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The laser powder bed fusion (LPBF) process produces complex microstructures and specific defects. To build 
structural components with an acceptable mechanical integrity, optimization of the processing parameters is 
required. In addition, the evolution of defects under service conditions should be investigated. In this study, the 
nickel-based alloy 718 was studied in the as-built metallurgical state. Laser processing parameters such as the 
laser power, scanning speed, and hatch spacing were modified to evaluate their effects on the porosity, mi­
crostructure, and mechanical properties at high temperatures. The porosity and pore shape were evaluated using 
relative density measurements and image analysis. Moreover, the effects of the microstructure and defects on the 
tensile properties and damaging processes at 650 °C were investigated in air. The results revealed that the 
loading direction is critical to the mechanical integrity of the alloy, due to the specific orientation of the mi­
crostructural interfaces and defects. In addition, from observations of the fracture surfaces, inter-dendritic 
phases were found to act as crack initiation sites. A tensile test was conducted in vacuum at 650 °C and 
2.10-4 s-1, and the results indicated that damage processes were not affected by oxidation when the experi­
ments were carried out in air. 

1. Introduction

Alloy 718 is a wrought or cast nickel-based superalloy that was 
developed by Eiselstein in the 1950s for Huntington Alloys. This alloy is 
widely used in the aircraft, nuclear, and petrochemical industries [1] 
because it can withstand temperatures of up to 650-700 °C keeping 

high strength, good ductility, and excellent stress rupture properties. 
These properties are mainly due to the precipitation of the strength­
ening phases y', and primarily y' ' [2]. Moreover, its high chromium 

content results in good corrosion and oxidation resistances at high 
temperatures. However, several studies revealed that alloy 718 is sen­

sitive to stress corrosion cracking under various service conditions 
[3,4]. Garat et al. [5] explored the effect of oxidation on the mechanical 

behavior of alloy 718 at temperatures ranging from 450 °C to 700 °C, 
and at under tensile strain rates ranging from 10-5 to 10-3 s-1• Under

laboratory air testing conditions, a change in the rupture mode from 
fully ductile when serrated flow occurred to partially ductile with 
brittle intergranular areas in the dynamic strain ageing regime was 
observed. Therefore, depending on temperature, strain rate, and en­
vironmental conditions, intergranular crack initiation and propagation 
may occur, which leads to a decrease in the elongation to failure [6]. 

• Corresponding author.
E-mail address: alexandra.hilaire@ensiacet.fr (A. Hilaire).

Pancou et al. [7] recently demonstrated that alloy 718 produced by 

additive manufacturing is also sensitive to this phenomenon. 
Additive manufacturing includes ail processes that involve the 

layer-by-layer fabrication of near net-shape parts. Laser powder bed 
fusion (LPBF) is the process used in this study, and it is also referred to 

as laser beam melting (LBM), selective laser melting (SLM), or direct 
metal laser sintering or melting (DMLS/DMLM). Metallic powder par­

ticles are melted by an ytterbium fiber laser that scans the surface of a 
powder bed using galvanometer mirrors, to consolidate one slice of the 

metal component. The powder bed is then reconstituted with a thin 
powder layer and melted again to build the final component in the 

desired shape, layer-by-layer. Specific microstructures are therefore 
generated with complex phase transformations, residual stresses, and 

different types of defects. 
A wide range of processing parameters, i.e., the powder choice, 

melting environment, design strategy, and laser parameters are in­
volved in the LPBF process. The choice of the powder with respect to its 
composition, morphology, size distribution, and flow characteristics is 
critical, as it is preferable to obtain a uniform powder bed and to reduce 
the formation of defects such as pores or cracks [8]. Moreover, the 

powder layer thickness should be appropriately set as a fonction of the 

https:/ /doi.org/10.1016/j.addma.2019.01.012 



powder size and melt-pool size, to assure a high alloy density. Never­

theless, the melt-pool size is mainly dependent on the laser parameters 

[9]. An appropriate laser power, scanning speed, and hatch spacing 

enable the production of dense alloys [10,11] with suitable micro­

structures and mechanical properties [12]. Moreover, a change in the 

scanning strategy affects the level of residual stresses and the grain 

texture [13-15]. 

The as-built microstructure of alloy 718 fabricated by LPBF is 

composed of overlapping melt-pools. The solidification of the melt­

pools results in the formation of dendrites oriented along the thermal 

gradient, with widths ranging from 200 nm to 1 µm. Moreover, small 

inter-dendritic Laves phases and primary carbides were observed by 

most of the researchers [16-18]. Each group of dendrites forms grains 

that are elongated along the building direction. 

Post-processing heat-treatments are then required to obtain suitable 

mechanical properties under service conditions. Prior to the ageing 

heat-treatment that leads to the precipitation of strengthening phases' 

and y'', the alloy 718 is typically stress relieved, homogenized, and/or 

annealed. Depending on the heat-treatment temperature, the Laves 

phases are partially or fully dissolved. In addition, carbides and o 

phases may precipitate at grain boundaries or dendrite boundaries 

when the homogenization of the alloy is not fully realized [17,19]. 

Grains remain elongated in the building direction, except when hot 

isostatic pressing (HIP) is carried out after LPBF to close the internai 

defects. In this case, the microstructure is recrystallized with large 

equiaxed grains and annealing twins [16,20,21]. Moreover, defects that 

are connected to the surface remain open. An attempt was made by 

Aydini:iz et al. [20] to close the surface defects using cathodic arc de­

position (Arc-PVD) prior to HIP. 

