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Abstract—For a life-long learning, robots need to learn and
adapt to the environment to complete multiple tasks ranging
from low-level to high-level tasks, using simple actions or complex
ones. Current intrinsically motivated solutions often rely on
fixed representations of this environment to define possible
tasks, limiting the possibility to adapt to new or changing
ones. We propose an algorithm that is able to autonomously
1) self-discover tasks to learn in its environment 2) discover the
relationship between tasks to leverage its acquired knowledge
on low-level tasks to solve high-level tasks 3) devise a sequence
of policies of unbounded length to complete the tasks. Our
algorithm, named Continual Hierarchical Intrinsically Motivated
Exploration (CHIME), uses planning to build chains of actions,
the learning of a hierarchical representation of tasks to reuse
low-level skills for high-level tasks and intrinsically-motivated
goal babbling to discover new subtasks and orient its learning
in its high-dimensional continuous environment. To highlight the
features of CHIME, we implement it in a simulated mobile robot
where it can move and place objects.

Index Terms—Intrinsic motivation, Goal-babbling, Hierarchy,
Planning, Adaptive, Continuous learning, Life-long learning

I. INTRODUCTION

The capacity to adapt continuously to our environment is
one of the key questions to understand the human devel-
opment. Indeed, discovering how to interact with unknown
elements in our surroundings while being able to generalise
these competences to new tasks and to new objects is an
essential part of being able to live and operate within it.
This capacity of continuous learning, called life long learning,
constitutes one of the main challenges a service robot has to
tackle to operate in a real life environment.

We thus want to explore the possibility, for a robot, to
discover and learn to perform various tasks from scratch in
an unknown environment. With the perspective of a robot
operating in a daily life environment, we want these tasks
to be multiple, interrelated and of various complexity: from
simply moving itself to using tools in order to reach inacces-
sible objects. To learn these tasks, the robot has to build a
representation of the relations between the interrelated tasks.

II. CONTEXT

A. Active skill learning

Many approaches to motor skill learning have been pro-
posed and studies learning forward and inverse models, map-
ping motor policies to sensorimotor outcomes in order to
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complete multiple learning tasks, are numerous [1], [2]. Still,
as the sensorimotor and the task spaces increase in size and
dimensionality, no comprehensive exploration is possible, and
data collection faces the curse of dimensionality [3].

Some proposed approaches have been inspired by the human
psychology and, more specifically, by how infants drive their
exploration [4], [5]. Indeed, intrinsic motivation, or curiosity,
has been pointed out to be a key factor of exploration [6].

Solutions even more inspired by teleological behaviours
[7], using goal babbling, improve the robustness to high-
dimensional policy spaces [8]. Such as the intrinsically mo-
tivated SAGG-RIAC algorithm [9] However, as the number
of tasks or the dimension of the task space increases, these
methods become less efficient [10], [11].

B. Planning sequences of policies

Considering daily environments, a robot may have to per-
form sequences of policies to complete high-level tasks. Ap-
proaches learning such sequences have been made, through
procedures [12], or by combining Q-learning and intrinsic
motivation [13]. Other approaches use options, that enables
temporally abstract knowledge to be included in the reinforce-
ment learning framework [14].

C. Hierarchical tasks representation learning

Additionally, infants seem to naturally focus on gradually
difficult tasks [15]. They first learn simple sensorimotor con-
trol, then build upon it to learn more complex tasks.

As shown in [16] and [17] intrinsic motivation helps guiding
the exploration even in an hierarchical architecture, with more
numerous models but each being more simple to learn. [5]
proposes a robotic framework based upon this to learn models
using a given hierarchical representation.

D. Adaptation of the task hierarchy

To avoid having to specify this hierarchy by hand, methods
have been proposed to learn this hierarchy: [12] learns it using
a pre determined set of task subspaces for instance.

We extend this approach to let the robot infer by itself and
modify its hierarchical representation. The goal is to fit in the
best possible way to the environment, even if a change occurs
within. We use a similar idea to the adaptive SVM update
proposed in [18]: features improving precision are added to
the SVM and others removed. In our case this means deciding
what models to learn and on which spaces.

