
HAL Id: hal-02072258
https://hal.science/hal-02072258

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technical Debt in Computational Science
Konrad Hinsen

To cite this version:
Konrad Hinsen. Technical Debt in Computational Science. Computing in Science and Engineering,
2015, 17 (6), pp.103-107. �10.1109/MCSE.2015.113�. �hal-02072258�

https://hal.science/hal-02072258
https://hal.archives-ouvertes.fr


Technical debt in computational science

Konrad Hinsen

Technical debt is a recent metaphor that has been rapidly adopted by the
software industry. It was first used by Ward Cunningham in 1992 in a report on
a software development project (http://c2.com/doc/oopsla92.html). The term
refers to future obligations that are the consequence of technical choices made for
a short-term benefit. The standard example is writing sub-optimal code under
time pressure, knowing that the code will have to be refactored or rewritten later
in order to make the software maintainable. This effort, which does not improve
the software’s utility for its users and therefore does not add market value to it,
serves to pay back the debt.

The word “debt” emphasizes the analogies to monetary debt. Both are future
obligations incurred in exchange for a short-term benefit. But the analogy goes
further: both generate interest. In the example of the hastily written code, any
work done on it before refactoring or rewriting, be it for fixing bugs or for quickly
adding features, will require more effort than it would for well-written code. It is
also probable that much of this work will have to be repeated after paying back
the debt. The additional effort is the equivalent of paying interest on a debt.
Another useful analogy is debt default: defaulting on a technical debt is lowering
one’s quality standards, accepting that an objective cannot be met because of
a bad technical choice in the past. For a company, that can mean the end of a
product line, or in the worst case the end of the company itself.

Just like a financial debt, a technical debt is not necessarily a bad thing.
There can be good reasons for cutting corners and fixing the resulting problems
later. For a company, being the first to propose a product on the market is a
competitive advantage that can procure long-term benefits. Similarly, a scientist
can derive a significant benefit from being the first to publish an important new
result. The point of the technical debt metaphor is not to reprehend such choices,
but to remind of the long-term consequences.

Like all analogies, the debt metaphor has its limits. A financial debt is the
result of a contract between a borrower and a lender that describes the exact
conditions of the debt. Unless you carelessly take a loan without reading the
contract, you know what your future obligations are, and what short-term benefits
you get in return. Technical debt results from a contract with your future self, and
its terms are usually not written down anywhere. An experienced engineer will
recognize having incurred a technical debt, but may not be able to give a precise

1



estimate of the interest and the final payback. An inexperienced person can even
incur technical debt without being aware of it at all, seeing the short-term benefit
but not the long-term obligations.

A simple Web search will quickly yield many examples of and discussions
about technical debt in the context of commercial software development. Much
of this applies to scientific software as well, in particular to larger and long-lived
software projects with multiple developers and some form of project management.
However, both the nature of the software projects and of the organizations behind
them is much more diverse in scientific computing. In particular, much software
development happens in relatively small research groups that have informal col-
laborations with other such groups, either on a common software package or on
distinct but interdependent software packages. In such an organization, anyone’s
technical debt has an impact on everyone else.

I will illustrate this with examples from the scientific Python ecosystem, the
term commonly used to describe the large set of scientific libraries written in the
Python language. It has an onion-like structure, with the Python language itself
at the core. The next layer contains a small number of scientific infrastructure
libraries such as NumPy (array computations) and matplotlib (plotting). The
third layer consists of domain-specific libraries which tend to depend on libraries
in the infrastructure layer, and sometimes depend on other items in the domain-
specific layer as well. Outside of these three layers, we have “client code”: scripts
and workflows that are specific to a research project, but also highly domain-
specific software tools with graphical user interfaces.

An important event that currently receives much attention in this ecosystem
is the transition from Python 2 to Python 3. This transition is a nice example
of paying back technical debt with a partial default. The Python language had
continuously evolved over the years, acquiring both new language features and
new modules in its standard library. The desire to keep each version backwards
compatible with earlier versions led to redundant features that made the language
needlessly complicated. For example, there were “old-style” and “new-style”
classes with subtly different behavior. Everyone agreed that new-style was better,
but old-style was there before and much existing code relied on it. Similarly, the
standard library had acquired redundant modules, whereas other modules had
become obsolete in the sense that they relied on no longer maintained libraries
or were specific to computing platforms that have long since been transferred to
museums.