In the literature, the mechanical properties of alloy 718 were mainly 

reported for the as-built state and heat-treated condition at room 

temperature. Nevertheless, few authors evaluated the mechanical be­

havior under service conditions, namely, at high temperatures such as 

650 °C. With respect to the behavior at room temperature, heat-treated 

alloy 718 produced by LPBF exhibits tensile and low cycle fatigue (LCF) 

properties similar to that of the wrought alloy [17,21,22]. However, 

discrepancies in the properties were observed, and they can be ex­

plained by their high relation with the processing parameters, defects, 

and heat-treatments. For example, after the improvement of the LPBF 

alloy ductility by HIP, microstructural evolutions induced by HIP were 

found to reduce the LCF life of alloy 718, although an increase in the 

ductility was expected due to the decrease in the amount of defects 

[20,21]. In addition, most of the researchers reported anisotropie ten­

sile properties, characterized by different yield strengths and elonga­

tions to failure, which were dependent on the loading direction 

[19,22-25]. 

With respect to the mechanical properties at high temperatures, the 

creep and tensile behavior was evaluated by Kuo et al. [25,26] at 650 °C 

for various metallurgical states. The LPBF alloy in comparison with the 

wrought alloy exhibits a low creep rupture life and a low ductility. 

Moreover, significant differences in the mechanical properties were 

observed between the horizontal and vertical specimens. This behavior 

was explained by the o phase morphology and its precipitation along 

the columnar grain and dendrite boundaries. In addition, Trosch et al. 

[23] and Pancou et al. [7] observed a significant decrease in the duc­

tility when loading in the horizontal direction at 650 °C. This confirms 

the occurrence of oxidation-assisted intergranular cracking at the same 

temperature and strain rate conditions as that in the case of rolled 718. 

Therefore, according to Pancou et al. [7], microstructural parameters 

are not the major controlling factors leading the oxidation-assisted in­

tergranular cracking.

The production of near net shape nickel-based alloy structural ele­

ments with a good mechanical integrity and cracking resistance under 

service conditions has attracted significant research attention. In metal 

additive manufacturing processes, reduction of the processing steps that 

lead to the final product is a major objective that can be reached by 

optimizing the choice of building parameters and topological design. 

However, the zero-defect target has not been realized. Consequently, 

the defects generated by the process require characterization, to assess 

their potential effects on crack initiation. In this study, alloy 718 was 

evaluated under the as-built condition. This was under the assumption 

that if the defects degrade the mechanical properties in as-built me­

tallurgical state, structural strengthening heat-treatments would only 

increase the cracking sensitivity. Therefore, the first step of this study 

was the evaluation of the types of defects that occur in as-built alloy 

718 as a function of the laser processing parameters. The primary focus 

was on the effects of the laser power (P), laser scanning speed (S), and 

hatch spacing (HS) on the defect types. Tensile tests at 650 °C were 

carried out to evaluate the effect of the LPBF defects on the mechanical 

integrity of alloy 718. Moreover, the defect geometry, microstructure, 

loading mode, and environmental effects were evaluated. The final aim 

was to identify the type of defects and/or microstructural elements that 

can lead to the premature damage of the alloy, to reduce their impact 

using an optimized post-processing heat treatment. 

2. Materials and methods

2.1. Material processing route 

All the samples were fabricated by LPBF with 718 gas-atomized 

powder supplied by Carpenter Powder Products (Carpenter Powder 

Products Inc, Bridgeville, USA). Laser powder bed fusion was carried 

out at the Monash Centre for Additive Manufacturing (Australia) using 

two EOS machines: EOS-M280 and EOS-M290 (EOS GmbH Electro 

Optical Systems, Krailling, Germany). The machines were equipped 

with a 400 W Ytterbium fiber laser with a wavelength ranging from 

1060 to 1100 nm, and a laser beam diameter of 100 µm. The fabrication 

was carried out in an argon atmosphere with an oxygen level below 

0.1 %, to prevent oxidation. The laser scanning strategy followed a 

stripe pattern with a rotation angle between two successive layers. The 

samples were fabricated without contour parameters, to accurately 

measure the melt-pool depth of the last layer, with the exception of 

parameter set A. The powder layer thickness was fixed at 40 µm, 

whereas the laser power (P), scanning speed (S), and hatch spacing (HS) 

were modified. These processing parameters are expressed by their 

ratios with respect to a reference value, namely, P1 , Smax, and HSmax, 

respectively. Each parameter set can be related to an energy density dE, 

to represent the surface energy applied to the metal. Different formulas 

were found in the literature to express the laser energy density using the 

laser parameter, scanning speed, hatch spacing, or layer thickness 

[10,11,27,28]. In this paper, the energy density is expressed by dividing 

the laser power (P) (unit: W) by the scanning speed (S) (unit: mm.s-1)

and hatch spacing (HS) (unit: mm): 

dE = P/(S X HS) (1) 

However, it should be noted that due to the reflectivity of the ma­

terial surface, the effective energy transmitted to the material is not 

directly proportional to the beam energy. High laser powers were in­

vestigated to minimize the building time, and the energy density was 

varied between 1.2J.mm-2 and 4.8J.mm-2 to evaluate the geometry

and location of the defects in the LPBF alloy. 

2.2. Powder granulometry and chemical composition 

A laser diffraction particle size analyzer was used to determine the 

powder size distribution. The powder and alloy chemical compositions 

were measured by EAG (Evans Analytical Group SAS, Tournefeuille, 

France) using inductively coupled plasma optical emission spectroscopy 

(ICP-OES) for the high-content alloying elements, glow discharge mass 

spectrometry (GDMS) for the low-content alloying elements, and in­

strumental gas analysis (IGA) for the gas-forming elements. 



