x) ∩B 6= ∅}

is nonempty and closed. Assume that:

(i) the sets gph F and B are r-prox-regular for some extended real r ∈]0,+∞];

(ii) there exists σ : F−1(B) → B a selection of F such that there exist ρ ∈]0,+∞] and a real L ≥ 0 such that
for all x, x′ ∈ F−1(B) with ‖x− x′‖ < 2ρ,

‖σ(x)− σ(x′)‖ ≤ L ‖x− x′‖ ;

(iii) there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all (x, y) ∈ gph F ∩ (H×B),

βU(H×H′)2 ⊂ −{
(

(x, y), (x, y)
)

: (x, y) ∈ (x, y) + αBH×H′}+ gph F × (H×B).

Then, the set F−1(B) is r′-prox-regular with r′ = min{ρ, r
4s(1+L2)}.

Proof. Let us define F1, F2 : H ⇒ H′ by

F1(x) = B and F2(x) = −F (x) for all x ∈ H.

It can be checked in a straightforward way that

F−1(B) = {x ∈ H : 0 ∈ F1(x) + F2(x)}

and this allows us to apply Theorem 6.5. �

Remark 7.2. Unfortunately, in general, gph F with F (·) := ∂Cf is not prox-regular. However, from Theo-
rem 4.4 (or Rem. 4.6), it is clear that a function f : H → R twice differentiable with Lipschitz continuous
second derivative has the graph of its Clarke subdifferential (or equivalently, the graph of its first derivative)
uniformly prox-regular.

Coming back to the preservation of prox-regularity, we have the two following results which complement ([2],
Thm. 3.5).

Corollary 7.3. Let H be a Hilbert space, m,n ∈ N, f1, . . . , fm+n : H → R be functions such that the set

S = {x ∈ H : f1(x) ≤ 0, . . . , fm(x) ≤ 0, fm+1(x) = 0, . . . , fm+n(x) = 0}

is nonempty. Assume that:

(a) there exist ρ ∈]0,+∞], L ∈ [0,+∞[ such that for all i ∈ {1, . . . ,m+ n}, for all x, y ∈ S with ‖x− y‖ < 2ρ,

|fi(x)− fi(y)| ≤ L ‖x− y‖ ;

(b) f1, . . . , fm+n are differentiable on H and there exists a real γ ≥ 0 such that for all i ∈ {1, . . . ,m+ n}, ∇fi
is γ-Lipschitz;

(c) there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all x ∈ S,

βU(H×Rm+n)2 ⊂ −{((x, y), (x, y)) : (x, y) ∈ (x, f1(x), . . . , fm+n(x)) + αBH×Rm+n}
+H× (R−)

m × {0Rn} × gph (f1, . . . , fm+n).

Then, the set S is r′ = min{ρ, 1
4
√
2γs(1+2L2)

}-prox-regular.
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Proof. Let us define f : H → R
m+n and F : H ⇒ R

m+n by

f(x) = (−f1(x), . . . ,−fm+n(x)) and F (x) = (R−)
m × {0Rn} for all x ∈ H,

where R− := −R+. Denotes by ‖·‖2 (resp., ‖·‖∞) the usual Euclidean (resp., supremum) norm on R
m+n. Fix

any u, v ∈ S with ‖u− v‖ < 2ρ. Thanks to (i), we observe that

‖f(u)− f(v)‖2 ≤
√
2 ‖f(u)− f(v)‖∞

=
√
2 ‖(f1(u)− f1(v), . . . , fm+n(u)− fm+n(v))‖∞

≤
√
2L ‖u− v‖ .

In a similar way, we can show that Df is
√
2γ-Lipschitz. Applying Corollary 6.7, we know that the set

{x ∈ H : 0 ∈ f(x) + F (x)} = S

is min{ρ, 1
4
√
2γs(1+2L2)

}-prox-regular. �

Unfortunately, as shown in the next example, a function with uniform prox-regular graph may fail to have
its sublevels prox-regular. The following definition will be needed.

Definition 7.4. Let H be a Hilbert space, C be a nonempty convex subset of H, f : C → R ∪ {+∞} be a
function, σ ≥ 0 be a real. One says that f is σ-semiconvex whenever

f(tx+ (1− t)y) ≤ λf(x) + (1− λ)f(y) +
1

2
σt(1− t) ‖x− y‖2 ,

for all x, y ∈ C, for all t ∈]0, 1[ or equivalently if f + σ
2 ‖·‖2 is convex on C.