Using intrinsic motivation, planning and a task hierarchy,
we propose in this paper the algorithm Continual Hierarchical
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Intrinsically Motivated Exploration (CHIME), an extension of
SAGG-RIAC, to learn multiple hierarchically organized tasks
in high dimension spaces, and adapt to new environments.

III. APPROACH

We wish for a robot capable of learning its hierarchical
representation of the environment. Our approach is grounded
in developmental psychology, using intrinsic motivation to
decide what to explore autonomously.

A. Problem formalization
Let us consider a robot that can interact with its environment

by sequences of motions of unbounded length.
Each of these motions is a primitive policy: π ∈ Π ⊂ RN .

As the policies executed may be of various kinds and dimen-
sions depending on the actuators involved, we partition Π into
different subspaces Πi ⊂ Π. Πi is called a primitive policy
space and πi ∈ Πi corresponds to a motor command that can
be sent to one or several actuators of the robot. E.g. the angle
value for a servo motor.

The robot can also perform sequences of primitive policies
of any length n, π = [π1, . . . , πn] ∈ Πn. The policy space
available for the robot is thus ΠN ⊂ RN.

Each of the policies performed in the environment may
have consequences observable by the robot, we call such
consequences observations and note them ω ∈ Ω ⊂ RM .
And again, as each observation may be of various kinds, we
partition Ω into different subspaces Ωi ⊂ Ω. Ωi is called an
observable space. E.g. an object position.

Let us note F = Π ∪ Ω the feature ensemble, group-
ing both primitive policies and observations. Thus, F =
{Π1, . . . ,ΠN ,Ω1, . . . ,ΩM} and we note Fi, called feature
space, each one of its subspaces.

To learn how to interact with its environment, the robot
learns models of relations between policies π and observations
ω, and more generally between features f and observations
ω. Indeed, our robot may learn how to reach an observation
value by inducing first a change in another observable of the
environment. E.g. pushing an object can be performed after
placing the robot close to the object.

Let us note a model M(ΩA → FA) : ωg 7→ π′f . ωg is an
outcome we want to induce in the environment, called goal,
and π′f is the feature policy, or policy, to reach or execute
(if primitive or not ) in order to reach ωg . Please note that a
policy can be an observable to reach in order to produce ωg ,
and may not be a primitive policy. A feature policy is noted
π′. ΩA can be a single observable space or a union of them:
ΩA = ∪i∈A={... }Ωi. Likewise, FA is a single feature space or
an union of them: FA = ∪i∈B={... }Fi. M can then be used
as an inverse model: indicating which π′f should be executed
in order to reach best a given ωg observable goal, based on
the data accumulated so far in the robot dataset. Let us note
D this dataset, where all the exploration data are to be stored,
and LM the application realizing this prediction.

Each model M can be seen as a basic skill, letting the robot
perform a given task. E.g. reaching a a specific position.

Let us noteH the ensemble of the models used by our robot.
As our robot aimed to be adaptive, H varies along time.

B. Environmental setup

Fig. 1: Experimental setup on the left, presenting the primitive policy
space Π0 and the observable spaces Ωk. On the right, an example of
a hierarchical task possible in this setup.

To help describing CHIME, we first present our experi-
mental setup: let us consider a robot operating in a 2D room
containing 2 movable objects and 2 fixed ones, as represented
in Figure 1. Additionally, spots are present on the floor of
the room, they are not solid and placing objects on them will
modify an environmental observable value rspots. This setup
is designed to learn interraled tasks of incresing difficulty.

The only primitive policy space considered for this two-
wheeled robot is a 2 dimension parameter controlling the two
wheels : Π = ΠWheels = [−1, 1]2.

The other spaces are all observable spaces: Ωi correspond,
in the order, to the robot position, an object position (relative
to the robot position), the nearest obstacle position, the nearest
spot position and a value rewarding placing objects on spots.

C. Algorithmic architecture
CHIME is iterative and learns by episodes, as outlined in

Figure 2. At each iteration a primitive policy π ∈ Π is executed
and the observations ωi ∈ Ωi are collected and processed.

The robot starts its exploration without any a-priori knowl-
edge on the hierarchy to learn. Thus, starting with D,H = ∅.