2.3. Porosity investigations 

Samples with dimensions 12 mm x 9 mm x 9 mm were fabricated 
to investigate the effect of the processing parameters on the porosity. 
The densities of all the samples were measured using Archimedes' 
method [29]. The samples were weighed four times in air and in dis­
tilled water. The relative densities were then obtained by comparison 
with the density of a wrought 718 sample, which was assumed to be 
fully dense. The uncertainty of the measurement was estimated as 
0.2%. 

To investigate the sizes, shapes, and the localization of the pores, an 
image analysis of the vertical cross-section was conducted. The samples 
were first eut in the vertical direction, mounted, ground, and then po­
lished with an alumina finish using an automatic polishing machine. 
The vertical cross-sections were observed using a MA200 Nikon optical 
microscope (Nikon France SAS, Champigny-sur-Marne Cedex, France). 

A minimum of 50 images, which represent an area of 1 cm2, were 
captured for the entire cross-section and analyzed using ImageJ• soft­
ware. The porosity was calculated based on an appropriate threshold. 
Moreover, only the pores with diameters larger than 1 µm were ana­
lyzed. The shapes of the pores were determined by calculating their 
circularity using the following formula: 

circularity = 41ra/ p2 
(2) 

where a and p are the area and the perimeter of the pores, respectively. 
The pores were assumed to be spherical when the circularity was above 
0.9. 

2.4. Microstructural characterization 

The microstructure was investigated to determine the metallurgical 
state involved in the mechanical behavior of the material during the 
tensile tests. The microstructures of the as-built samples were revealed 
by etching with a 10% oxalic acid solution at 5 V for approximately 5 s, 
or using Kalling's n°2 reagent for approximately 40 s. 

The melt-pool size of the final layer was characterized for various 
processing parameters. Prior to the observation, the samples were eut 
perpendicular to the last laser tracks, to maintain the same observation 
conditions for each sample. They were then observed using an optical 
microscope, and measured using ImageJ" software. The average depths 
and widths of the melt-pools were measured for 40 melt-pools of each 
sample. The widths of the melt-pools were measured at the top and at 
40 µm from the bottom of each melt-pool, to ensure consistency with 
the layer powder thickness of 40 µm. 

The dendritic microstructure was observed on the etched samples 
using a secondary electron detector of a LEO435VP scanning electron 
microscope (SEM) (Carl Zeiss France SAS, Marly-le-Roi, France) or on 
the polished samples with alumina finish using a backscattered electron 
detector. The inter-dendritic precipitates were examined using a JEOL 
JSM-7800 F Prime FEG-SEM (JEOL Europe SAS, Croissy-sur-Seine, 
France) with an accelerating voltage of 5 kV. Their identification was 
performed at 200 kV using a JEOL JEM 2100 F transmission electron 
microscope (TEM) equipped with SDD Bruker energy dispersive x-ray 
spectrometry (EDS) (Brucker France SAS, Palaiseau, France). 

2.5. Mechanical integrity investigation 

Large blocks (80 mm x 15 mm x 70 mm) with five selected proces­
sing parameters were built to machine the fiat tensile test samples in 
three directions (Fig. 1). Moreover, the processing parameters were 
selected such that only one parameter, i.e., P, S, or HS was changed for 
each process. Furthermore, they are defined in Table 1 and denoted by 
the letters A, B, C, D, and E. 

Tensile test samples were fabricated using an electro-sparking ma­
chining in accordance with the geometry presented in Fig. 2. There­
after, they were ground using SiC papers (180-2400 grit), to remove the 

Fig. 1. Sampling of tensile samples in a large block. 

Table 1 

Processing parameters of samples used for melt-pool size characterization and 

tensile tests. 

Processing parameters A A B C D E 

(core) (upskin') 

P/P1 0.9 0.5 1.2 1.0 1.0 1.2 

S/Smax 0.4 0.3 0.6 0.6 0.6 0.8 

HS/HSmax 1.0 0.8 1.0 1.0 0.5 1.0 

dE (J.mm-
2
) 2.7 2.8 2.7 2.2 4.8 1.9 

* These processing parameters were used only for the final layer of sample A. 

15 

0 

C\l 

Fig. 2. Geometry of tensile samples. 

heat-affected zone. Tensile tests were conducted on the as-built fiat 
specimens at 650 °C in air, with a strain rate of 10-4 s-1 using an MTS
Criterion Model 43 equipped with a three-zone resistance furnace (MTS 
Systems SAS, Créteil Cedex, France). The tensile samples were then 
heated at 30 °C.min -i up to 650 °C, which allowed for the precipitation 
of prior to the tensile test. The strain was measured using a high­
temperature contact extensometer with a gauge length of 18 mm. To 
determine a possible effect of the environment on the mechanical in­
tegrity, tensile tests were also conducted in vacuum using an MTS 
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Fig. 3. Particle size distribution of the 718 powder. 

Synergie 1000 (MTS Systems SAS, Créteil Cedex, France) equipped with 
a three-zone halogen lamp furnace, laser extensometer, and vacuum 
system. The fracture surface and gauge length were then observed using 
a FEI Quanta450 scanning electron microscope (FEI France SAS, Vil­
lebon-sur-Yvette, France). 

3. Results and discussion

3.1. Powder and chemical composition 

The morphology of the powder was found to be mainly spherical 
with a mass median diameter of approximately 40 µm (Fig. 3). Several 
gas pores and satellites were observed within the powder particles, as 
illustrated in Fig. 4. The chemical composition of the as-built alloy 
fabricated with parameter set A was compared with that of the powder. 
The results presented in Table 2 reveal that the powder and as-built 
alloy had similar chemical compositions. In particular, no differences 
were observed with respect to the aluminum and manganese contents, 
despite the low boiling points, low vaporization heats, and high vapor 
pressures of these elements. However, the powder exhibited a higher 
oxygen and hydrogen content than that of the as-built alloys. This may 
be due to the contribution of the adsorbed water vapor during the 
storage of the powder over a long period of time. 