It is known that a σ-semiconvex function on an open convex set U has its Clarke subdifferential hypomonotone
on U (see, e.g., [2] and the references therein).

Example 7.5. Sublevel sets of funtions with prox-regular epigraphs may fail to be prox-regular.
Let us set C := [− 1

2 ,
1
2 ] and U :=]− 1, 1[. Consider g : R → R defined by g(0) = 0 and

g(x) = x6
(

1− cos

(

1

x

))

for all x ∈ R \ {0},

and h : U × R → R

h(x, t) := g(x)− t for all (x, t) ∈ U × R.

Set S := {(x, t) ∈ C × R : h(x, t) ≤ 0}. One can see that g is C2 on R and γ-semiconvex on U for γ ≥ 0 large
enough. From the definition of h, it is then clear that h+ γ′ ‖(·, ·)‖2 is convex on U ×R for γ′ ≥ γ large enough,
in particular h is semiconvex on U × R. On the other hand, we have

〈∇h(x, t), (0, 1)〉 = −1 for all (x, t) ∈ U × R.

Using the same arguments as in the proof of ([2], Thm. 4.1), we arrive to the fact that S is uniformly prox-
regular. Hence, S = epi ĝ is uniformly prox-regular, where ĝ : R → R∪{+∞} is defined by ĝ(x) = g(x) if x ∈ C
and ĝ(x) = +∞ outside of C. On the other hand, we observe that the (zero) sublevel set of the function ĝ, say

{x ∈ R : ĝ(x) ≤ 0} = {0} ∪
{

1

2kπ
: k ∈ Z

}

,

is not prox-regular while its epigraph is uniformly prox-regular.
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It is worth pointing out that one can even avoid the use of extended real-valued functions. Indeed, one can
consider the real-valued function g0 : R → R defined by

g0(x) :=















g(x) if x ∈]− 1, 1[

ϕ(x) if x > 1

ϕ(−x) if x < −1

where ϕ(x) := ax2 + bx+ c for all x ∈ R with a := (1/2)g′′(1), b := g′(1)− 2a and c := g(1)− a− b. It can be
checked that g0 has its second order derivative bounded over R and this allows us to apply the same arguments
as above to get that epi g0 is uniformly prox-regular and that its sublevel set {x ∈ R : g0(x) ≤ 0} fails to be
prox-regular.

Despite the negative cases in the above example, the following corollary provides conditions for prox-regularity
of sublevel sets of functions with prox-regular epigraphs.

Corollary 7.6. Let H be a Hilbert space, C be a nonempty subset of H, f : C → R∪ {+∞} be a function such
that the set {f ≤ 0} is nonempty and epi f is r-prox-regular for some extended real r ∈]0,+∞]. Assume that
there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all x ∈ {f ≤ 0},

βU(H×R)2 ⊂ −{
(

(x, t), (x, t)
)

: (x, t) ∈ (x, 0) + αBH×R}+ epi f × (H× {0}).

Then, the set {f ≤ 0} is r
4s -prox-regular.

Proof. Let us define F : H ⇒ R by

F (x) =

{{r ∈ R : f(x) ≤ r} if x ∈ C

∅ otherwise.

The multimapping M obviously satisfies gph F = epi f and M−1(0) = {f ≤ 0}. It remains to apply Proposi-
tion 7.1 to complete the proof. �

The two next results are concerned with the single-valued case. The first deals with the inverse image.

Corollary 7.7. Let H,H′ be Hilbert spaces, f : H → H′ be a mapping, B be a subset of H′ such that f−1(B)
is nonempty and closed. Assume that:

(i) gph f and B are r-prox-regular for some extended real r ∈]0,+∞];
(ii) there exists an extended real ρ ∈]0,+∞], a real L ≥ 0 such that for all x, x′ ∈ f−1(B) with ‖x− x′‖ < 2ρ,

‖f(x)− f(x′)‖ ≤ L ‖x− x′‖ ;

(iii) there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all x ∈ f−1(B),

βU(H×H′)2 ⊂ −{
(

(x, y), (x, y)
)

: (x, y) ∈ (x, f(x)) + αBH×H′}+ gph f × (H×B).

Then, the set f−1(B) is min{ρ, r
4s(1+L2)}-prox-regular.