The reason why the transition to Python 3 is partly a repayment and partly
a default is that it preserves one objective while violating another one. Python
started out with the goal of being a simple and easy to learn language, and that
objective was preserved with the general cleanup that led to Python 3. But
publishing a programming language and encouraging people to use it implies the
promise of not breaking all those people’s code in the future. This tacit promise
was broken with Python 3, which is incompatible in many details with earlier

2



versions. The two objectives being contradictory, the only way to maintain both
would have been to stop any future evolution of the language. Most programming
languages face this choice at some time, but most designers choose continuously
accumulating complexity rather than cleaning up the mess. In other words, they
default on the technical debt by giving up simplicity.

Looking at the same process from the point of view of the creators of the
scientific libraries written in Python, we see that the technical debt in the de-
velopment of the Python language has a direct impact on their work. With the
Python development community moving on to Python 3, it is foreseeable that
it will abandon Python 2 in the long run. Library authors thus have to choose:
either they migrate to Python 3 as well, or they keep the Python 2 platform
alive by taking over its maintenance. Both choices involve an additional effort.
Doing nothing seems like a third option, but given the fast rate of change in
computing platforms, it is probable that today’s Python 2 will become effectively
unusable within a few years. Moreover, hardly any scientific library is useful in
isolation, so everyone’s choice depends on the expected behavior of the authors of
related libraries. At this time, the core infrastructure libraries and many of the
bigger domain-specific libraries have initiated or even completed the transition to
Python 3, while maintaining some level of compatibility with Python 2. On the
other hand, many libraries with a smaller developer base remain in the Python 2
universe, lacking either the means or the motivation to move on.

In terms of the technical debt metaphor, we can say that choosing the Python
language, or in fact choosing to base one’s work on any dependency or tool con-
trolled by someone else, creates technical debt. The short-term benefit is the
immediate availability of a useful software component. The interest is the work
required to adapt one’s own code to changes in the dependencies, or alternatively
to take on the responsibility for maintaining a version of those dependencies that
remains compatible with one’s own code. Paying back the debt would mean
replacing the dependency by one’s own code, but this is rarely done in prac-
tice. The technical debt resulting from dependencies is, in most cases, perpetual.
Moreover, such debts are practically inevitable because not depending on other
people’s work, i.e. writing everything oneself, is not a realistic option. After all,
even the computer’s operating system is a dependency. One can, however, try to
minimize “risky” dependencies as part of a strategy for managing technical debt.
Matthew Turk has recently written about this question in this department [1].

The kind of technical debt involved here is perhaps the most frequent one
in computing, even before the standard example of cutting corners to terminate
a project as early as possible. It can be summarized as relying on immature
technology. When you choose a programming language that’s just a few years
old, you should expect that nobody, not even its creator, has sufficient practical
experience with it to have made all the right choices. Either the language will
remain static nevertheless, and then probably fade from popularity quickly, or
it will change, and become either messy or incompatible. In all these situation,

3



you have a maintenance problem with your code that relies on it. If you want
to avoid this, you should choose a programming language that has been around
for decades. Indeed, stability is one reason often cited for choosing the Fortran
language. Of course, the same principle applies to other dependencies such as
libraries. It’s probably safe to bet on BLAS being around for many more years
without incompatible changes, but the same cannot be expected of a recent im-
plementation of the hottest algorithms of the day. This well-known problem of
software becoming unusable because of changes in its dependencies is sometimes
called “software rot”. This is not a good metaphor, however. Software doesn’t
degrade in time. It’s the foundations on which the software is built that change,
and even they don’t change by decaying, but as a side effect of improving. The
software rot metaphor has led to the equally misleading term “software mainte-
nance” for keeping software usable by adapting it to evolving environments.

In a fast-moving field such as computing, immature technology is the norm
rather than the exception. We all work with immature technology every day, and
we know it. My computer crashes about once per month, requiring a reboot.
It asks me to install software updates, often labeled as security-critical, at least
once a week. Broken Web links are a daily experience. It’s safe to assume that
scientific software is of no better quality, even though the symptoms of bugs are
usually more subtle and can go unnoticed. For scientists, who by definition work
at the frontiers of knowledge and technology, there is probably no way to avoid
immature dependencies. We can, however, be aware of this and try to anticipate
the consequences, or at the very least not pretend that there are none.

The technical debt metaphor is most frequently applied in software develop-
ment, but it applies equally well elsewhere. An interesting example is a recent
exploration of the impact of data dependencies in applications of machine learn-
ing techniques [2]. Such a systems-level view of technical debt is also useful in
the context of scientific research. In the following, I will apply this point of view
for the specific situation of computational science.