3.2. Microstructure and defects in as-built alloy 718 

The microstructural characterization revealed that the LPBF process 
generates microstructures of different size scales. In Fig. Sa, the su­
perposition of the melt-pools on the section parallel to the building 
direction (BD) was observed, which confirms the layer-by-layer fabri­
cation process. The melt-pool width was hundreds of micrometers, 

Fig. 4. Optical micrographs of 718 powder particles. 

depending on the processing parameters. In Fig. Sb, laser tracks in ac­
cordance with the scanning pattern were observed on the section per­
pendicular to the building direction. The width of these tracks was 
equivalent to the chosen hatch spacing, and the angle between two 
tracks corresponds to the pattern rotation angle between two successive 
layers. Moreover, Fig. 5 reveals the anisotropie grain morphology. As

expected, due to the thermal gradient, grains were elongated in the 
building direction, whereas several equiaxed grains were observed in 
the section perpendicular to the building direction. 

Each grain is formed by a stack of parallel dendrites. Figs. 6 and 7 
present the columnar-dendritic solidification structure of the alloy 718 
within the grains. The dendrites had widths Jess than 1 µm, and were 
oriented across the upper center of the melt-pool, due to the thermal 
gradient during melt-pool solidification. Moreover, as reported by 
Shifeng et al. [30] and Tomus et al. [31], epitaxial dendritic growth was 
observed through the layer-layer melt-pool boundaries, and a change in 
the dendrite direction was observed between the track to track melt­
pool boundaries. Therefore, when epitaxial growth occurred, the melt­
pool boundary was underlined by the swelling of the dendrites along 
5 µm. This may be due to the modification of the local heat transfer at 
the bottom of the melt-pool during the solidification process, which led 
to a decrease in the cooling rate and an increase in the dendrite arm 
spacing (Fig. 7). The inter-dendritic phase precipitation was therefore 
enhanced in this region. 

Fig. 8 presents the inter-dendritic phases with sizes ranging from 
tens of nanometers to 400 nm. These phases were identified as Laves 
phases of the NbCr2 type, and as primary carbides of the NbC type, as 
presented in the TEM diffraction patterns in Figs. 9 and 10, respec­
tively; in conjunction with the EDS analysis results. Table 3 presents the 
chemical compositions of the Laves phases and primary carbides, which 
are in good agreement with the literature [32-34]. The dendrite trunk 
was depleted in Nb, Si, Ti, and Mo, given that the partition coefficient of 
these elements are less than unity [33]. Therefore, there was an en­
richment of Nb, Si, Ti, and Mo in the inter-dendritic liquid during so­
lidification, which resulted in the precipitation of primary carbides 
(Nb,Ti)C and Laves phases (Nb, Mo, Ni, Si)(Fe, Cr, Ti)2 by an eutectic 
reaction in the inter-dendritic region [35]. Moreover, no sub-structure 
spots related to the strengthening precipitates were observed in the 
diffraction patterns. 

The as-built 718 metallurgical state is also characterized by the 
occurrence of specific defects. Spherical gas pores with diameters of 
several micrometers were observed in close proximity to the melt-pool 
boundaries, as seen in Figs. 6 and 13. It is probable that they originated 
from the gas trapped inside the powder particles during the gas ato­
mization [36] and the gas trapped between the powder particles during 
the laser melting. Nanometric pores were also observed in the inter­
dendritic regions, as shown in Fig. 8. They were formed from the gas 
enrichment of the liquid during the solidification process. Figs. 11 and 
12 display other pores with irregular shapes, which indicate a lack of 
fusion. This pore type is due to insufficient melting, resulting from very 
small overlaps between adjacent or bottom-layer melt-pools. The mi­
crostructure in close proximity to this type of defect is typical of par­
tially un-melted powder, as shown in Fig. 12, where similar micro­
structures were observed for the un-melted powder particle attached to 
the sample edge and in close proximity to the irregular cavities. Fig. 13 
presents intergranular and/or inter-dendritic cracks with origins that 
can be explained by the high thermal stresses induced by the process, in 
addition to the inter-dendritic segregations that can induce liquation 
cracking in the heat-affected zone. The nature and the amount of these 
defects can be modified by applying different processing parameters. 

3.3. Effect of processing parameters on the relative density of alloy 718 

The relative density is presented in Fig. 14. Ail the samples were 
more than 97% dense. The relative densities of the samples initially 
increased in accordance with an increase in the energy density, then the 



Table 2 

Chemical composition of the 718 powder and the as-built alloy (unit: wt. %). 

Elements Ni Cr Fe Nb Mo Ti Al 

Powder 53.5 19.7 16.4 5.06 3.11 0.95 0.688 

± 0.7 ± 0.2 ± 0.2 ± 0.05 ± 0.02 ± 0.01 ± 0.008 

As-built alloy 53.9 19.7 16.5 5.09 3.21 0.96 0.692 

± 0.4 ± 0.5 ± 0.1 ± 0.10 ± 0.03 ± 0.01 ± 0.009 

Elements Co w Si Mn p Cu 

Powder 0.32 0.16 0.044 0.014 0.005 0.0030 

± 0.1 ± 0.05 ± 0.009 ± 0.003 ± 0.001 ± 0.0006 

As-built alloy 0.32 0.19 0.038 0.013 0.004 0.0028 

± 0.1 ± 0.05 ± 0.008 ± 0.003 ± 0.001 ± 0.0006 

Elements B s 

Powder 0.0018 0.0026 

± 0.0004 ± 0.0005 

As-built alloy 0.0014 0.0023 

± 0.0003 ± 0.0005 

values were constant at 99.6% from 1.8 J.mm - 2
, which is consistent 

with the results obtained by Wang et al. [10]. The variations observed 

at higher energy densities may be explained by the high uncertainty of 

the measurements. Nevertheless, the lower hatch spacing resulted in 

denser samples, which is consistent with an improved overlap between 

melt-pools. Moreover, a higher density was reached with the same 

scanning speed by increasing the laser power, as shown in Fig. 15. 