Remark 7.8. In ([2], Thm. 6.4), such a preservation of prox-regularity is established but under an openness
condition (on the derivative of f and the tangent cone of B) required on a truncated neighborhood of each point
of bdry B × {0} (where bdry B denotes the boundary of B).
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In [6], the authors introduced the set Q in Example 5.3 and they observed that

Q ∩ (R× {0})

is not prox-regular at (0, 0) (see Fig. 2). It is worth pointing out that Example 7.5 can also be used to illustrate
this fact. Indeed, with notation of Example 7.5, we see that

S ∩ (R× {0}) = {(0, 0)} ∪
{(

1

2kπ
, 0

)

: k ∈ N

}

is not prox-regular at (0, 0) while S is uniformly prox-regular.
So, unlike the convexity, the property of prox-regularity is not preserved by intersection. However, under

certain conditions on normal cones [12] or openness conditions on the tangent cones of the sets involved ([2])
such a preservation is guaranteed. Here, it is obtained as a consequence of the above result on the inverse image.

Proposition 7.9. Let H be a Hilbert space, m ∈ N, S1, . . . , Sm be r-prox-regular subsets of H for some extended

real r ∈]0,+∞] such that
m
⋂

i=1

Si 6= ∅. Assume that there exist α, β, s ∈]0,+∞[ satisfying (6.7) and such that for

all x ∈
m
⋂

i=1

Si,

βUH2(m+1) ⊂− {((x1, . . . , xm+1), (x1, . . . , xm+1)) : (x1, . . . , xm+1) ∈ (x, . . . , x) + αBHm+1}

+∆Hm+1 ×H×
m
∏

i=1

Si.

Then, the set
m
⋂

i=1

Si is
r

4s(1+m) -prox-regular.

Proof. Let us define the mapping f : H → Hm by

f(x) = (x, . . . , x) for all x ∈ H,

which is obviously
√
m-Lipschitz continuous. Moreover, note that gph f = ∆Hm+1 is ∞-prox-regular (i.e.,

nonempty closed and convex). Taking into account the fact that
∏m

i=1 Si is r-prox-regular, the following equality

f−1

(

m
∏

i=1

Si

)

=
m
⋂

i=1

Si

allows us to apply Corollary 7.7. This completes the proof. �

Given a mapping f between Hilbert spaces and a prox-regular set S, our aim is now to develop sufficient
conditions ensuring the prox-regularity of f(S). The next example shows that even for S convex and f smooth,
such a preservation may fail.

Example 7.10. Consider the mapping f : R −→ R
2 defined by

f(t) =

(

sin(t)

1 + cos2(t)
,
sin(t) cos(t)

1 + cos2(t)

)

for all t ∈ R.

The range of f is the Bernoulli’s Lemniscate which is not prox-regular at (0, 0).

In the line of ([12], Prop. 37), we have the following result.
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Figure 3. Bernoulli’s Lemniscate.

Proposition 7.11. Let H,H′ be Hilbert spaces, f : H → H′ be a mapping, B be a subset of H such that f(B)
is closed. Assume that:

(a) gph f and B are r-prox-regular for some r ∈]0,+∞];
(b) there exists a mapping σ : f(B) → B satisfying f ◦ σ = Id and for which there exist ρ ∈]0,+∞] and a real

L ≥ 0 such that for all y, y′ ∈ f(B) with ‖y − y′‖ < 2ρ,

‖σ(y)− σ(y′)‖ ≤ L ‖y − y′‖ .

(c) there exists α, β, s ∈]0,+∞[ satisfying (6.7) and such that for all x ∈ B,

βU(H′×H)2 ⊂ −{((y, x), (y, x)) : (y, x) ∈ (f(x), x) + αBH′×H}+ {(f(x), x) : x ∈ H} × (H′ ×B).

Then, the set f(B) is min{ρ, r
4s(1+L2)}-prox-regular.

Proof. Let us define the multimapping F : H′ ⇒ H by

F (y) = {x ∈ H : y = f(x)} for all y ∈ H′.