When starting an episode (left of the figure), the robot
possesses two exploration methods (represented by dashed
arrows): either a goal oriented exploration or a random policy
one. Both methods select, respectively according to its interest
model or by random, a sequence of features s = [π′k, k ∈
[1, n]] ∈ Fn to be executed.

In the first case, the robot first stochastically selects a model
M ∈ H in respect to the interest of each model Interest(M).
Interest(M) represents the interest the robot considers to
have in exploring such model. It is later detailed in III-D.
Once M is selected, the robot selects a goal ωg ∈ Ω based
on the interest measure, as described in III-D. It then tries to
reach ωg during one or several iterations. At each iteration
it uses planning and its models to compute a sequence of
feature subgoals s = Plan(ωg) ∈ Πn to reach ωg . We
note Plan : Ω → Ωn, ω 7→ s the application constructing
such a sequence. In our implementation, Plan uses the RRT
algorithm to plan this sequence.

When choosing the random policy exploration, the robot
selects a random feature policy space Fi and a random policy
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Fig. 2: Global architecture of CHIME. Dashed arrows correspond to ε-greedy alternative paths, with the probabilities p1 and p2. An episode
starts on the left, by selecting a Model M . The different functions of this architecture are explained in the following sections.

within π′r ∈ Fi. π′r can either be a primitive policy, and thus
be executed directly, or an observable goal that needs to be
transformed into primitive policies first. To match with the
previous case we define the sequence s = [π′r] to be executed:
if π′r ∈ Ω, this is a sequence of subgoals. If π′r ∈ Π, this is
directly a sequence of primitive policies.

In both cases, we obtain a sequence of feature policies
s = [π′k, k ∈ [1, n]] ∈ Fn that needs to be executed in
the environment. For each π′k, π′k may currently not be a
primitive policy, and thus not executable, so we first break it
down into a sequence of primitive policies using Primitive:
πk = Primitive(π′k) ∈ Πn. Let us note Primitive : Ω →
Πn, f 7→ π the application constructing such a sequence. Once
πk is obtained, we execute it and then retrieve the observations
ω ∈ Ω from the environment and store them in D.

Once the policy has been executed, the outcome observable
has been retrieved and stored into D, a mechanism then uses
the data to update the Interest values and another to update
H by creating or modifying models, as described in III-F.

D. Intrinsic motivation

To decide what model and goal to select, CHIME uses
intrinsic motivation, letting the robot decide autonomously
what to explore. For this part, we operate similarly to the
SAGG-RIAC algorithm [9].

The intrinsic motivation revolves around a notion of interest,
indicating which region of Ω are interesting to explore. This
notion is computed using a progress value ProgressiM (ωi) =
|Competencei−1M (ωi) − CompetenceiM (ωi)| for each new
observable ωi, corresponding to the difference of competence
before and after adding ωi to D. CompetenceM : Ω→ [0, 1]
is a measure of competence of how the robot is confident when
computing a policy prediction LM (ωi) using the inverse model
M . It then computes Interesti(ωi) =

ProgresstM (ωi)
dt (i), the

derivative of the progress of ωi using recents items from D.
Let us note Competence(M) the competence of M for all
the data in D.

The whole mechanism is described in [9].

E. Hierarchical representation

As s = [s0, . . . , sn] ∈ Ωn, it first needs to be converted
to a sequence of primitive policies π ∈ Πm in order to
be executable. This is done by using the learned inverse
models on each element of s. We then get π′1 = LM (s) =
[LM (sk), sk ∈ s] ∈ Fn.

As the tasks are hierarchically organised, π′1 may be a
sequence of feature policies to be reached in order to complete
our high-level task ωg . The robot have to apply a new phase of
planning and inverse model prediction, using a model M2, in
order to obtain a lower level sequence π′2 = LM2(plan(π′1)) ∈

Fm
2 . If π′2 is a primitive policy sequence, it can then be

executed without further work, else the process starts again
with π′2 until obtaining a primitive policy sequence.

F. Adaptive hierarchical representation

Fig. 3: Evolution of environment representation. From (a) to (c) the
system has decided to create different models (represented by blue
directed edges) between spaces (represented by nodes). The green
and red edges show the correlation between the policies performed
πr and the outcomes ωk obtained in the different spaces.

CHIME uses an adaptive structuring of its environment
to let the agent create its own hierarchical representation as
illustrated in Figure 3.