However, the increase in the power at a low scanning speed resulted in 

a slight decrease in the relative density, which could be indicative of 

keyhole formation [37]. This trend was not clearly observed in Fig. 14; 

however, a decrease in the relative density was expected at an energy 

density higher than 5 J.mm - 2
• 

Relative density measurements therefore provide a processing 

window to minimize the time required for the production of dense 

parts. However, no information on the size, spatial distribution, and 

morphology of the defects is available. Consequently, image analysis 

was conducted to accurately characterize the size, morphology, the 

surface fraction of the defects. 

3. 4. Effect of processing parameters on the porosity and on the shape of

pores

Fig. 16 presents the evolution of the porosity as a function of the 

energy density using the same hatch spacing and two different laser 

powers. An increase in the energy density for a given laser power was 

therefore equivalent to a decrease in the scanning speed. The image 

analysis results confirmed that the porosity decreased significantly at 

low energy densities (continuous lines). Moreover, an increase in the 

laser power increased the porosity at low energy densities due to the 

higher scanning speed, which generated more defects. Nevertheless, for 

0 C N H 

0.023 0.073 0.021 0.0009 

± 0.002 ± 0.002 ± 0.002 ± 0.0001 

0.011 0.068 0.023 0.00019 

± 0.001 ± 0.002 ± 0.002 ± 0.00002 

Fig. 6. Optical micrographs of dendritic growth through melt-pools and sphe­
rical pores. 

the same scanning speed, the porosity decreased when the laser power 

increased. Two types of pores were observed: irregular pores and 

spherical pores. Irregular pores can be removed using high energy 

densities, whereas spherical pores are present regardless of the pro­

cessing parameters used. In this study, the spherical porosity was below 

0.1 %, and decreased slowly in accordance with an increase in the en­

ergy density. At high energy densities, the pores were mainly spherical, 

whereas the irregular porosity increased when the energy density de­

creased. The apparent optimal parameters correspond to the highest 

energy density. Nevertheless, Fig. 17 reveals that large spherical pores 

with diameters of 80 µm exist at high energy densities, whereas the 

Fig. 5. Optical micrographs of as-built 718 microstructure displaying melt-pools and grains in sections (a) parallel and (b) orthogonal to the building direction. 



Fig. 7. SEM image of dendrites through a melt-pool boundary. 

mean diameter is approximately 5 µm. 

3.5. Effect of processing parameters on the microstructure of as-built alloy 

718 

As previously discussed, irregular pores can be avoided by using a 

suitable set of processing parameters that result in sufficient overlap 

between the melt-pools. Figs. 18 and 19 reveal the effects of the hatch 

spacing, laser power, and scanning speed on the morphology of the 

melt-pools for energy densities higher than 1.8 J.mm-2• First, a com­

parison of the melt-pool shapes between processing parameters A and B 

revealed that an equivalent energy density does not result in the same 

melt-pool shapes. An increase in the power and scanning speed of 

parameter B resulted in wider and deeper melt-pools than those of 

parameter A. Nevertheless, the width at a height of 40 µm was lower for 

parameter B. For the same hatch spacing and scanning speed, an in­

crease in the laser power (from parameters C to B) resulted in deeper 

and slightly narrower melt-pools. However, the same ratio was ob­

tained between the maximal width and the width measured at a height 

of 40 µm. According to Sadowski et al. [9], an increase in the laser 

power increases the depth and width of the melt-pools. Nevertheless, 

the authors observed a stabilization of the width at a high laser power 

for several scanning speeds. Processing parameters C and B were in the 

stabilization region, and the values obtained for parameter C were in 

agreement with the results obtained by Sadowski, as seen in Fig. 19. 

With respect to the laser scanning speed, the melt-pool depth and 

maximal width increased when the scanning speed decreased (from 

parameters E to B), whereas the width at a height of 40 µm decreased. It 
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is therefore evident that an increase in the energy density energy due to 

changes in the laser power or scanning speed promote a significant 

evolution of the melt-pool shape. However, the melt-pool shape is also 

influenced by the hatch spacing. The melt-pool depth was doubled by a 

significant decrease in the hatch spacing (from parameters C to D). 

Moreover, it should be noted that the defects in sample E modified the 

melt-pool shape by changing the thermal gradient (Fig. 18). Similarly, 

when a surface roughness is created after the melting, the melt-pools of 

the following layer do not possess the same shape, due to the difference 

in thermal conductivities between the solid alloy and powder. Fur­

thermore, the shapes of the melt-pools were not similar to the shapes 

that were observed in the laser keyhole-mode by King et al. [38]. 

Therefore, the increase in the gas pore size at high energy densities is 

not related to this effect under these conditions, except if gas pores are 

localized in close proximity to the edges where the powder bed locally 

modifies heat transfers. 

3. 6. Effect of mechanical loading direction on the mechanical properties at

6so·c 

Tensile samples were machined in three directions in the blocks. 

Due to the microstructural anisotropy associated with grain mor­

phology and melt-pool shape, the mechanical behavior was expected to 

be anisotropie as a fonction of the sample direction, as shown in Fig. 20. 