It is straightforward that
F−1(x) := {f(x)} for all x ∈ H,

so in particular F−1(B) = f(B). Then, the prox-regularity claimed is a direct consequence of
Proposition 7.1. �

The assumption (b) in the latter proposition leads for the preservation of prox-regularity under a direct image
to develop a particular study depending on the given mapping f . We are going to illustrate this fact with the
projection along a linear space. More precisely, given two Hilbert spaces H,H′ and an r-prox-regular set S in
H×H′ for some r ∈]0,+∞], our aim is now to give sufficient condition to ensure the prox-regularity of ΠH(S),
where ΠH : H×H′ → H is the mapping defined by

ΠH(x, y) = x for all (x, y) ∈ H ×H′.

Obviously, if r = +∞, then ΠH(S) is convex (since S itself is convex when r = +∞). Let us first show that
such a preservation fails for r < +∞.

Example 7.12. We are going to construct a sequence (Cn)n∈N of closed balls of R2 such that the set
⋃

n∈N

Cn
is uniformly prox-regular and Π(

⋃

n∈N

Cn) is closed but not prox-regular, where Π : R2 → R is the mapping

defined by
Π(x, y) = x for all (x, y) ∈ R

2.
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Fix any sequence (αn)n≥1 of ]0, π2 [ with αn → 0 and
+∞
∑

n=1
αn = +∞. Let δ ∈]0,+∞[ and (x1, y1) ∈ R

2. Choose

any real r1 such that

0 < r1 <
δ sin(α1)

1− sin(α1)
·

From the latter inequality, we get
0 < (r1 + δ) sin(α1)− r1,

so we can choose a real r2 such that

0 < r2 < min

{

(r1 + δ) sin(α1)− r1,
δ sin(α2)

1− sin(α2)

}

·

It is then straightforward that we can construct a sequence (rn)n≥1 of reals such that

0 < rn < min

{

(rn−1 + δ) sin(αn−1)− rn−1,
δ sin(αn)

1− sin(αn)

}

·

Let us define (xn, yn)n∈N by setting for all integer n ≥ 2,

xn = xn−1 + (rn−1 + δ + rn) sin(αn−1)

and
yn = yn−1 − (rn−1 + δ + rn) cos(αn−1).

For each n ∈ N, denote by Cn the closed ball of R2 centered at (xn, yn) with radius rn. Set C =
⋃

n∈N

Cn. It is

readily seen that
Π(Cn) = [xn − rn, xn + rn] for all n ∈ N,

so in particular

Π(C) =
⋃

n∈N

[xn − rn, xn + rn].

Moreover, we have for all integer n ≥ 2,

(xn − rn)− (xn−1 + rn−1) = (rn−1 + δ + rn) sin(αn−1)− (rn + rn−1)

> (rn−1 + δ) sin(αn−1)− (rn + rn−1)

> 0,

where the last inequality is due to the definition of rn. Further, we have rn → 0 (thanks to the fact that αn → 0)
and then

(xn − rn)− (xn−1 + rn−1) → 0.

Obviously, this entails that Π(C) is not prox-regular (see also Fig. 4). On the other hand, it can be checked
in a straightforward way that (see again Fig. 4), C is δ

2 -prox-regular. It remains to show that Π(C) is closed.
Observe first that

xn − xn−1 ∼ δαn−1,

so
+∞
∑

n=2
(xn − xn−1) = +∞ (keeping in mind that

+∞
∑

n=1
αn = +∞) and then it follows xn → +∞. Fix any

x ∈ clΠ(C). There is a sequence (un)n∈N of Π(C) such that un ∈ Π(C) for all n ∈ N. By contradiction, assume
that x /∈ Π(C), so x ∈]x1 + r1,+∞[. Combining this inclusion with xn + rn → +∞, we know that the set

A := {n ∈ N : xn + rn < x}
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C

Figure 4. Projection of a prox-regular set which fails to be prox-regular.

is nonempty and finite. Let us set N := maxA. Thanks to the definition of N , we have

x ∈]xN + rN , xN+1 + rN+1[.

Keeping in mind that x /∈ Π(C) ⊃ [xN+1 − rN+1, xN+1 + rN+1], the inclusion above gives

x ∈]xN + rN , xN+1 − rN+1[

and this cannot hold true since it entails that un /∈ Π(C) for n large enough. As a consequence, the set Π(C) is
closed.

Before giving a necessary and sufficient condition ensuring the preservation of uniform prox-regularity under
a projection along a vector space, let us come back to the problem of the prox-regularity of Dom M for a
multimapping M with the prox-regular graph.