Science has long-established standards of quality, which all scientists have
the moral obligation to respect. In particular, scientists should make a serious
effort to verify the results they obtain, actively searching for potential mistakes,
in order to overcome confirmation bias, the natural tendency of human beings to
search confirmation rather than refutation of their own hypotheses. Moreover,
scientists must publish detailed accounts of their work in order to permit their
peers to verify it, attempt to reproduce the findings themselves, and to build on it
in future research. The respect of these obligations makes the difference between
a scientific result and anecdotal evidence.

Verifying one’s own results and conclusions implies first of all acquiring a suffi-
cient understanding of one’s methods and tools prior to using them, and ensuring
that they are adequate for the task. Computational scientists have traditionally
been rather negligent about this. The few prominent cases of mistakes in scien-
tific results due to bugs in software that have been brought into the public eye [3]

4



are probably just the tip of the iceberg, and suggest a widespread lack of testing.
Moreover, scientific software is often applied incorrectly, due to a lack of under-
standing of the computational methods that the software implements [4]. This
is partly the fault of scientists using software they do not understand, but partly
also the fault of scientific software authors providing insufficient documentation
and neglecting the readability of their source code.

The word “negligence” already suggests that basic human tendencies such as
laziness are an important cause for these problems. However, there is also a tech-
nical aspect to it. Scientists increasingly treat computational methods as similar
to experimental ones, and consider computers and software as the theoretician’s
equivalent of experimental equipment. This point of view is useful in particular
for simulation techniques, which produce data that is analyzed and evaluated
in much the same way as experimental measurements, with a strong emphasis
on statistical approaches. There is, however, a fundamental difference between
computers and instruments used in experiments. Lab instruments, like any phys-
ical devices, are subject to inevitable imperfections in manufacture. They are
therefore designed in such a way that small imperfections can only cause small
deviations in the results. Computers, on the other hand, are chaotic dynamical
systems. Changing a single bit in a computer’s memory can change the result of
a computation beyond any predictable bound. Computers are practically usable
devices in spite of this sensitivity because of their extreme reliability, compared
to other technical artifacts. Although hardware errors can become a problem
with long-running computations on very large machines, for most applications
of computers in scientific practice it is safe to assume that the computer does
precisely what the software tells it to do. However, errors in the software or in
the input data are amplified with each computational step. Often we can (and
do) ensure that small errors in the input data translate to small deviations in the
results, by a judicious choice of numerical methods. But we do not yet have good
techniques for limiting the impact of software errors. We should therefore add the
use of chaotic devices for computation to our technical debt account, and accept
the effort for carefully testing our software as an inevitable interest payment,
hoping to be able to pay back the debt one day by a profound change in the way
computers are used in research that limits the impact of chaotic behavior. Since
most scientists are not aware of this fundamental difference between software and
the physical devices used in experiments, this particular debt resembles a loan
taken without reading the contract.

The reproducibility requirement of science implies the publication of a suffi-
ciently detailed description of what was done. Computational science has been
performing very badly in this respect as well. This problem has received a lot
of attention recently, and CiSE has dedicated two theme issues to it, in Jan-
uary 2009 and in July 2012. Like for software bugs, there are both human and
technical reasons, the latter ones being cases of technical debt again.

One major reason for the widespread non-reproducibility of computational re-

5



sults is the use of immature technology, which I have already discussed above in
the context of software development. It means that software needs to be actively
maintained in order to be usable in the future, making software maintenance a
requirement for reproducibility. Unfortunately, active maintenance of all research
software down to the tiniest script used for data munging requires more effort
than the scientific community can afford to dedicate to such activities. This is
not only a question of affecting the means necessary to do the work. In many
cases, only the original author of a script knows what it is supposed to do exactly.
If the original author is a PhD student who leaves academic research after the
thesis, there is no one left who could do the maintenance. In practice, we most
often prefer to default on this kind of debt, all the more since such a default is still
socially acceptable today. The Reproducible Research movement works towards
paying back the debt in two ways: ensuring the sustainability of widely used
pieces of scientific software, and preserving more information about the compu-
tational environment of a particular research study, to be published alongside its
results as essential documentation.