The loading direction was parallel to the building direction for the VY 

tensile sample, whereas it was perpendicular to the building direction 

for HY and HZ samples. The stress level applied to the layer-layer melt­

pool boundaries was therefore high for the VY sample. Moreover, in the 

case of the HY and HZ samples, the track to track melt-pool boundaries 

were the most stressed interfaces. In addition, with respect to the grain 

shape elongated in the building direction, longitudinal loading corre­

sponds to the VY sample, whereas transverse loading corresponds to the 

HY and HZ samples. 

Fig. 21 presents the tensile behavior of the as-built alloy 718 for the 

different loading directions at 650 °C and a strain rate of 10-4 s-1• The

vertical sample exhibited a larger elongation and smaller tensile 

strength than the horizontal samples. This anisotropy was also observed 

in the literature for as-built and heat-treated nickel-based alloys at 

room temperature and high temperatures [16,19,22,23,39]. Deng et al. 

[24] explained that this mechanical anisotropy is mainly induced by a

different residual stresses and dislocations accumulated in the as-built

horizontal and vertical samples. Nevertheless, the grains morphology is

also a critical factor, and the presence of elongated grains along the

building direction can explain the mechanical behavior. Moreover,

more grains boundaries are present to disrupt the motion of dislocations

when the loading is horizontal to the building direction.

For comparison, a solid solution 718 rolled sheet was also tested 

under the same mechanical testing conditions. Fig. 21 reveals that the 

yield strength of as-built alloy 718 (629 MPa) is significantly higher 
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Fig. 8. FEG-SEM images of Laves phases and nanometric pores in the inter-dendritic regions: dendrites in directions (a) parallel and (b) orthogonal to the primary 
arm. 



Fig. 9. (a) TEM bright field image and (b) diffraction pattern of Laves phase in as-built alloy 718. 

liiM11i 
Fig. 10. (a) TEM bright field image and (b) diffraction pattern of NbC in as-built alloy 718. 

Table 3 

Chemical composition (wt. %) of inter-dendritic precipitates and dendrite trunk 

measured using TEM-EDS. 

Elements Ni Cr Fe Nb Mo Ti Al Si 

Dendrite trunk 54.7 19.7 17.3 4.1 2.8 0.7 0.5 0.2 
Laves phases 41.7 14.7 11.1 25.7 4.8 1.2 0.5 0.6 
Laves phases [33] 45.8 13.3 11.6 22.3 4.6 1.2 1.4 
NbC 4.7 6.8 1.4 69.6 6.8 9.4 0.2 1.2 
NbC [33] 4.7 2.5 1.5 80.4 2.5 8.4 0.0 

than that of the solution annealed rolled sheet (392 MPa). The high as­

built strength can be explained by the fine dendritic microstructure and 

the inter-dendritic precipitation of the Laves phases and carbides. In 

addition, the elongation of the as-built alloy 718 was lower in the 

horizontal and vertical directions than that of the solution annealed 

sheet; however, they both reached similar ultimate tensile strengths. 

The as-built alloy therefore reached the ultimate tensile stress that 

precedes damage in a shorter time than the solid solution rolled alloy. 

Similarly, Aydinèiz et al. [20] considered that the high strength and the 

low ductility of the as-built 718 are due to ill-defined boundaries 

formed by the Laves phase precipitates and sub-micron sized cell 

structures. 

It should be noted that the tensile curves for HY, VY, and the rolled 

sheet exhibited a serrated shape which is indicative of plastic in­

stabilities known as the Portevin-Le Chatelier (PLC) effect. This is 

0BD 

Fig. 11. SEM image of an un-melted powder particle surrounded by lack-of­

fusion defects and spherical gas pores in the as-built alloy 718. 

consistent with the results obtained by Max [ 40], which demonstrate 

the occurrence of this effect in a solid solution rolled alloy 718 below 

700 'C at a strain rate of 10-4 s-1; in addition to the results obtained by

Rezende et al. [ 41], who observed a serrated flow at temperatures of up 

to 750 'C at a strain rate of 3.2 x 10-4 s-1 for an annealed forged alloy

718. However, no serrations were observed on the HZ tensile curves,

and they were only present at the early stages of the plasticity for the

HY and VY tensile curves, which suggests that the limit between the



Fig. 12. SEM image of un-melted powder particles located beneath and on the 
top of the as-built alloy 718 surface. Lack of fusion was visible around the in­
ternai powder particle. 

Fig. 13. Optical micrographs of intergranular cracks and gas pores in as-built 
alloy 718. 
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Fig. 14. Effect of laser energy density on the relative density of alloy 718 for 
two hatch spacing (HS) values. 

solute dragging and the triggering of the PLC instabilities was close to 
10-4 s-1 at 650 °C.

3. 7. Effect of mechanical loading direction on the fracture mode at 650 °C 

Fracture surfaces were observed using an SEM, to clearly determine
the fracture mode of the LPBF alloy 718. For the vertical samples, 
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Fig. 15. Effect of scanning speed on the relative density for two laser power (P) 
values and a given hatch spacing. 
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Fig. 17. Effect of energy density dE on the spherical pore size for the laser 
power Pl. 

Fig. 22a presents a mixed fracture mode with ductile, inter-dendritic, 
and inter-melt-pool fractures. These structures are similar to the laser 
track pattern observed on the horizontal sections. Moreover, the cross­
sectional observation of the vertical samples after the tensile test re­
vealed cracks that propagated mainly at the grain boundaries, as shown 
in Fig. 23a. These intergranular cracks were located at grain tip due to 
the relationship between the loading direction and grain orientation. 



Fig. 18. Morphology of the final melt-pool in samples with heights of 9 mm fabricated with processing parameters A, B, C, D, and E (Table 1). 
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Fig. 19. Dimensions of final melt-pools observed in samples with heights of 
9 mm fabricated with the processing parameters presented in Table 1. Para­
meter C was compared with values obtained by Sadowski et al. [9]. 