Algorithm 1 explicits the update procedure. At each learning
episode, it decides what models to create (l.2), when to add a
feature to a model (l.4) or to remove one (l.6). β is a threshold
avoiding the creation of uncorrelated models, and ε avoiding
flapping between addition/deletion of Fnew in a model.

Figure 3 shows an example of a model evolution during a
learning session while using this dynamic model structuring
method. It first performs random policies on Wheels (Fig 3 a),
measures its correlation with the observations in the different
observable spaces and selects RobotPosition. It then creates
M(ΩRobotPos → ΠWheels) (Fig 3 b). Similarly, it creates
M(ΩObjectPos → ΠRobotPos) (Fig 3 c).

IV. EXPERIMENTAL RESULTS

We have tested CHIME in a python-simulated environment
presenting hierarchical tasks to be learned and obstacles to be
avoided, as described in III-B.

We evaluated the results in regards to the hierarchical
representation built by the robot compared to our ground truth
and, secondly, to the evaluation of task competence, using the
mean of CompetenceM (p) over a predefined testbench.

We use the setup presented in III-B to which we add Πk ⊂
R, k ∈ [1, 9], 9 primitive policy spaces producing no effect
in the environment, like in the previous setup. We also add
Ωk ⊂ R, k ∈ [6, 99], irrelevant observable spaces made of
white noise or fixed values. These additions are useful to verify
that CHIME only creates relevant models.

We did 10 runs and obtained the hierarchical representation
presented in Figure 4 (top). In every run, CHIME has been able
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Algorithm 1 The updateModel function

1: if M(Ωu → any) /∈ H and Competence(M(Ωu → Fu)) ≥ β then
2: H ←M(Ωu → Fu)

3: for each M(ΩM → FM ) ∈ H, and for each Fnew ∈ E do
4: if Fnew 6⊂ FM and Competence(M(ΩM → FM ∪ Fnew)) ≤ Competence(M(ΩM → FM ))− ε then
5: FM ← FM ∪ Fnew

6: if Fremove ⊂ FM and Competence(M(ΩM → FM \ Fremove)) ≤ Competence(M(ΩM → FM ))− ε then
7: FM ← FM \ Fremove

to discover the environment hierarchy and to avoid irrelevant
spaces, requiring around 2300 (σ2 = 800) iterations. It has
successfully identified that using the wheels Π0 is required to
move the robot Ω0, that moving the robot Ω0 and considering
the obstacles Ω3 is pertinent in order to move the objects Ω1,2,
and finally, that moving either the object 1 or 2 and considering
the spot position Ω4 can lead to control the reward value Ω5.

Fig. 4: Model hierarchy discovered (top). Competence evaluation
(bottom) of each model M along the exploration iterations. When
no competence is present, the model has just not been added yet.

On Figure 4 (bottom) it is visible that all the models have a
good final competence. This is coherent as no noise is present
in this setup, the only final competence errors are due to
approximations or imperfections in the physics engine. We
can also see on this figure the hierarchical adaptive aspect of
CHIME: low level models and tasks (as Ω0) are learned at the
very beginning, and once mastered, they let more higher level
models to be learned on top of them.

When applying SAGG-RIAC to this setup, only the first
model is learned as it cannot handle hierarchical models.

To be concise, we didn’t present other results, but adding
or removing possible tasks in the setup are also natively well
managed and discovered by CHIME.

Apart from the representation building, this setup also shows
the capacity of CHIME to tackle hierarchical interrelated tasks,
using its planning and interrelated learning of tasks.

V. CONCLUSION AND FUTURE WORKS

For multi-task learning, we have presented CHIME, to learn
how to complete high-level tasks using unbounded sequences
of policies. The learning process allows the learner to 1)
discover autonomously subtasks to build upon for high-level

tasks 2) discover the relationship between tasks and 3) devise
a sequence of policies of unbounded length and complexity
to complete this task. We have shown that an intrinsically
motivated algorithm can learn relevant spaces and build hierar-
chical models to address multitask learning for a wide variety
of tasks including low-level and high-level tasks.

In future works, we want to deepen the analysis of the be-
haviour of CHIME in different contexts, using more complex
experimental setups and comparing to more algorithms.
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