Example 7.13. With the notation of Example 7.12, let us consider the multimapping M : R ⇒ R defined by

x 7→







{yn} if x = xn for some n ∈ N

∅ otherwise.

It is clear that
gphM = {(xn, yn) : n ∈ N}

is
δ

2
-prox-regular. Since xn − xn−1 → 0, the set DomM = {xn : n ∈ N} is not prox-regular.

Before stating the last result of the paper, let us recall that a nonempty subset S of a normed space X is
called proximinal whenever ProjS(x) 6= ∅ for all x ∈ X. If X is reflexive, every nonempty weakly closed set in X
is known (and easily seen) to be proximinal. Recall also (see, e.g., [12]) that a nonempty weakly closed subset of
S of a Hilbert space is r-prox-regular for some extended real r ∈]0,+∞] if and only if PS is merely well defined
in the open r-enlargement Ur(S).
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Theorem 7.14. Let H,H′ be Hilbert spaces, S be an r-prox-regular set of H × H′ with r ∈]0,+∞], ΠH :
H×H′ → H the mapping defined by

ΠH(x, y) = x for all (x, y) ∈ H ×H′.

If ΠH(S) is weakly closed, then ΠH(S) is r-prox-regular if and only if for each x ∈ H with dΠH(S)(x) < r, there
exists wx ∈ H′ such that for all v ∈ ProjΠH(S)(x), (v, wx) ∈ S.

Proof. Assume that S′ := ΠH(S) is weakly closed.
⇒, Suppose that S′ is r-prox-regular and fix any x ∈ Ur(S

′). By the r-prox-regularity of S′, we have

ProjS′(x) = {PS′(x)} .

Since PS′(x) ∈ S′, there exist (v, w) ∈ S such that PS′(x) = ΠH(v, w) = v. It follows that

(PS′(x), w) ∈ S,

which justifies the implication ⇒. ⇐, Let us prove the converse. Fix any x ∈ Ur(S
′) and fix also v1, v2 ∈

ProjS′(x) 6= ∅ (thanks to the fact that S′ is proximinal). By assumption, there is w := wx ∈ H′ such that

(v1, w) ∈ S and (v2, w) ∈ S.

Fix any i ∈ {1, 2}. We claim that (vi, w) ∈ ProjS(x,w). Observe first that

dS′(x) = ‖x− vi‖ = ‖(x,w)− (vi, w)‖ ≥ dS(x,w).

By contradiction, suppose that

dS′(x) > dS(x,w).

This inequality gives (a, b) ∈ S such that

‖(a, b)− (x,w)‖ < dS′(x) = ‖(x,w)− (vi, w)‖ ,

and this entails

d2S′(x) > ‖x− a‖2 + ‖w − b‖2 ≥ ‖x− a‖2 . (7.1)

On the other hand (thanks to the inclusion a ∈ S′) we have

‖x− a‖2 ≥ d2S′(x). (7.2)

Combining (7.1) and (7.2), we get the desired contradiction and then we have

dS(x,w) = dS′(x) = ‖(x,w)− (vi, w)‖ .

Since (vi, w) ∈ S, it results that

(vi, w) ∈ ProjS(x,w). (7.3)

Furthermore, note that

dS(x,w) = dS′(x) < r,

i.e., (x,w) ∈ Ur(S). Since S is r-prox-regular, the latter inclusion yields that ProjS(x,w) is a singleton.
From (7.3), we have v1 = v2 and then P ′

S(x) is well defined. As a consequence, S′ is r-prox-regular and
this completes the proof. �
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8. Concluding remarks

In this paper, the concept of a set normally ω(·)-regular is introduced. Such a class of sets encompasses
prox-regular sets in Hilbert spaces and (σ, δ)-subsmooth sets in general Banach spaces. Then, we provided
a Robinson−Ursescu type theorem for multimappings with graph normally ω(·)-regular ensuring a kind of
uniform metric regularity and we gave an estimation of the modulus. Finally, we established new results on
the preservation of prox-regularity by set operations. The key assumption in Theorem 6.5 is the graph prox-
regularity of the multimappings involved in the problem. Many investigations could be achieved and particularly
when one of the multimapping coincides with the subdifferential of a proper and lower-semicontinuous function.
Due to their large number of applications, the prox-regularity of solution mappings to generalized equations
involving the subdifferential of a nonconvex function is an important issue and will be the subject of a future
research project.
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