Moreover, in some cases, they matched with the melt-pool boundaries. 

On the other hand, the fracture surface of the horizontal samples 

(Fig. 22b) were characterized by regions with inter-dendritic fractures, 

which were larger than those of the vertical samples. These results are 

consistent with the presence of elongated grains in the building 
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Fig. 21. Tensile curves of alloy 718 built with parameter set A obtained at 
650 °C and a strain rate of 10-

4 s·1 as a function of the loading directions (cf. 
Fig. 1). 

direction. Figs. 22(b) and 24 reveal several melt-pool boundaries frac­

tures that were in accordance with the inter-dendritic fracture by 

shearing. However, several undamaged melt-pool boundaries were also 

observed on the large inter-dendritic fracture surface, as shown in 

Fig. 25. This fracture mode may be related to the large intergranular 

cracks that propagated along the elongated grains and across several 

melt-pool boundaries without damaging them, as observed in 

Fig. 23(b). The cross-sectional observation also revealed several 

d. 

Fig. 20. Tensile sample volume superimposed on the microstructure at the same scale, illustrating the relative orientation between the loading direction (grey 
arrows) and microstructural anisotropy. The width (wd.) and the thickness (th.) of the reduced section are indicated for each tensile sample orientation. 



Fig. 22. SEM images of fracture surface of (a) vertical VY and (b) and horizontal HY tensile samples fabricated with parameter set A. Fractures on melt-pool 
boundaries are underlined by dotted lines. 

Fig. 23. Intergranular ductile cracks observed after tensile test in the bulk of the (a) VY and (b) HY tensile samples fabricated with parameter set A. 

Fig. 24. Fracture at melt-pool boundaries observed on fracture surface of HY 
tensile sample. 

intergranular cracks, which are indicative of the inter-dendritic fracture 

mode. Thus, vertical and horizontal samples have two different fracture 

surfaces due to the microstructural anisotropy. However, in both cases, 

the fracture surface was mainly ductile with 1-µm wide dimples, and it 

contained inter-dendritic, intergranular, and inter-melt-pool fractures. 

Only the size and the localization of the regions varied in accordance 

with the microstructures observed for both sections, as shown in Fig. 5. 

In addition, inter-dendritic fractures exhibit a lower ductility than 

trans-dendritic fractures, due to the near-continuous Laves phase and 

carbides precipitation between the dendrites. This fracture mode, when 

located at a grain boundary, could also be explained by the opening and 

the propagation of pre-existing intergranular micro-cracks. In the case 

of trans-dendritic fractures, 1-µm wide dimples were formed due to the 

initiation of micro-voids around the inter-dendritic precipitates, 

Fig. 25. SEM image of HY fracture surface displaying an inter-dendritic frac­
ture. Undamaged melt-pool boundaries are indicated by arrows. 

followed by their deformation and coalescence in the dendrite trunk, as 

shown in Fig. 26. 

It should be noted that inter-dendritic fractures were mostly present 

at the edges of the tensile samples, and that the region was slightly 

oxidized. The coupling between oxidation and the fracture mode 

identified on the aged materials may occur on the as-built material. 

Therefore, the tensile was conducted in vacuum, to prevent an oxygen­

assisted crack initiation process. As shown in Fig. 27, at the specified 

strain rate, the testing environment did not have a significant effect on 

the mechanical behavior and the elongation to fracture of the vertical 

samples. Moreover, serrated plastic flow was observed at the early 

stages of the plasticity, which indicates that the boundary between the 

dynamic strain aging (DSA) and PLC was close to the testing strain rate. 

Consequently, oxygen-assisted crack initiation and propagation could 



Fig. 26. Inter-dendritic and trans-dendritic fracture surface as function of the 
loading direction. 
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Fig. 'Z7. Tensile test of vertical samples fabricated with parameter set A at 
650 °C and strain rate of 2.1 o-4 s·1 in air and in vacuum.

not occur, and the elongation was therefore not affected by the en­

vironment. However, for a lower strain rate and a higher flow stress, a 

decrease in the total elongation is expected under the in-air testing 

conditions [6]. Therefore, the inter-dendritic fracture can be mainly 

explained by the presence of the brittle Laves phases, which tend to 

lower the decohesion stress between dendrites. Depending on the 

dendrite orientation, the stress reaches the inter-dendritic decohesion 

stress, which leads to fracture initiation, or a ductile fracture develops 

around the inter-dendritic precipitates. 
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3. 8. Effect of processing parwneters on the mechanical properties at 650 °C 

Tensile samples with degraded processing parameters were also 

tested to determine the effect of the defects on the mechanical integrity 

of the alloy 718 at 650 °C. The tensile test curves of the horizontal and 

vertical samples are presented in Fig. 28. It should be noted that only 

the processing parameter A exhibited serrated flow in the horizontal 

loading direction, whereas the PLC effect is observed for ail processing 

parameters in the vertical loading direction. Therefore, interactions 

between solute elements and dislocations can be modified by the pro­

cessing parameters and loading direction. 