Another technical reason for non-reproducibility is the sheer amount of in-
formation that is required for fully specifying a computation. In theory, any
computation is defined by a single computer program. All we have to do is pub-
lish that program together with a scientific article, and anyone could re-run it to
verify the results. In practice, that program is a complex assembly of a multitude
of parts. Typically we have many libraries, and multiple programs that call func-
tions from these libraries. A compiler and linker creates a single unit for each of
these programs, which is specialized for a particular type of computer. We then
combine several such programs with input data and an outer algorithmic layer of-
ten called a “workflow” in order to obtain the result. To make it worse, we often
launch computational steps interactively, meaning that a part of the workflow
exists only in our heads. Tools for managing the assembly and execution of such
complex computations have been around for a long time - the well-known “make”
utility for the Unix family of operating systems was published in 1977. They have
been ignored by most computational scientists until very recently, partly out of
ignorance and partly for not wanting to learn the use of such tools. This debt is
in the category of cutting corners for advancing more rapidly. We pay interest in
the form of increased manual labor, and we tend to default on the reproducibility
aspect.

A final category of technical debt that is frequent in computational science
results from an obsession with performance. This debt is particularly difficult to
deal with, because the interest can go unnoticed and the debt is almost never
paid back. Its importance has nevertheless been recognized, and is well expressed
by the famous D.E. Knuth quote reminding us that “premature optimization is
the root of all evil (or at least most of it) in programming” [5]. Best practices in
software engineering say that one should first write a clear and simple program,
and validate it by extensive testing. In a second step, performance bottlenecks

6



are identified by profiling, and eliminated by optimization. Computational scien-
tists often rush for optimization, choosing low-level programming languages for
performance and eliminating error checks perceived as too expensive, before even
having a validated program in which they could look systematically for perfor-
mance bottlenecks. The consequences are a higher software development effort
and more mistakes, leading to less reliable scientific results. Both of them could
be measured in principle, by comparing different software projects using differ-
ent approaches, but such an evaluation is expensive and in practice almost never
done.

As I already mentioned, the main utility of the technical debt metaphor is
to remind scientists, science managers, and funding agencies of the long-term
consequences of technical choices. Upon closer inspection, almost every technical
choice is associated with some kind of debt, in particular when dealing with
cutting-edge technology, which is frequent in research. It is useful to analyze
major choices in terms of the debt metaphor: Is the debt perpetual, or will it be
paid back? What are the interest payments? Is there a chance that we will have
to default on the debt? And if so, will we get away with it? The idea is to turn
the tacit contract about technical debt with one’s future self into an explicit one.

Any analysis of the technical debt involved in a typical research project will
make the importance of infrastructure evident. Infrastructure is everything not
specifically made for one research project. In computational science, it includes
shared equipment such as supercomputers, but also software made for facilitat-
ing research rather than directly for conducting research. This includes systems
software (operating systems, compilers, ...), programming languages, scientific
libraries, and software development tools. For scientists preparing a research
project, all of these items represent debt-laden dependencies. The more stable
and predictable the computational infrastructure is, the less risky these depen-
dencies are. This ought to be sufficient motivation for science funders to invest
into infrastructure. Fortunately, we see this starting to happen.

Another good investment for the prevention of debt escalation is educa-
tion and training. As I have shown above, much debt is the result of unin-
formed choices. In the ideal world, computational scientists would be better
prepared to make technical choices, either through better personal education
about computing technology, or by close collaboration with experts giving advice.
Reading CiSE is of course a good way to improve one’s technical competence.
We also see grassroots movements such as Software Carpentry (http://software-
carpentry.org/) who step in for the academic institutions that have failed so far
to integrate computational education into the training of young scientists. With
a bit of luck, we may thus be able to avoid a scientific debt crisis.

Konrad Hinsen is a researcher at the Centre de Biophysique Moléculaire in
Orléans (France) and at the Synchrotron Soleil in Saint Aubin (France). His re-

7



search interests include protein structure and dynamics and scientific computing.
He has a PhD in theoretical physics from RWTH Aachen University (Germany).
Contact him at konrad.hinsen@cnrs-orleans.fr.

References

[1] Matthew Turk
”Vertical Integration”
Computing in Science and Engineering 17(1), 64–66 (2015)

[2] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young
”Machine Learning: The High Interest Credit Card of Technical Debt”
SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop)
http://research.google.com/pubs/pub43146.html

[3] Zeeya Merali
”Computational science: ...Error”
Nature 467, 775-777 (2010)

[4] L N Joppa, G McInerny, R Harper, L Salido, K Takeda, K O’Hara, D
Gavaghan, S Emmott
”Troubling Trends in Scientific Software Use”
Science 340, 814-815 (2013)

[5] Donald E. Knuth
”Computer Programming As an Art”
Commun. ACM 17, 667–673 (1974)

8