The mechanical properties obtained at 650 °C were plotted as a 

fonction of the relative density in Fig. 29. The yield strength (YS) and 

elongation (s D found by Kuo et al. [ 42] for the as-built alloy were 

equivalent to that obtained for processing parameter D, whereas the 

ultimate tensile strength CUTS) was close to strength obtained with 

processing parameter A. For relative densities higher than 99%, the 

yield strength and ultimate tensile strength were not related to the 

energy density, relative density, or melt-pool size. The morphology and 

size of the grains were not investigated; however, they may have an 

influence on the material strength. With respect to the elongation to 

failure, dense tensile samples exhibit a better elongation when they are 

stressed in the direction parallel to the building direction ( vertical). The 

vertical elongations obtained with the processing parameters A and D 

were 20% and 24%, whereas their horizontal elongations were 13% 

and 15%, respectively. The higher elongation obtained with processing 

parameter D could be explained by the lower yield stress. However, 

when defects are initially present in the material, the vertical elonga­

tion falls below 5%, regardless of the amount of defects; whereas the 

horizontal elongation is dependent on the rate of defects. For example, 

in comparison with the processing parameters A and D, samples Band C 

exhibited a significant drop in vertical elongation, but only a slight 

reduction in the horizontal elongation, despite the observation of lack­

of-fusion defects on the fracture surface, as shown in Fig. 30. The de­

fects therefore decreased the elongation of the alloy. Nevertheless, 

given the size of the defects, the mechanical properties were still ap­

propriate. However, when the scanning speed was increased sig­

nificantly, as in the case of the processing parameter E, the yield 

strength decreased by 100 MPa, and the horizontal elongation de­

creased up to 5.5% due to the high porosity. Large Jack-of-fusion defects 

were observed on fracture surface E, which explains the degradation of 

the mechanical properties. Therefore, when the processing parameters 

are slightly degraded, the defects, that are mainly created by in­

sufficient overlaps between the melt-pools layers, lead to a significant 

decrease in the vertical elongation, whereas the horizontal elongation 

remains appropriate. When the defects are highly distributed in the 

material, there is also a significant decrease in horizontal elongation. 

Lack-of-fusion defects were observed on the fracture surfaces, in 

addition to a surrounded inter-dendritic fracture, as shown in Fig. 30. 

The shape of the defect therefore generated a stress concentration at the 
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Fig. 28. Tensile test curves of horizontal and vertical as-built samples at 650 °C and strain rate of 10- 4 s·1 for parameter sets A, B, C, D, and E, as shown in Table 1. 
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Fig. 29. Mechanical properties of horizontal and vertical as-built samples at 

650 'C and strain rate of 10-4 s·1 for parameter sets A, B, C, D, and E, as shown 

in Table 1. Tensile properties obtained by Kuo et al. [ 42] at 650 'C of the 

vertical as-built 718 samples under a strain rate of 4.25 x 10-4 s·1 were plotted

on the graphs. 

internal surface of the pores; thus, an inter-dendritic fracture was in­

itiated. Nevertheless, this type of fracture was only observed because 

the dendrite orientation was perpendicular to the loading direction. In 

the horizontal samples, this condition was easily reached due to the 

growth of dendrites in the building direction. With respect to the ver­

tical samples, such a condition was satisfied. This was because the 

formation of cavities due to the Jack of fusion modified the surrounding 

thermal flows, which created radial dendrites during the solidification, 

as observed in Fig. 11. Consequently, the spatial orientation of lack-of­

fusion defects and the specific dendrite orientation around them are 

two important parameters involved in the damaging process. They af­

fect the vertical ductility more severely than the horizontal ductility at 

a low defect density (parameter sets B and C in Fig. 29). 

Conversely, no significant changes were observed in the micro­

structures around the spherical gas pores, and a complete plastic de­

formation with a ductile fracture was observed around such pores 

(Fig. 31a). At the core of the gauge length, spherical pores were only 

deformed in the loading direction. Nevertheless, the gauge length sur­

face exhibited intergranular cracks that initiated within the open pores, 

as shown in Fig. 31b. In addition, the presence of pre-existing cracks 

may also degrade the mechanical integrity of the alloy, depending on 

the loading direction. 

4. Conclusion

Different sets of processing parameters were used in this study, to 

investigate their effects on the microstructural evolution alloy 718 

fabricated by LPBF. Moreover, significant attention was directed to­

ward the defects and their effects on the mechanical integrity of the 

alloy, evaluated using tensile tests at 650 'C in a controlled environ­

ment. 

The following conclusions were made: 

• The modification of laser processing parameters has an influence on

the type of defects and the melt-pool shape, even when the relative

density is higher than 99.5%

• Fracture surfaces exhibit inter-dendritic, intergranular, and inter­

melt-pool fracture modes. Inter-dendritic fractures initiate the ma­

terial failure due to an interaction between a high stress localization

and the precipitation of brittle Laves phases in the inter-dendritic

spaces.

• Internai gas pores cannot be removed by optimizing the processing

parameters. However, they do not initiate the fracture of the alloy

under tensile loading. Conversely, surface gas pores present after

machining can initiate cracks.

• The lack of fusion creates irregular-size cavities that localize and

concentrate stresses. Given that they are also surrounded by speci­

fically orientated brittle interfaces, the initiation of sharp cracks is

promoted; thus, local toughness is achieved in a short period of

time.

• The loading direction in comparison with the microstructural in­

terfaces and defect orientation is critical to the mechanical integrity

of the alloy. Although the vertical loading direction exhibits a better

elongation for the defect-free alloy, the presence of Jack-of-fusion

defects is more critical in this direction than in the horizontal di­

rection.

• No environmental effect on the as-built alloy was observed under

the mechanical testing conditions.

Finally, the optimization of the processing parameters should be 

carried out to minimize the building time and to obtain an improved 

microstructure and defect orientation under the in-service local loading 

direction conditions of the structural element. Novel post-fabrication 

heat treatments that locally modify the microstructures around defects 

could be developed to improve the local cracking resistance of alloy 718 

fabricated by LPBF. 



Fig. 30. Un-melted areas observed on the fracture surface of the horizontal samples fabricated with processing parameters C (a) and E (b). 

Fig. 31. (a) Ductile fracture around gas pore and (b) open gas pore observed at the surface of a tensile sample fabricated with processing parameter A after tensile test 

under vacuum. 
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